#include <emmintrin.h> #include "qcmsint.h" /* pre-shuffled: just load these into XMM reg instead of load-scalar/shufps sequence */ #define FLOATSCALE (float)(PRECACHE_OUTPUT_SIZE) #define CLAMPMAXVAL ( ((float) (PRECACHE_OUTPUT_SIZE - 1)) / PRECACHE_OUTPUT_SIZE ) static const ALIGN float floatScaleX4[4] = { FLOATSCALE, FLOATSCALE, FLOATSCALE, FLOATSCALE}; static const ALIGN float clampMaxValueX4[4] = { CLAMPMAXVAL, CLAMPMAXVAL, CLAMPMAXVAL, CLAMPMAXVAL}; void qcms_transform_data_rgb_out_lut_sse2(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length) { unsigned int i; float (*mat)[4] = transform->matrix; char input_back[32]; /* Ensure we have a buffer that's 16 byte aligned regardless of the original * stack alignment. We can't use __attribute__((aligned(16))) or __declspec(align(32)) * because they don't work on stack variables. gcc 4.4 does do the right thing * on x86 but that's too new for us right now. For more info: gcc bug #16660 */ float const * input = (float*)(((uintptr_t)&input_back[16]) & ~0xf); /* share input and output locations to save having to keep the * locations in separate registers */ uint32_t const * output = (uint32_t*)input; /* deref *transform now to avoid it in loop */ const float *igtbl_r = transform->input_gamma_table_r; const float *igtbl_g = transform->input_gamma_table_g; const float *igtbl_b = transform->input_gamma_table_b; /* deref *transform now to avoid it in loop */ const uint8_t *otdata_r = &transform->output_table_r->data[0]; const uint8_t *otdata_g = &transform->output_table_g->data[0]; const uint8_t *otdata_b = &transform->output_table_b->data[0]; /* input matrix values never change */ const __m128 mat0 = _mm_load_ps(mat[0]); const __m128 mat1 = _mm_load_ps(mat[1]); const __m128 mat2 = _mm_load_ps(mat[2]); /* these values don't change, either */ const __m128 max = _mm_load_ps(clampMaxValueX4); const __m128 min = _mm_setzero_ps(); const __m128 scale = _mm_load_ps(floatScaleX4); /* working variables */ __m128 vec_r, vec_g, vec_b, result; /* CYA */ if (!length) return; /* one pixel is handled outside of the loop */ length--; /* setup for transforming 1st pixel */ vec_r = _mm_load_ss(&igtbl_r[src[0]]); vec_g = _mm_load_ss(&igtbl_g[src[1]]); vec_b = _mm_load_ss(&igtbl_b[src[2]]); src += 3; /* transform all but final pixel */ for (i=0; i<length; i++) { /* position values from gamma tables */ vec_r = _mm_shuffle_ps(vec_r, vec_r, 0); vec_g = _mm_shuffle_ps(vec_g, vec_g, 0); vec_b = _mm_shuffle_ps(vec_b, vec_b, 0); /* gamma * matrix */ vec_r = _mm_mul_ps(vec_r, mat0); vec_g = _mm_mul_ps(vec_g, mat1); vec_b = _mm_mul_ps(vec_b, mat2); /* crunch, crunch, crunch */ vec_r = _mm_add_ps(vec_r, _mm_add_ps(vec_g, vec_b)); vec_r = _mm_max_ps(min, vec_r); vec_r = _mm_min_ps(max, vec_r); result = _mm_mul_ps(vec_r, scale); /* store calc'd output tables indices */ _mm_store_si128((__m128i*)output, _mm_cvtps_epi32(result)); /* load for next loop while store completes */ vec_r = _mm_load_ss(&igtbl_r[src[0]]); vec_g = _mm_load_ss(&igtbl_g[src[1]]); vec_b = _mm_load_ss(&igtbl_b[src[2]]); src += 3; /* use calc'd indices to output RGB values */ dest[OUTPUT_R_INDEX] = otdata_r[output[0]]; dest[OUTPUT_G_INDEX] = otdata_g[output[1]]; dest[OUTPUT_B_INDEX] = otdata_b[output[2]]; dest += RGB_OUTPUT_COMPONENTS; } /* handle final (maybe only) pixel */ vec_r = _mm_shuffle_ps(vec_r, vec_r, 0); vec_g = _mm_shuffle_ps(vec_g, vec_g, 0); vec_b = _mm_shuffle_ps(vec_b, vec_b, 0); vec_r = _mm_mul_ps(vec_r, mat0); vec_g = _mm_mul_ps(vec_g, mat1); vec_b = _mm_mul_ps(vec_b, mat2); vec_r = _mm_add_ps(vec_r, _mm_add_ps(vec_g, vec_b)); vec_r = _mm_max_ps(min, vec_r); vec_r = _mm_min_ps(max, vec_r); result = _mm_mul_ps(vec_r, scale); _mm_store_si128((__m128i*)output, _mm_cvtps_epi32(result)); dest[OUTPUT_R_INDEX] = otdata_r[output[0]]; dest[OUTPUT_G_INDEX] = otdata_g[output[1]]; dest[OUTPUT_B_INDEX] = otdata_b[output[2]]; } void qcms_transform_data_rgba_out_lut_sse2(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length) { unsigned int i; float (*mat)[4] = transform->matrix; char input_back[32]; /* Ensure we have a buffer that's 16 byte aligned regardless of the original * stack alignment. We can't use __attribute__((aligned(16))) or __declspec(align(32)) * because they don't work on stack variables. gcc 4.4 does do the right thing * on x86 but that's too new for us right now. For more info: gcc bug #16660 */ float const * input = (float*)(((uintptr_t)&input_back[16]) & ~0xf); /* share input and output locations to save having to keep the * locations in separate registers */ uint32_t const * output = (uint32_t*)input; /* deref *transform now to avoid it in loop */ const float *igtbl_r = transform->input_gamma_table_r; const float *igtbl_g = transform->input_gamma_table_g; const float *igtbl_b = transform->input_gamma_table_b; /* deref *transform now to avoid it in loop */ const uint8_t *otdata_r = &transform->output_table_r->data[0]; const uint8_t *otdata_g = &transform->output_table_g->data[0]; const uint8_t *otdata_b = &transform->output_table_b->data[0]; /* input matrix values never change */ const __m128 mat0 = _mm_load_ps(mat[0]); const __m128 mat1 = _mm_load_ps(mat[1]); const __m128 mat2 = _mm_load_ps(mat[2]); /* these values don't change, either */ const __m128 max = _mm_load_ps(clampMaxValueX4); const __m128 min = _mm_setzero_ps(); const __m128 scale = _mm_load_ps(floatScaleX4); /* working variables */ __m128 vec_r, vec_g, vec_b, result; unsigned char alpha; /* CYA */ if (!length) return; /* one pixel is handled outside of the loop */ length--; /* setup for transforming 1st pixel */ vec_r = _mm_load_ss(&igtbl_r[src[0]]); vec_g = _mm_load_ss(&igtbl_g[src[1]]); vec_b = _mm_load_ss(&igtbl_b[src[2]]); alpha = src[3]; src += 4; /* transform all but final pixel */ for (i=0; i<length; i++) { /* position values from gamma tables */ vec_r = _mm_shuffle_ps(vec_r, vec_r, 0); vec_g = _mm_shuffle_ps(vec_g, vec_g, 0); vec_b = _mm_shuffle_ps(vec_b, vec_b, 0); /* gamma * matrix */ vec_r = _mm_mul_ps(vec_r, mat0); vec_g = _mm_mul_ps(vec_g, mat1); vec_b = _mm_mul_ps(vec_b, mat2); /* store alpha for this pixel; load alpha for next */ dest[OUTPUT_A_INDEX] = alpha; alpha = src[3]; /* crunch, crunch, crunch */ vec_r = _mm_add_ps(vec_r, _mm_add_ps(vec_g, vec_b)); vec_r = _mm_max_ps(min, vec_r); vec_r = _mm_min_ps(max, vec_r); result = _mm_mul_ps(vec_r, scale); /* store calc'd output tables indices */ _mm_store_si128((__m128i*)output, _mm_cvtps_epi32(result)); /* load gamma values for next loop while store completes */ vec_r = _mm_load_ss(&igtbl_r[src[0]]); vec_g = _mm_load_ss(&igtbl_g[src[1]]); vec_b = _mm_load_ss(&igtbl_b[src[2]]); src += 4; /* use calc'd indices to output RGB values */ dest[OUTPUT_R_INDEX] = otdata_r[output[0]]; dest[OUTPUT_G_INDEX] = otdata_g[output[1]]; dest[OUTPUT_B_INDEX] = otdata_b[output[2]]; dest += RGBA_OUTPUT_COMPONENTS; } /* handle final (maybe only) pixel */ vec_r = _mm_shuffle_ps(vec_r, vec_r, 0); vec_g = _mm_shuffle_ps(vec_g, vec_g, 0); vec_b = _mm_shuffle_ps(vec_b, vec_b, 0); vec_r = _mm_mul_ps(vec_r, mat0); vec_g = _mm_mul_ps(vec_g, mat1); vec_b = _mm_mul_ps(vec_b, mat2); dest[OUTPUT_A_INDEX] = alpha; vec_r = _mm_add_ps(vec_r, _mm_add_ps(vec_g, vec_b)); vec_r = _mm_max_ps(min, vec_r); vec_r = _mm_min_ps(max, vec_r); result = _mm_mul_ps(vec_r, scale); _mm_store_si128((__m128i*)output, _mm_cvtps_epi32(result)); dest[OUTPUT_R_INDEX] = otdata_r[output[0]]; dest[OUTPUT_G_INDEX] = otdata_g[output[1]]; dest[OUTPUT_B_INDEX] = otdata_b[output[2]]; }