/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ .arch armv7-a .fpu neon /* Allow to build on targets not supporting neon, and force the object file * target to avoid bumping the final binary target */ .object_arch armv4t .text .align .balign 64 YCbCr42xToRGB565_DITHER03_CONSTS_NEON: .short -14240 .short -14240+384 .short 8672 .short 8672+192 .short -17696 .short -17696+384 .byte 102 .byte 25 .byte 52 .byte 129 YCbCr42xToRGB565_DITHER12_CONSTS_NEON: .short -14240+128 .short -14240+256 .short 8672+64 .short 8672+128 .short -17696+128 .short -17696+256 .byte 102 .byte 25 .byte 52 .byte 129 YCbCr42xToRGB565_DITHER21_CONSTS_NEON: .short -14240+256 .short -14240+128 .short 8672+128 .short 8672+64 .short -17696+256 .short -17696+128 .byte 102 .byte 25 .byte 52 .byte 129 YCbCr42xToRGB565_DITHER30_CONSTS_NEON: .short -14240+384 .short -14240 .short 8672+192 .short 8672 .short -17696+384 .short -17696 .byte 102 .byte 25 .byte 52 .byte 129 @ void ScaleYCbCr42xToRGB565_BilinearY_Row_NEON( @ yuv2rgb565_row_scale_bilinear_ctx *ctx, int dither); @ @ ctx = { @ uint16_t *rgb_row; /*r0*/ @ const uint8_t *y_row; /*r1*/ @ const uint8_t *u_row; /*r2*/ @ const uint8_t *v_row; /*r3*/ @ int y_yweight; /*r4*/ @ int y_pitch; /*r5*/ @ int width; /*r6*/ @ int source_x0_q16; /*r7*/ @ int source_dx_q16; /*r8*/ @ int source_uv_xoffs_q16; /*r9*/ @ }; .global ScaleYCbCr42xToRGB565_BilinearY_Row_NEON .type ScaleYCbCr42xToRGB565_BilinearY_Row_NEON, %function .balign 64 .fnstart ScaleYCbCr42xToRGB565_BilinearY_Row_NEON: STMFD r13!,{r4-r9,r14} @ 8 words. ADR r14,YCbCr42xToRGB565_DITHER03_CONSTS_NEON VPUSH {Q4-Q7} @ 16 words. ADD r14,r14,r1, LSL #4 @ Select the dither table to use LDMIA r0, {r0-r9} @ Set up image index registers. ADD r12,r8, r8 VMOV.I32 D16,#0 @ Q8 = < 2| 2| 0| 0>*source_dx_q16 VDUP.32 D17,r12 ADD r12,r12,r12 VTRN.32 D16,D17 @ Q2 = < 2| 0| 2| 0>*source_dx_q16 VDUP.32 D19,r12 @ Q9 = < 4| 4| ?| ?>*source_dx_q16 ADD r12,r12,r12 VDUP.32 Q0, r7 @ Q0 = < 1| 1| 1| 1>*source_x0_q16 VADD.I32 D17,D17,D19 @ Q8 = < 6| 4| 2| 0>*source_dx_q16 CMP r8, #0 @ If source_dx_q16 is negative... VDUP.32 Q9, r12 @ Q9 = < 8| 8| 8| 8>*source_dx_q16 ADDLT r7, r7, r8, LSL #4 @ Make r7 point to the end of the block VADD.I32 Q0, Q0, Q8 @ Q0 = < 6| 4| 2| 0>*source_dx_q16+source_x0_q16 SUBLT r7, r7, r8 @ (i.e., the lowest address we'll use) VADD.I32 Q1, Q0, Q9 @ Q1 = <14|12|10| 8>*source_dx_q16+source_x0_q16 VDUP.I32 Q9, r8 @ Q8 = < 1| 1| 1| 1>*source_dx_q16 VADD.I32 Q2, Q0, Q9 @ Q2 = < 7| 5| 3| 1>*source_dx_q16+source_x0_q16 VADD.I32 Q3, Q1, Q9 @ Q3 = <15|13|11| 9>*source_dx_q16+source_x0_q16 VLD1.64 {D30,D31},[r14,:128] @ Load some constants VMOV.I8 D28,#52 VMOV.I8 D29,#129 @ The basic idea here is to do aligned loads of a block of data and then @ index into it using VTBL to extract the data from the source X @ coordinate corresponding to each destination pixel. @ This is significantly less code and significantly fewer cycles than doing @ a series of single-lane loads, but it means that the X step between @ pixels must be limited to 2.0 or less, otherwise we couldn't guarantee @ that we could read 8 pixels from a single aligned 32-byte block of data. @ Q0...Q3 contain the 16.16 fixed-point X coordinates of each pixel, @ separated into even pixels and odd pixels to make extracting offsets and @ weights easier. @ We then pull out two bytes from the middle of each coordinate: the top @ byte corresponds to the integer part of the X coordinate, and the bottom @ byte corresponds to the weight to use for bilinear blending. @ These are separated out into different registers with VTRN. @ Then by subtracting the integer X coordinate of the first pixel in the @ data block we loaded, we produce an index register suitable for use by @ VTBL. s42xbily_neon_loop: @ Load the Y' data. MOV r12,r7, ASR #16 VRSHRN.S32 D16,Q0, #8 AND r12,r12,#~15 @ Read 16-byte aligned blocks VDUP.I8 D20,r12 ADD r12,r1, r12 @ r12 = y_row+(source_x&~7) VRSHRN.S32 D17,Q1, #8 PLD [r12,#64] VLD1.64 {D8, D9, D10,D11},[r12,:128],r5 @ Load Y' top row ADD r14,r7, r8, LSL #3 VRSHRN.S32 D18,Q2, #8 MOV r14,r14,ASR #16 VRSHRN.S32 D19,Q3, #8 AND r14,r14,#~15 @ Read 16-byte aligned blocks VLD1.64 {D12,D13,D14,D15},[r12,:128] @ Load Y' bottom row PLD [r12,#64] VDUP.I8 D21,r14 ADD r14,r1, r14 @ r14 = y_row+(source_x&~7) VMOV.I8 Q13,#1 PLD [r14,#64] VTRN.8 Q8, Q9 @ Q8 = <wFwEwDwCwBwAw9w8w7w6w5w4w3w2w1w0> @ Q9 = <xFxExDxCxBxAx9x8x7x6x5x4x3x2x1x0> VSUB.S8 Q9, Q9, Q10 @ Make offsets relative to the data we loaded. @ First 8 Y' pixels VTBL.8 D20,{D8, D9, D10,D11},D18 @ Index top row at source_x VTBL.8 D24,{D12,D13,D14,D15},D18 @ Index bottom row at source_x VADD.S8 Q13,Q9, Q13 @ Add 1 to source_x VTBL.8 D22,{D8, D9, D10,D11},D26 @ Index top row at source_x+1 VTBL.8 D26,{D12,D13,D14,D15},D26 @ Index bottom row at source_x+1 @ Next 8 Y' pixels VLD1.64 {D8, D9, D10,D11},[r14,:128],r5 @ Load Y' top row VLD1.64 {D12,D13,D14,D15},[r14,:128] @ Load Y' bottom row PLD [r14,#64] VTBL.8 D21,{D8, D9, D10,D11},D19 @ Index top row at source_x VTBL.8 D25,{D12,D13,D14,D15},D19 @ Index bottom row at source_x VTBL.8 D23,{D8, D9, D10,D11},D27 @ Index top row at source_x+1 VTBL.8 D27,{D12,D13,D14,D15},D27 @ Index bottom row at source_x+1 @ Blend Y'. VDUP.I16 Q9, r4 @ Load the y weights. VSUBL.U8 Q4, D24,D20 @ Q5:Q4 = c-a VSUBL.U8 Q5, D25,D21 VSUBL.U8 Q6, D26,D22 @ Q7:Q6 = d-b VSUBL.U8 Q7, D27,D23 VMUL.S16 Q4, Q4, Q9 @ Q5:Q4 = (c-a)*yweight VMUL.S16 Q5, Q5, Q9 VMUL.S16 Q6, Q6, Q9 @ Q7:Q6 = (d-b)*yweight VMUL.S16 Q7, Q7, Q9 VMOVL.U8 Q12,D16 @ Promote the x weights to 16 bits. VMOVL.U8 Q13,D17 @ Sadly, there's no VMULW. VRSHRN.S16 D8, Q4, #8 @ Q4 = (c-a)*yweight+128>>8 VRSHRN.S16 D9, Q5, #8 VRSHRN.S16 D12,Q6, #8 @ Q6 = (d-b)*yweight+128>>8 VRSHRN.S16 D13,Q7, #8 VADD.I8 Q10,Q10,Q4 @ Q10 = a+((c-a)*yweight+128>>8) VADD.I8 Q11,Q11,Q6 @ Q11 = b+((d-b)*yweight+128>>8) VSUBL.U8 Q4, D22,D20 @ Q5:Q4 = b-a VSUBL.U8 Q5, D23,D21 VMUL.S16 Q4, Q4, Q12 @ Q5:Q4 = (b-a)*xweight VMUL.S16 Q5, Q5, Q13 VRSHRN.S16 D8, Q4, #8 @ Q4 = (b-a)*xweight+128>>8 ADD r12,r7, r9 VRSHRN.S16 D9, Q5, #8 MOV r12,r12,ASR #17 VADD.I8 Q8, Q10,Q4 @ Q8 = a+((b-a)*xweight+128>>8) @ Start extracting the chroma x coordinates, and load Cb and Cr. AND r12,r12,#~15 @ Read 16-byte aligned blocks VDUP.I32 Q9, r9 @ Q9 = source_uv_xoffs_q16 x 4 ADD r14,r2, r12 VADD.I32 Q10,Q0, Q9 VLD1.64 {D8, D9, D10,D11},[r14,:128] @ Load Cb PLD [r14,#64] VADD.I32 Q11,Q1, Q9 ADD r14,r3, r12 VADD.I32 Q12,Q2, Q9 VLD1.64 {D12,D13,D14,D15},[r14,:128] @ Load Cr PLD [r14,#64] VADD.I32 Q13,Q3, Q9 VRSHRN.S32 D20,Q10,#9 @ Q10 = <xEwExCwCxAwAx8w8x6w6x4w4x2w2x0w0> VRSHRN.S32 D21,Q11,#9 VDUP.I8 Q9, r12 VRSHRN.S32 D22,Q12,#9 @ Q11 = <xFwFxDwDxBwBx9w9x7w7x5w5x3w3x1w1> VRSHRN.S32 D23,Q13,#9 @ We don't actually need the x weights, but we get them for free. @ Free ALU slot VTRN.8 Q10,Q11 @ Q10 = <wFwEwDwCwBwAw9w8w7w6w5w4w3w2w1w0> @ Free ALU slot @ Q11 = <xFxExDxCxBxAx9x8x7x6x5x4x3x2x1x0> VSUB.S8 Q11,Q11,Q9 @ Make offsets relative to the data we loaded. VTBL.8 D18,{D8, D9, D10,D11},D22 @ Index Cb at source_x VMOV.I8 D24,#74 VTBL.8 D19,{D8, D9, D10,D11},D23 VMOV.I8 D26,#102 VTBL.8 D20,{D12,D13,D14,D15},D22 @ Index Cr at source_x VMOV.I8 D27,#25 VTBL.8 D21,{D12,D13,D14,D15},D23 @ We now have Y' in Q8, Cb in Q9, and Cr in Q10 @ We use VDUP to expand constants, because it's a permute instruction, so @ it can dual issue on the A8. SUBS r6, r6, #16 @ width -= 16 VMULL.U8 Q4, D16,D24 @ Q5:Q4 = Y'*74 VDUP.32 Q6, D30[1] @ Q7:Q6 = bias_G VMULL.U8 Q5, D17,D24 VDUP.32 Q7, D30[1] VMLSL.U8 Q6, D18,D27 @ Q7:Q6 = -25*Cb+bias_G VDUP.32 Q11,D30[0] @ Q12:Q11 = bias_R VMLSL.U8 Q7, D19,D27 VDUP.32 Q12,D30[0] VMLAL.U8 Q11,D20,D26 @ Q12:Q11 = 102*Cr+bias_R VDUP.32 Q8, D31[0] @ Q13:Q8 = bias_B VMLAL.U8 Q12,D21,D26 VDUP.32 Q13,D31[0] VMLAL.U8 Q8, D18,D29 @ Q13:Q8 = 129*Cb+bias_B VMLAL.U8 Q13,D19,D29 VMLSL.U8 Q6, D20,D28 @ Q7:Q6 = -25*Cb-52*Cr+bias_G VMLSL.U8 Q7, D21,D28 VADD.S16 Q11,Q4, Q11 @ Q12:Q11 = 74*Y'+102*Cr+bias_R VADD.S16 Q12,Q5, Q12 VQADD.S16 Q8, Q4, Q8 @ Q13:Q8 = 74*Y'+129*Cr+bias_B VQADD.S16 Q13,Q5, Q13 VADD.S16 Q6, Q4, Q6 @ Q7:Q6 = 74*Y'-25*Cb-52*Cr+bias_G VADD.S16 Q7, Q5, Q7 @ Push each value to the top of its word and saturate it. VQSHLU.S16 Q11,Q11,#2 VQSHLU.S16 Q12,Q12,#2 VQSHLU.S16 Q6, Q6, #2 VQSHLU.S16 Q7, Q7, #2 VQSHLU.S16 Q8, Q8, #2 VQSHLU.S16 Q13,Q13,#2 @ Merge G and B into R. VSRI.U16 Q11,Q6, #5 VSRI.U16 Q12,Q7, #5 VSRI.U16 Q11,Q8, #11 MOV r14,r8, LSL #4 VSRI.U16 Q12,Q13,#11 BLT s42xbily_neon_tail VDUP.I32 Q13,r14 @ Store the result. VST1.16 {D22,D23,D24,D25},[r0]! BEQ s42xbily_neon_done @ Advance the x coordinates. VADD.I32 Q0, Q0, Q13 VADD.I32 Q1, Q1, Q13 ADD r7, r14 VADD.I32 Q2, Q2, Q13 VADD.I32 Q3, Q3, Q13 B s42xbily_neon_loop s42xbily_neon_tail: @ We have between 1 and 15 pixels left to write. @ -r6 == the number of pixels we need to skip writing. @ Adjust r0 to point to the last one we need to write, because we're going @ to write them in reverse order. ADD r0, r0, r6, LSL #1 MOV r14,#-2 ADD r0, r0, #30 @ Skip past the ones we don't need to write. SUB PC, PC, r6, LSL #2 ORR r0, r0, r0 VST1.16 {D25[3]},[r0,:16],r14 VST1.16 {D25[2]},[r0,:16],r14 VST1.16 {D25[1]},[r0,:16],r14 VST1.16 {D25[0]},[r0,:16],r14 VST1.16 {D24[3]},[r0,:16],r14 VST1.16 {D24[2]},[r0,:16],r14 VST1.16 {D24[1]},[r0,:16],r14 VST1.16 {D24[0]},[r0,:16],r14 VST1.16 {D23[3]},[r0,:16],r14 VST1.16 {D23[2]},[r0,:16],r14 VST1.16 {D23[1]},[r0,:16],r14 VST1.16 {D23[0]},[r0,:16],r14 VST1.16 {D22[3]},[r0,:16],r14 VST1.16 {D22[2]},[r0,:16],r14 VST1.16 {D22[1]},[r0,:16],r14 VST1.16 {D22[0]},[r0,:16] s42xbily_neon_done: VPOP {Q4-Q7} @ 16 words. LDMFD r13!,{r4-r9,PC} @ 8 words. .fnend .size ScaleYCbCr42xToRGB565_BilinearY_Row_NEON, .-ScaleYCbCr42xToRGB565_BilinearY_Row_NEON #if defined(__ELF__)&&defined(__linux__) .section .note.GNU-stack,"",%progbits #endif