// Copyright (C) 2016 and later: Unicode, Inc. and others. // License & terms of use: http://www.unicode.org/copyright.html /* ****************************************************************************** * * Copyright (C) 1999-2011, International Business Machines * Corporation and others. All Rights Reserved. * ******************************************************************************/ /*------------------------------------------------------------------------------ * * UCommonData An abstract interface for dealing with ICU Common Data Files. * ICU Common Data Files are a grouping of a number of individual * data items (resources, converters, tables, anything) into a * single file or dll. The combined format includes a table of * contents for locating the individual items by name. * * Two formats for the table of contents are supported, which is * why there is an abstract inteface involved. * */ #include "unicode/utypes.h" #include "unicode/udata.h" #include "cstring.h" #include "ucmndata.h" #include "udatamem.h" #if defined(UDATA_DEBUG) || defined(UDATA_DEBUG_DUMP) # include <stdio.h> #endif U_CFUNC uint16_t udata_getHeaderSize(const DataHeader *udh) { if(udh==NULL) { return 0; } else if(udh->info.isBigEndian==U_IS_BIG_ENDIAN) { /* same endianness */ return udh->dataHeader.headerSize; } else { /* opposite endianness */ uint16_t x=udh->dataHeader.headerSize; return (uint16_t)((x<<8)|(x>>8)); } } U_CFUNC uint16_t udata_getInfoSize(const UDataInfo *info) { if(info==NULL) { return 0; } else if(info->isBigEndian==U_IS_BIG_ENDIAN) { /* same endianness */ return info->size; } else { /* opposite endianness */ uint16_t x=info->size; return (uint16_t)((x<<8)|(x>>8)); } } /*-----------------------------------------------------------------------------* * * * Pointer TOCs. TODO: This form of table-of-contents should be removed * * because DLLs must be relocated on loading to correct the * * pointer values and this operation makes shared memory * * mapping of the data much less likely to work. * * * *-----------------------------------------------------------------------------*/ typedef struct { const char *entryName; const DataHeader *pHeader; } PointerTOCEntry; typedef struct { uint32_t count; uint32_t reserved; PointerTOCEntry entry[2]; /* Actual size is from count. */ } PointerTOC; /* definition of OffsetTOC struct types moved to ucmndata.h */ /*-----------------------------------------------------------------------------* * * * entry point lookup implementations * * * *-----------------------------------------------------------------------------*/ #ifndef MIN #define MIN(a,b) (((a)<(b)) ? (a) : (b)) #endif /** * Compare strings where we know the shared prefix length, * and advance the prefix length as we find that the strings share even more characters. */ static int32_t strcmpAfterPrefix(const char *s1, const char *s2, int32_t *pPrefixLength) { int32_t pl=*pPrefixLength; int32_t cmp=0; s1+=pl; s2+=pl; for(;;) { int32_t c1=(uint8_t)*s1++; int32_t c2=(uint8_t)*s2++; cmp=c1-c2; if(cmp!=0 || c1==0) { /* different or done */ break; } ++pl; /* increment shared same-prefix length */ } *pPrefixLength=pl; return cmp; } static int32_t offsetTOCPrefixBinarySearch(const char *s, const char *names, const UDataOffsetTOCEntry *toc, int32_t count) { int32_t start=0; int32_t limit=count; /* * Remember the shared prefix between s, start and limit, * and don't compare that shared prefix again. * The shared prefix should get longer as we narrow the [start, limit[ range. */ int32_t startPrefixLength=0; int32_t limitPrefixLength=0; if(count==0) { return -1; } /* * Prime the prefix lengths so that we don't keep prefixLength at 0 until * both the start and limit indexes have moved. * At the same time, we find if s is one of the start and (limit-1) names, * and if not, exclude them from the actual binary search. */ if(0==strcmpAfterPrefix(s, names+toc[0].nameOffset, &startPrefixLength)) { return 0; } ++start; --limit; if(0==strcmpAfterPrefix(s, names+toc[limit].nameOffset, &limitPrefixLength)) { return limit; } while(start<limit) { int32_t i=(start+limit)/2; int32_t prefixLength=MIN(startPrefixLength, limitPrefixLength); int32_t cmp=strcmpAfterPrefix(s, names+toc[i].nameOffset, &prefixLength); if(cmp<0) { limit=i; limitPrefixLength=prefixLength; } else if(cmp==0) { return i; } else { start=i+1; startPrefixLength=prefixLength; } } return -1; } static int32_t pointerTOCPrefixBinarySearch(const char *s, const PointerTOCEntry *toc, int32_t count) { int32_t start=0; int32_t limit=count; /* * Remember the shared prefix between s, start and limit, * and don't compare that shared prefix again. * The shared prefix should get longer as we narrow the [start, limit[ range. */ int32_t startPrefixLength=0; int32_t limitPrefixLength=0; if(count==0) { return -1; } /* * Prime the prefix lengths so that we don't keep prefixLength at 0 until * both the start and limit indexes have moved. * At the same time, we find if s is one of the start and (limit-1) names, * and if not, exclude them from the actual binary search. */ if(0==strcmpAfterPrefix(s, toc[0].entryName, &startPrefixLength)) { return 0; } ++start; --limit; if(0==strcmpAfterPrefix(s, toc[limit].entryName, &limitPrefixLength)) { return limit; } while(start<limit) { int32_t i=(start+limit)/2; int32_t prefixLength=MIN(startPrefixLength, limitPrefixLength); int32_t cmp=strcmpAfterPrefix(s, toc[i].entryName, &prefixLength); if(cmp<0) { limit=i; limitPrefixLength=prefixLength; } else if(cmp==0) { return i; } else { start=i+1; startPrefixLength=prefixLength; } } return -1; } static uint32_t offsetTOCEntryCount(const UDataMemory *pData) { int32_t retVal=0; const UDataOffsetTOC *toc = (UDataOffsetTOC *)pData->toc; if (toc != NULL) { retVal = toc->count; } return retVal; } static const DataHeader * offsetTOCLookupFn(const UDataMemory *pData, const char *tocEntryName, int32_t *pLength, UErrorCode *pErrorCode) { const UDataOffsetTOC *toc = (UDataOffsetTOC *)pData->toc; if(toc!=NULL) { const char *base=(const char *)toc; int32_t number, count=(int32_t)toc->count; /* perform a binary search for the data in the common data's table of contents */ #if defined (UDATA_DEBUG_DUMP) /* list the contents of the TOC each time .. not recommended */ for(number=0; number<count; ++number) { fprintf(stderr, "\tx%d: %s\n", number, &base[toc->entry[number].nameOffset]); } #endif number=offsetTOCPrefixBinarySearch(tocEntryName, base, toc->entry, count); if(number>=0) { /* found it */ const UDataOffsetTOCEntry *entry=toc->entry+number; #ifdef UDATA_DEBUG fprintf(stderr, "%s: Found.\n", tocEntryName); #endif if((number+1) < count) { *pLength = (int32_t)(entry[1].dataOffset - entry->dataOffset); } else { *pLength = -1; } return (const DataHeader *)(base+entry->dataOffset); } else { #ifdef UDATA_DEBUG fprintf(stderr, "%s: Not found.\n", tocEntryName); #endif return NULL; } } else { #ifdef UDATA_DEBUG fprintf(stderr, "returning header\n"); #endif return pData->pHeader; } } static uint32_t pointerTOCEntryCount(const UDataMemory *pData) { const PointerTOC *toc = (PointerTOC *)pData->toc; return (uint32_t)((toc != NULL) ? (toc->count) : 0); } static const DataHeader *pointerTOCLookupFn(const UDataMemory *pData, const char *name, int32_t *pLength, UErrorCode *pErrorCode) { if(pData->toc!=NULL) { const PointerTOC *toc = (PointerTOC *)pData->toc; int32_t number, count=(int32_t)toc->count; #if defined (UDATA_DEBUG_DUMP) /* list the contents of the TOC each time .. not recommended */ for(number=0; number<count; ++number) { fprintf(stderr, "\tx%d: %s\n", number, toc->entry[number].entryName); } #endif number=pointerTOCPrefixBinarySearch(name, toc->entry, count); if(number>=0) { /* found it */ #ifdef UDATA_DEBUG fprintf(stderr, "%s: Found.\n", toc->entry[number].entryName); #endif *pLength=-1; return UDataMemory_normalizeDataPointer(toc->entry[number].pHeader); } else { #ifdef UDATA_DEBUG fprintf(stderr, "%s: Not found.\n", name); #endif return NULL; } } else { return pData->pHeader; } } static const commonDataFuncs CmnDFuncs = {offsetTOCLookupFn, offsetTOCEntryCount}; static const commonDataFuncs ToCPFuncs = {pointerTOCLookupFn, pointerTOCEntryCount}; /*----------------------------------------------------------------------* * * * checkCommonData Validate the format of a common data file. * * Fill in the virtual function ptr based on TOC type * * If the data is invalid, close the UDataMemory * * and set the appropriate error code. * * * *----------------------------------------------------------------------*/ U_CFUNC void udata_checkCommonData(UDataMemory *udm, UErrorCode *err) { if (U_FAILURE(*err)) { return; } if(udm==NULL || udm->pHeader==NULL) { *err=U_INVALID_FORMAT_ERROR; } else if(!(udm->pHeader->dataHeader.magic1==0xda && udm->pHeader->dataHeader.magic2==0x27 && udm->pHeader->info.isBigEndian==U_IS_BIG_ENDIAN && udm->pHeader->info.charsetFamily==U_CHARSET_FAMILY) ) { /* header not valid */ *err=U_INVALID_FORMAT_ERROR; } else if (udm->pHeader->info.dataFormat[0]==0x43 && udm->pHeader->info.dataFormat[1]==0x6d && udm->pHeader->info.dataFormat[2]==0x6e && udm->pHeader->info.dataFormat[3]==0x44 && udm->pHeader->info.formatVersion[0]==1 ) { /* dataFormat="CmnD" */ udm->vFuncs = &CmnDFuncs; udm->toc=(const char *)udm->pHeader+udata_getHeaderSize(udm->pHeader); } else if(udm->pHeader->info.dataFormat[0]==0x54 && udm->pHeader->info.dataFormat[1]==0x6f && udm->pHeader->info.dataFormat[2]==0x43 && udm->pHeader->info.dataFormat[3]==0x50 && udm->pHeader->info.formatVersion[0]==1 ) { /* dataFormat="ToCP" */ udm->vFuncs = &ToCPFuncs; udm->toc=(const char *)udm->pHeader+udata_getHeaderSize(udm->pHeader); } else { /* dataFormat not recognized */ *err=U_INVALID_FORMAT_ERROR; } if (U_FAILURE(*err)) { /* If the data is no good and we memory-mapped it ourselves, * close the memory mapping so it doesn't leak. Note that this has * no effect on non-memory mapped data, other than clearing fields in udm. */ udata_close(udm); } } /* * TODO: Add a udata_swapPackageHeader() function that swaps an ICU .dat package * header but not its sub-items. * This function will be needed for automatic runtime swapping. * Sub-items should not be swapped to limit the swapping to the parts of the * package that are actually used. * * Since lengths of items are implicit in the order and offsets of their * ToC entries, and since offsets are relative to the start of the ToC, * a swapped version may need to generate a different data structure * with pointers to the original data items and with their lengths * (-1 for the last one if it is not known), and maybe even pointers to the * swapped versions of the items. * These pointers to swapped versions would establish a cache; * instead, each open data item could simply own the storage for its swapped * data. This fits better with the current design. * * markus 2003sep18 Jitterbug 2235 */