/* vim: set ts=8 sw=8 noexpandtab: */ // qcms // Copyright (C) 2009 Mozilla Corporation // Copyright (C) 1998-2007 Marti Maria // // Permission is hereby granted, free of charge, to any person obtaining // a copy of this software and associated documentation files (the "Software"), // to deal in the Software without restriction, including without limitation // the rights to use, copy, modify, merge, publish, distribute, sublicense, // and/or sell copies of the Software, and to permit persons to whom the Software // is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. #include <altivec.h> #include "qcmsint.h" #define FLOATSCALE (float)(PRECACHE_OUTPUT_SIZE) #define CLAMPMAXVAL (((float) (PRECACHE_OUTPUT_SIZE - 1)) / PRECACHE_OUTPUT_SIZE) static const ALIGN float floatScaleX4 = FLOATSCALE; static const ALIGN float clampMaxValueX4 = CLAMPMAXVAL; inline vector float load_aligned_float(float *dataPtr) { vector float data = vec_lde(0, dataPtr); vector unsigned char moveToStart = vec_lvsl(0, dataPtr); return vec_perm(data, data, moveToStart); } void qcms_transform_data_rgb_out_lut_altivec(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length) { unsigned int i; float (*mat)[4] = transform->matrix; char input_back[32]; /* Ensure we have a buffer that's 16 byte aligned regardless of the original * stack alignment. We can't use __attribute__((aligned(16))) or __declspec(align(32)) * because they don't work on stack variables. gcc 4.4 does do the right thing * on x86 but that's too new for us right now. For more info: gcc bug #16660 */ float const *input = (float*)(((uintptr_t)&input_back[16]) & ~0xf); /* share input and output locations to save having to keep the * locations in separate registers */ uint32_t const *output = (uint32_t*)input; /* deref *transform now to avoid it in loop */ const float *igtbl_r = transform->input_gamma_table_r; const float *igtbl_g = transform->input_gamma_table_g; const float *igtbl_b = transform->input_gamma_table_b; /* deref *transform now to avoid it in loop */ const uint8_t *otdata_r = &transform->output_table_r->data[0]; const uint8_t *otdata_g = &transform->output_table_g->data[0]; const uint8_t *otdata_b = &transform->output_table_b->data[0]; /* input matrix values never change */ const vector float mat0 = vec_ldl(0, (vector float*)mat[0]); const vector float mat1 = vec_ldl(0, (vector float*)mat[1]); const vector float mat2 = vec_ldl(0, (vector float*)mat[2]); /* these values don't change, either */ const vector float max = vec_splat(vec_lde(0, (float*)&clampMaxValueX4), 0); const vector float min = (vector float)vec_splat_u32(0); const vector float scale = vec_splat(vec_lde(0, (float*)&floatScaleX4), 0); /* working variables */ vector float vec_r, vec_g, vec_b, result; /* CYA */ if (!length) return; /* one pixel is handled outside of the loop */ length--; /* setup for transforming 1st pixel */ vec_r = load_aligned_float((float*)&igtbl_r[src[0]]); vec_g = load_aligned_float((float*)&igtbl_r[src[1]]); vec_b = load_aligned_float((float*)&igtbl_r[src[2]]); src += 3; /* transform all but final pixel */ for (i=0; i<length; i++) { /* position values from gamma tables */ vec_r = vec_splat(vec_r, 0); vec_g = vec_splat(vec_g, 0); vec_b = vec_splat(vec_b, 0); /* gamma * matrix */ vec_r = vec_madd(vec_r, mat0, min); vec_g = vec_madd(vec_g, mat1, min); vec_b = vec_madd(vec_b, mat2, min); /* crunch, crunch, crunch */ vec_r = vec_add(vec_r, vec_add(vec_g, vec_b)); vec_r = vec_max(min, vec_r); vec_r = vec_min(max, vec_r); result = vec_madd(vec_r, scale, min); /* store calc'd output tables indices */ vec_st(vec_ctu(vec_round(result), 0), 0, (vector unsigned int*)output); /* load for next loop while store completes */ vec_r = load_aligned_float((float*)&igtbl_r[src[0]]); vec_g = load_aligned_float((float*)&igtbl_r[src[1]]); vec_b = load_aligned_float((float*)&igtbl_r[src[2]]); src += 3; /* use calc'd indices to output RGB values */ dest[0] = otdata_r[output[0]]; dest[1] = otdata_g[output[1]]; dest[2] = otdata_b[output[2]]; dest += 3; } /* handle final (maybe only) pixel */ vec_r = vec_splat(vec_r, 0); vec_g = vec_splat(vec_g, 0); vec_b = vec_splat(vec_b, 0); vec_r = vec_madd(vec_r, mat0, min); vec_g = vec_madd(vec_g, mat1, min); vec_b = vec_madd(vec_b, mat2, min); vec_r = vec_add(vec_r, vec_add(vec_g, vec_b)); vec_r = vec_max(min, vec_r); vec_r = vec_min(max, vec_r); result = vec_madd(vec_r, scale, min); vec_st(vec_ctu(vec_round(result),0),0,(vector unsigned int*)output); dest[0] = otdata_r[output[0]]; dest[1] = otdata_g[output[1]]; dest[2] = otdata_b[output[2]]; } void qcms_transform_data_rgba_out_lut_altivec(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length) { unsigned int i; float (*mat)[4] = transform->matrix; char input_back[32]; /* Ensure we have a buffer that's 16 byte aligned regardless of the original * stack alignment. We can't use __attribute__((aligned(16))) or __declspec(align(32)) * because they don't work on stack variables. gcc 4.4 does do the right thing * on x86 but that's too new for us right now. For more info: gcc bug #16660 */ float const *input = (float*)(((uintptr_t)&input_back[16]) & ~0xf); /* share input and output locations to save having to keep the * locations in separate registers */ uint32_t const *output = (uint32_t*)input; /* deref *transform now to avoid it in loop */ const float *igtbl_r = transform->input_gamma_table_r; const float *igtbl_g = transform->input_gamma_table_g; const float *igtbl_b = transform->input_gamma_table_b; /* deref *transform now to avoid it in loop */ const uint8_t *otdata_r = &transform->output_table_r->data[0]; const uint8_t *otdata_g = &transform->output_table_g->data[0]; const uint8_t *otdata_b = &transform->output_table_b->data[0]; /* input matrix values never change */ const vector float mat0 = vec_ldl(0, (vector float*)mat[0]); const vector float mat1 = vec_ldl(0, (vector float*)mat[1]); const vector float mat2 = vec_ldl(0, (vector float*)mat[2]); /* these values don't change, either */ const vector float max = vec_splat(vec_lde(0, (float*)&clampMaxValueX4), 0); const vector float min = (vector float)vec_splat_u32(0); const vector float scale = vec_splat(vec_lde(0, (float*)&floatScaleX4), 0); /* working variables */ vector float vec_r, vec_g, vec_b, result; unsigned char alpha; /* CYA */ if (!length) return; /* one pixel is handled outside of the loop */ length--; /* setup for transforming 1st pixel */ vec_r = load_aligned_float((float*)&igtbl_r[src[0]]); vec_g = load_aligned_float((float*)&igtbl_r[src[1]]); vec_b = load_aligned_float((float*)&igtbl_r[src[2]]); alpha = src[3]; src += 4; /* transform all but final pixel */ for (i=0; i<length; i++) { /* position values from gamma tables */ vec_r = vec_splat(vec_r, 0); vec_g = vec_splat(vec_g, 0); vec_b = vec_splat(vec_b, 0); /* gamma * matrix */ vec_r = vec_madd(vec_r, mat0, min); vec_g = vec_madd(vec_g, mat1, min); vec_b = vec_madd(vec_b, mat2, min); /* store alpha for this pixel; load alpha for next */ dest[3] = alpha; alpha = src[3]; /* crunch, crunch, crunch */ vec_r = vec_add(vec_r, vec_add(vec_g, vec_b)); vec_r = vec_max(min, vec_r); vec_r = vec_min(max, vec_r); result = vec_madd(vec_r, scale, min); /* store calc'd output tables indices */ vec_st(vec_ctu(vec_round(result), 0), 0, (vector unsigned int*)output); /* load gamma values for next loop while store completes */ vec_r = load_aligned_float((float*)&igtbl_r[src[0]]); vec_g = load_aligned_float((float*)&igtbl_r[src[1]]); vec_b = load_aligned_float((float*)&igtbl_r[src[2]]); src += 4; /* use calc'd indices to output RGB values */ dest[0] = otdata_r[output[0]]; dest[1] = otdata_g[output[1]]; dest[2] = otdata_b[output[2]]; dest += 4; } /* handle final (maybe only) pixel */ vec_r = vec_splat(vec_r, 0); vec_g = vec_splat(vec_g, 0); vec_b = vec_splat(vec_b, 0); vec_r = vec_madd(vec_r, mat0, min); vec_g = vec_madd(vec_g, mat1, min); vec_b = vec_madd(vec_b, mat2, min); dest[3] = alpha; vec_r = vec_add(vec_r, vec_add(vec_g, vec_b)); vec_r = vec_max(min, vec_r); vec_r = vec_min(max, vec_r); result = vec_madd(vec_r, scale, min); vec_st(vec_ctu(vec_round(result), 0), 0, (vector unsigned int*)output); dest[0] = otdata_r[output[0]]; dest[1] = otdata_g[output[1]]; dest[2] = otdata_b[output[2]]; }