/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ // Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // ConditionVariable wraps pthreads condition variable synchronization or, on // Windows, simulates it. This functionality is very helpful for having // several threads wait for an event, as is common with a thread pool managed // by a master. The meaning of such an event in the (worker) thread pool // scenario is that additional tasks are now available for processing. It is // used in Chrome in the DNS prefetching system to notify worker threads that // a queue now has items (tasks) which need to be tended to. A related use // would have a pool manager waiting on a ConditionVariable, waiting for a // thread in the pool to announce (signal) that there is now more room in a // (bounded size) communications queue for the manager to deposit tasks, or, // as a second example, that the queue of tasks is completely empty and all // workers are waiting. // // USAGE NOTE 1: spurious signal events are possible with this and // most implementations of condition variables. As a result, be // *sure* to retest your condition before proceeding. The following // is a good example of doing this correctly: // // while (!work_to_be_done()) Wait(...); // // In contrast do NOT do the following: // // if (!work_to_be_done()) Wait(...); // Don't do this. // // Especially avoid the above if you are relying on some other thread only // issuing a signal up *if* there is work-to-do. There can/will // be spurious signals. Recheck state on waiting thread before // assuming the signal was intentional. Caveat caller ;-). // // USAGE NOTE 2: Broadcast() frees up all waiting threads at once, // which leads to contention for the locks they all held when they // called Wait(). This results in POOR performance. A much better // approach to getting a lot of threads out of Wait() is to have each // thread (upon exiting Wait()) call Signal() to free up another // Wait'ing thread. Look at condition_variable_unittest.cc for // both examples. // // Broadcast() can be used nicely during teardown, as it gets the job // done, and leaves no sleeping threads... and performance is less // critical at that point. // // The semantics of Broadcast() are carefully crafted so that *all* // threads that were waiting when the request was made will indeed // get signaled. Some implementations mess up, and don't signal them // all, while others allow the wait to be effectively turned off (for // a while while waiting threads come around). This implementation // appears correct, as it will not "lose" any signals, and will guarantee // that all threads get signaled by Broadcast(). // // This implementation offers support for "performance" in its selection of // which thread to revive. Performance, in direct contrast with "fairness," // assures that the thread that most recently began to Wait() is selected by // Signal to revive. Fairness would (if publicly supported) assure that the // thread that has Wait()ed the longest is selected. The default policy // may improve performance, as the selected thread may have a greater chance of // having some of its stack data in various CPU caches. // // For a discussion of the many very subtle implementation details, see the FAQ // at the end of condition_variable_win.cc. #ifndef BASE_CONDITION_VARIABLE_H_ #define BASE_CONDITION_VARIABLE_H_ #include "base/lock.h" namespace base { class TimeDelta; } class ConditionVariable { public: // Construct a cv for use with ONLY one user lock. explicit ConditionVariable(Lock* user_lock); ~ConditionVariable(); // Wait() releases the caller's critical section atomically as it starts to // sleep, and the reacquires it when it is signaled. void Wait(); void TimedWait(const base::TimeDelta& max_time); // Broadcast() revives all waiting threads. void Broadcast(); // Signal() revives one waiting thread. void Signal(); private: #if defined(OS_WIN) // Define Event class that is used to form circularly linked lists. // The list container is an element with NULL as its handle_ value. // The actual list elements have a non-zero handle_ value. // All calls to methods MUST be done under protection of a lock so that links // can be validated. Without the lock, some links might asynchronously // change, and the assertions would fail (as would list change operations). class Event { public: // Default constructor with no arguments creates a list container. Event(); ~Event(); // InitListElement transitions an instance from a container, to an element. void InitListElement(); // Methods for use on lists. bool IsEmpty() const; void PushBack(Event* other); Event* PopFront(); Event* PopBack(); // Methods for use on list elements. // Accessor method. HANDLE handle() const; // Pull an element from a list (if it's in one). Event* Extract(); // Method for use on a list element or on a list. bool IsSingleton() const; private: // Provide pre/post conditions to validate correct manipulations. bool ValidateAsDistinct(Event* other) const; bool ValidateAsItem() const; bool ValidateAsList() const; bool ValidateLinks() const; HANDLE handle_; Event* next_; Event* prev_; DISALLOW_COPY_AND_ASSIGN(Event); }; // Note that RUNNING is an unlikely number to have in RAM by accident. // This helps with defensive destructor coding in the face of user error. enum RunState { SHUTDOWN = 0, RUNNING = 64213 }; // Internal implementation methods supporting Wait(). Event* GetEventForWaiting(); void RecycleEvent(Event* used_event); RunState run_state_; // Private critical section for access to member data. Lock internal_lock_; // Lock that is acquired before calling Wait(). Lock& user_lock_; // Events that threads are blocked on. Event waiting_list_; // Free list for old events. Event recycling_list_; int recycling_list_size_; // The number of allocated, but not yet deleted events. int allocation_counter_; #elif defined(OS_POSIX) pthread_cond_t condition_; pthread_mutex_t* user_mutex_; #endif DISALLOW_COPY_AND_ASSIGN(ConditionVariable); }; #endif // BASE_CONDITION_VARIABLE_H_