/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ // Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Windows Timer Primer // // A good article: http://www.ddj.com/windows/184416651 // A good mozilla bug: http://bugzilla.mozilla.org/show_bug.cgi?id=363258 // // The default windows timer, GetSystemTimeAsFileTime is not very precise. // It is only good to ~15.5ms. // // QueryPerformanceCounter is the logical choice for a high-precision timer. // However, it is known to be buggy on some hardware. Specifically, it can // sometimes "jump". On laptops, QPC can also be very expensive to call. // It's 3-4x slower than timeGetTime() on desktops, but can be 10x slower // on laptops. A unittest exists which will show the relative cost of various // timers on any system. // // The next logical choice is timeGetTime(). timeGetTime has a precision of // 1ms, but only if you call APIs (timeBeginPeriod()) which affect all other // applications on the system. By default, precision is only 15.5ms. // Unfortunately, we don't want to call timeBeginPeriod because we don't // want to affect other applications. Further, on mobile platforms, use of // faster multimedia timers can hurt battery life. See the intel // article about this here: // http://softwarecommunity.intel.com/articles/eng/1086.htm // // To work around all this, we're going to generally use timeGetTime(). We // will only increase the system-wide timer if we're not running on battery // power. Using timeBeginPeriod(1) is a requirement in order to make our // message loop waits have the same resolution that our time measurements // do. Otherwise, WaitForSingleObject(..., 1) will no less than 15ms when // there is nothing else to waken the Wait. #include "base/time.h" #pragma comment(lib, "winmm.lib") #include <windows.h> #include <mmsystem.h> #include "base/basictypes.h" #include "base/lock.h" #include "base/logging.h" #include "base/cpu.h" #include "base/singleton.h" #include "mozilla/Casting.h" using base::Time; using base::TimeDelta; using base::TimeTicks; using mozilla::BitwiseCast; namespace { // From MSDN, FILETIME "Contains a 64-bit value representing the number of // 100-nanosecond intervals since January 1, 1601 (UTC)." int64_t FileTimeToMicroseconds(const FILETIME& ft) { // Need to BitwiseCast to fix alignment, then divide by 10 to convert // 100-nanoseconds to milliseconds. This only works on little-endian // machines. return BitwiseCast<int64_t>(ft) / 10; } void MicrosecondsToFileTime(int64_t us, FILETIME* ft) { DCHECK(us >= 0) << "Time is less than 0, negative values are not " "representable in FILETIME"; // Multiply by 10 to convert milliseconds to 100-nanoseconds. BitwiseCast will // handle alignment problems. This only works on little-endian machines. *ft = BitwiseCast<FILETIME>(us * 10); } int64_t CurrentWallclockMicroseconds() { FILETIME ft; ::GetSystemTimeAsFileTime(&ft); return FileTimeToMicroseconds(ft); } // Time between resampling the un-granular clock for this API. 60 seconds. const int kMaxMillisecondsToAvoidDrift = 60 * Time::kMillisecondsPerSecond; int64_t initial_time = 0; TimeTicks initial_ticks; void InitializeClock() { initial_ticks = TimeTicks::Now(); initial_time = CurrentWallclockMicroseconds(); } } // namespace // Time ----------------------------------------------------------------------- // The internal representation of Time uses FILETIME, whose epoch is 1601-01-01 // 00:00:00 UTC. ((1970-1601)*365+89)*24*60*60*1000*1000, where 89 is the // number of leap year days between 1601 and 1970: (1970-1601)/4 excluding // 1700, 1800, and 1900. // static const int64_t Time::kTimeTToMicrosecondsOffset = GG_INT64_C(11644473600000000); // static Time Time::Now() { if (initial_time == 0) InitializeClock(); // We implement time using the high-resolution timers so that we can get // timeouts which are smaller than 10-15ms. If we just used // CurrentWallclockMicroseconds(), we'd have the less-granular timer. // // To make this work, we initialize the clock (initial_time) and the // counter (initial_ctr). To compute the initial time, we can check // the number of ticks that have elapsed, and compute the delta. // // To avoid any drift, we periodically resync the counters to the system // clock. while(true) { TimeTicks ticks = TimeTicks::Now(); // Calculate the time elapsed since we started our timer TimeDelta elapsed = ticks - initial_ticks; // Check if enough time has elapsed that we need to resync the clock. if (elapsed.InMilliseconds() > kMaxMillisecondsToAvoidDrift) { InitializeClock(); continue; } return Time(elapsed + Time(initial_time)); } } // static Time Time::NowFromSystemTime() { // Force resync. InitializeClock(); return Time(initial_time); } // static Time Time::FromFileTime(FILETIME ft) { return Time(FileTimeToMicroseconds(ft)); } FILETIME Time::ToFileTime() const { FILETIME utc_ft; MicrosecondsToFileTime(us_, &utc_ft); return utc_ft; } // static Time Time::FromExploded(bool is_local, const Exploded& exploded) { // Create the system struct representing our exploded time. It will either be // in local time or UTC. SYSTEMTIME st; st.wYear = exploded.year; st.wMonth = exploded.month; st.wDayOfWeek = exploded.day_of_week; st.wDay = exploded.day_of_month; st.wHour = exploded.hour; st.wMinute = exploded.minute; st.wSecond = exploded.second; st.wMilliseconds = exploded.millisecond; // Convert to FILETIME. FILETIME ft; if (!SystemTimeToFileTime(&st, &ft)) { NOTREACHED() << "Unable to convert time"; return Time(0); } // Ensure that it's in UTC. if (is_local) { FILETIME utc_ft; LocalFileTimeToFileTime(&ft, &utc_ft); return Time(FileTimeToMicroseconds(utc_ft)); } return Time(FileTimeToMicroseconds(ft)); } void Time::Explode(bool is_local, Exploded* exploded) const { // FILETIME in UTC. FILETIME utc_ft; MicrosecondsToFileTime(us_, &utc_ft); // FILETIME in local time if necessary. BOOL success = TRUE; FILETIME ft; if (is_local) success = FileTimeToLocalFileTime(&utc_ft, &ft); else ft = utc_ft; // FILETIME in SYSTEMTIME (exploded). SYSTEMTIME st; if (!success || !FileTimeToSystemTime(&ft, &st)) { NOTREACHED() << "Unable to convert time, don't know why"; ZeroMemory(exploded, sizeof(*exploded)); return; } exploded->year = st.wYear; exploded->month = st.wMonth; exploded->day_of_week = st.wDayOfWeek; exploded->day_of_month = st.wDay; exploded->hour = st.wHour; exploded->minute = st.wMinute; exploded->second = st.wSecond; exploded->millisecond = st.wMilliseconds; } // TimeTicks ------------------------------------------------------------------ namespace { // We define a wrapper to adapt between the __stdcall and __cdecl call of the // mock function, and to avoid a static constructor. Assigning an import to a // function pointer directly would require setup code to fetch from the IAT. DWORD timeGetTimeWrapper() { return timeGetTime(); } DWORD (*tick_function)(void) = &timeGetTimeWrapper; // We use timeGetTime() to implement TimeTicks::Now(). This can be problematic // because it returns the number of milliseconds since Windows has started, // which will roll over the 32-bit value every ~49 days. We try to track // rollover ourselves, which works if TimeTicks::Now() is called at least every // 49 days. class NowSingleton { public: NowSingleton() : rollover_(TimeDelta::FromMilliseconds(0)), last_seen_(0) { } TimeDelta Now() { AutoLock locked(lock_); // We should hold the lock while calling tick_function to make sure that // we keep our last_seen_ stay correctly in sync. DWORD now = tick_function(); if (now < last_seen_) rollover_ += TimeDelta::FromMilliseconds(GG_LONGLONG(0x100000000)); // ~49.7 days. last_seen_ = now; return TimeDelta::FromMilliseconds(now) + rollover_; } private: Lock lock_; // To protected last_seen_ and rollover_. TimeDelta rollover_; // Accumulation of time lost due to rollover. DWORD last_seen_; // The last timeGetTime value we saw, to detect rollover. DISALLOW_COPY_AND_ASSIGN(NowSingleton); }; // Overview of time counters: // (1) CPU cycle counter. (Retrieved via RDTSC) // The CPU counter provides the highest resolution time stamp and is the least // expensive to retrieve. However, the CPU counter is unreliable and should not // be used in production. Its biggest issue is that it is per processor and it // is not synchronized between processors. Also, on some computers, the counters // will change frequency due to thermal and power changes, and stop in some // states. // // (2) QueryPerformanceCounter (QPC). The QPC counter provides a high- // resolution (100 nanoseconds) time stamp but is comparatively more expensive // to retrieve. What QueryPerformanceCounter actually does is up to the HAL. // (with some help from ACPI). // According to http://blogs.msdn.com/oldnewthing/archive/2005/09/02/459952.aspx // in the worst case, it gets the counter from the rollover interrupt on the // programmable interrupt timer. In best cases, the HAL may conclude that the // RDTSC counter runs at a constant frequency, then it uses that instead. On // multiprocessor machines, it will try to verify the values returned from // RDTSC on each processor are consistent with each other, and apply a handful // of workarounds for known buggy hardware. In other words, QPC is supposed to // give consistent result on a multiprocessor computer, but it is unreliable in // reality due to bugs in BIOS or HAL on some, especially old computers. // With recent updates on HAL and newer BIOS, QPC is getting more reliable but // it should be used with caution. // // (3) System time. The system time provides a low-resolution (typically 10ms // to 55 milliseconds) time stamp but is comparatively less expensive to // retrieve and more reliable. class HighResNowSingleton { public: HighResNowSingleton() : ticks_per_microsecond_(0.0), skew_(0) { InitializeClock(); // On Athlon X2 CPUs (e.g. model 15) QueryPerformanceCounter is // unreliable. Fallback to low-res clock. base::CPU cpu; if (cpu.vendor_name() == "AuthenticAMD" && cpu.family() == 15) DisableHighResClock(); } bool IsUsingHighResClock() { return ticks_per_microsecond_ != 0.0; } void DisableHighResClock() { ticks_per_microsecond_ = 0.0; } TimeDelta Now() { // Our maximum tolerance for QPC drifting. const int kMaxTimeDrift = 50 * Time::kMicrosecondsPerMillisecond; if (IsUsingHighResClock()) { int64_t now = UnreliableNow(); // Verify that QPC does not seem to drift. DCHECK(now - ReliableNow() - skew_ < kMaxTimeDrift); return TimeDelta::FromMicroseconds(now); } // Just fallback to the slower clock. return Singleton<NowSingleton>::get()->Now(); } private: // Synchronize the QPC clock with GetSystemTimeAsFileTime. void InitializeClock() { LARGE_INTEGER ticks_per_sec = {{0}}; if (!QueryPerformanceFrequency(&ticks_per_sec)) return; // Broken, we don't guarantee this function works. ticks_per_microsecond_ = static_cast<float>(ticks_per_sec.QuadPart) / static_cast<float>(Time::kMicrosecondsPerSecond); skew_ = UnreliableNow() - ReliableNow(); } // Get the number of microseconds since boot in a reliable fashion int64_t UnreliableNow() { LARGE_INTEGER now; QueryPerformanceCounter(&now); return static_cast<int64_t>(now.QuadPart / ticks_per_microsecond_); } // Get the number of microseconds since boot in a reliable fashion int64_t ReliableNow() { return Singleton<NowSingleton>::get()->Now().InMicroseconds(); } // Cached clock frequency -> microseconds. This assumes that the clock // frequency is faster than one microsecond (which is 1MHz, should be OK). float ticks_per_microsecond_; // 0 indicates QPF failed and we're broken. int64_t skew_; // Skew between lo-res and hi-res clocks (for debugging). DISALLOW_COPY_AND_ASSIGN(HighResNowSingleton); }; } // namespace // static TimeTicks::TickFunctionType TimeTicks::SetMockTickFunction( TickFunctionType ticker) { TickFunctionType old = tick_function; tick_function = ticker; return old; } // static TimeTicks TimeTicks::Now() { return TimeTicks() + Singleton<NowSingleton>::get()->Now(); } // static TimeTicks TimeTicks::HighResNow() { return TimeTicks() + Singleton<HighResNowSingleton>::get()->Now(); }