/* vim: set ts=8 sw=8 noexpandtab: */ // qcms // Copyright (C) 2009 Mozilla Corporation // Copyright (C) 1998-2007 Marti Maria // // Permission is hereby granted, free of charge, to any person obtaining // a copy of this software and associated documentation files (the "Software"), // to deal in the Software without restriction, including without limitation // the rights to use, copy, modify, merge, publish, distribute, sublicense, // and/or sell copies of the Software, and to permit persons to whom the Software // is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. #include <stdlib.h> #include <math.h> #include <assert.h> #include <string.h> //memcpy #include "qcmsint.h" #include "transform_util.h" #include "matrix.h" static struct matrix build_lut_matrix(struct lutType *lut) { struct matrix result; if (lut) { result.m[0][0] = s15Fixed16Number_to_float(lut->e00); result.m[0][1] = s15Fixed16Number_to_float(lut->e01); result.m[0][2] = s15Fixed16Number_to_float(lut->e02); result.m[1][0] = s15Fixed16Number_to_float(lut->e10); result.m[1][1] = s15Fixed16Number_to_float(lut->e11); result.m[1][2] = s15Fixed16Number_to_float(lut->e12); result.m[2][0] = s15Fixed16Number_to_float(lut->e20); result.m[2][1] = s15Fixed16Number_to_float(lut->e21); result.m[2][2] = s15Fixed16Number_to_float(lut->e22); result.invalid = false; } else { memset(&result, 0, sizeof(struct matrix)); result.invalid = true; } return result; } static struct matrix build_mAB_matrix(struct lutmABType *lut) { struct matrix result; if (lut) { result.m[0][0] = s15Fixed16Number_to_float(lut->e00); result.m[0][1] = s15Fixed16Number_to_float(lut->e01); result.m[0][2] = s15Fixed16Number_to_float(lut->e02); result.m[1][0] = s15Fixed16Number_to_float(lut->e10); result.m[1][1] = s15Fixed16Number_to_float(lut->e11); result.m[1][2] = s15Fixed16Number_to_float(lut->e12); result.m[2][0] = s15Fixed16Number_to_float(lut->e20); result.m[2][1] = s15Fixed16Number_to_float(lut->e21); result.m[2][2] = s15Fixed16Number_to_float(lut->e22); result.invalid = false; } else { memset(&result, 0, sizeof(struct matrix)); result.invalid = true; } return result; } //Based on lcms cmsLab2XYZ #define f(t) (t <= (24.0f/116.0f)*(24.0f/116.0f)*(24.0f/116.0f)) ? ((841.0/108.0) * t + (16.0/116.0)) : pow(t,1.0/3.0) #define f_1(t) (t <= (24.0f/116.0f)) ? ((108.0/841.0) * (t - (16.0/116.0))) : (t * t * t) static void qcms_transform_module_LAB_to_XYZ(struct qcms_modular_transform *transform, float *src, float *dest, size_t length) { size_t i; // lcms: D50 XYZ values float WhitePointX = 0.9642f; float WhitePointY = 1.0f; float WhitePointZ = 0.8249f; for (i = 0; i < length; i++) { float device_L = *src++ * 100.0f; float device_a = *src++ * 255.0f - 128.0f; float device_b = *src++ * 255.0f - 128.0f; float y = (device_L + 16.0f) / 116.0f; float X = f_1((y + 0.002f * device_a)) * WhitePointX; float Y = f_1(y) * WhitePointY; float Z = f_1((y - 0.005f * device_b)) * WhitePointZ; *dest++ = X / (1.0 + 32767.0/32768.0); *dest++ = Y / (1.0 + 32767.0/32768.0); *dest++ = Z / (1.0 + 32767.0/32768.0); } } //Based on lcms cmsXYZ2Lab static void qcms_transform_module_XYZ_to_LAB(struct qcms_modular_transform *transform, float *src, float *dest, size_t length) { size_t i; // lcms: D50 XYZ values float WhitePointX = 0.9642f; float WhitePointY = 1.0f; float WhitePointZ = 0.8249f; for (i = 0; i < length; i++) { float device_x = *src++ * (1.0 + 32767.0/32768.0) / WhitePointX; float device_y = *src++ * (1.0 + 32767.0/32768.0) / WhitePointY; float device_z = *src++ * (1.0 + 32767.0/32768.0) / WhitePointZ; float fx = f(device_x); float fy = f(device_y); float fz = f(device_z); float L = 116.0f*fy - 16.0f; float a = 500.0f*(fx - fy); float b = 200.0f*(fy - fz); *dest++ = L / 100.0f; *dest++ = (a+128.0f) / 255.0f; *dest++ = (b+128.0f) / 255.0f; } } static void qcms_transform_module_clut_only(struct qcms_modular_transform *transform, float *src, float *dest, size_t length) { size_t i; int xy_len = 1; int x_len = transform->grid_size; int len = x_len * x_len; float* r_table = transform->r_clut; float* g_table = transform->g_clut; float* b_table = transform->b_clut; for (i = 0; i < length; i++) { assert(transform->grid_size >= 1); float linear_r = *src++; float linear_g = *src++; float linear_b = *src++; int x = floorf(linear_r * (transform->grid_size-1)); int y = floorf(linear_g * (transform->grid_size-1)); int z = floorf(linear_b * (transform->grid_size-1)); int x_n = ceilf(linear_r * (transform->grid_size-1)); int y_n = ceilf(linear_g * (transform->grid_size-1)); int z_n = ceilf(linear_b * (transform->grid_size-1)); float x_d = linear_r * (transform->grid_size-1) - x; float y_d = linear_g * (transform->grid_size-1) - y; float z_d = linear_b * (transform->grid_size-1) - z; float r_x1 = lerp(CLU(r_table,x,y,z), CLU(r_table,x_n,y,z), x_d); float r_x2 = lerp(CLU(r_table,x,y_n,z), CLU(r_table,x_n,y_n,z), x_d); float r_y1 = lerp(r_x1, r_x2, y_d); float r_x3 = lerp(CLU(r_table,x,y,z_n), CLU(r_table,x_n,y,z_n), x_d); float r_x4 = lerp(CLU(r_table,x,y_n,z_n), CLU(r_table,x_n,y_n,z_n), x_d); float r_y2 = lerp(r_x3, r_x4, y_d); float clut_r = lerp(r_y1, r_y2, z_d); float g_x1 = lerp(CLU(g_table,x,y,z), CLU(g_table,x_n,y,z), x_d); float g_x2 = lerp(CLU(g_table,x,y_n,z), CLU(g_table,x_n,y_n,z), x_d); float g_y1 = lerp(g_x1, g_x2, y_d); float g_x3 = lerp(CLU(g_table,x,y,z_n), CLU(g_table,x_n,y,z_n), x_d); float g_x4 = lerp(CLU(g_table,x,y_n,z_n), CLU(g_table,x_n,y_n,z_n), x_d); float g_y2 = lerp(g_x3, g_x4, y_d); float clut_g = lerp(g_y1, g_y2, z_d); float b_x1 = lerp(CLU(b_table,x,y,z), CLU(b_table,x_n,y,z), x_d); float b_x2 = lerp(CLU(b_table,x,y_n,z), CLU(b_table,x_n,y_n,z), x_d); float b_y1 = lerp(b_x1, b_x2, y_d); float b_x3 = lerp(CLU(b_table,x,y,z_n), CLU(b_table,x_n,y,z_n), x_d); float b_x4 = lerp(CLU(b_table,x,y_n,z_n), CLU(b_table,x_n,y_n,z_n), x_d); float b_y2 = lerp(b_x3, b_x4, y_d); float clut_b = lerp(b_y1, b_y2, z_d); *dest++ = clamp_float(clut_r); *dest++ = clamp_float(clut_g); *dest++ = clamp_float(clut_b); } } static void qcms_transform_module_clut(struct qcms_modular_transform *transform, float *src, float *dest, size_t length) { size_t i; int xy_len = 1; int x_len = transform->grid_size; int len = x_len * x_len; float* r_table = transform->r_clut; float* g_table = transform->g_clut; float* b_table = transform->b_clut; for (i = 0; i < length; i++) { assert(transform->grid_size >= 1); float device_r = *src++; float device_g = *src++; float device_b = *src++; float linear_r = lut_interp_linear_float(device_r, transform->input_clut_table_r, transform->input_clut_table_length); float linear_g = lut_interp_linear_float(device_g, transform->input_clut_table_g, transform->input_clut_table_length); float linear_b = lut_interp_linear_float(device_b, transform->input_clut_table_b, transform->input_clut_table_length); int x = floorf(linear_r * (transform->grid_size-1)); int y = floorf(linear_g * (transform->grid_size-1)); int z = floorf(linear_b * (transform->grid_size-1)); int x_n = ceilf(linear_r * (transform->grid_size-1)); int y_n = ceilf(linear_g * (transform->grid_size-1)); int z_n = ceilf(linear_b * (transform->grid_size-1)); float x_d = linear_r * (transform->grid_size-1) - x; float y_d = linear_g * (transform->grid_size-1) - y; float z_d = linear_b * (transform->grid_size-1) - z; float r_x1 = lerp(CLU(r_table,x,y,z), CLU(r_table,x_n,y,z), x_d); float r_x2 = lerp(CLU(r_table,x,y_n,z), CLU(r_table,x_n,y_n,z), x_d); float r_y1 = lerp(r_x1, r_x2, y_d); float r_x3 = lerp(CLU(r_table,x,y,z_n), CLU(r_table,x_n,y,z_n), x_d); float r_x4 = lerp(CLU(r_table,x,y_n,z_n), CLU(r_table,x_n,y_n,z_n), x_d); float r_y2 = lerp(r_x3, r_x4, y_d); float clut_r = lerp(r_y1, r_y2, z_d); float g_x1 = lerp(CLU(g_table,x,y,z), CLU(g_table,x_n,y,z), x_d); float g_x2 = lerp(CLU(g_table,x,y_n,z), CLU(g_table,x_n,y_n,z), x_d); float g_y1 = lerp(g_x1, g_x2, y_d); float g_x3 = lerp(CLU(g_table,x,y,z_n), CLU(g_table,x_n,y,z_n), x_d); float g_x4 = lerp(CLU(g_table,x,y_n,z_n), CLU(g_table,x_n,y_n,z_n), x_d); float g_y2 = lerp(g_x3, g_x4, y_d); float clut_g = lerp(g_y1, g_y2, z_d); float b_x1 = lerp(CLU(b_table,x,y,z), CLU(b_table,x_n,y,z), x_d); float b_x2 = lerp(CLU(b_table,x,y_n,z), CLU(b_table,x_n,y_n,z), x_d); float b_y1 = lerp(b_x1, b_x2, y_d); float b_x3 = lerp(CLU(b_table,x,y,z_n), CLU(b_table,x_n,y,z_n), x_d); float b_x4 = lerp(CLU(b_table,x,y_n,z_n), CLU(b_table,x_n,y_n,z_n), x_d); float b_y2 = lerp(b_x3, b_x4, y_d); float clut_b = lerp(b_y1, b_y2, z_d); float pcs_r = lut_interp_linear_float(clut_r, transform->output_clut_table_r, transform->output_clut_table_length); float pcs_g = lut_interp_linear_float(clut_g, transform->output_clut_table_g, transform->output_clut_table_length); float pcs_b = lut_interp_linear_float(clut_b, transform->output_clut_table_b, transform->output_clut_table_length); *dest++ = clamp_float(pcs_r); *dest++ = clamp_float(pcs_g); *dest++ = clamp_float(pcs_b); } } /* NOT USED static void qcms_transform_module_tetra_clut(struct qcms_modular_transform *transform, float *src, float *dest, size_t length) { size_t i; int xy_len = 1; int x_len = transform->grid_size; int len = x_len * x_len; float* r_table = transform->r_clut; float* g_table = transform->g_clut; float* b_table = transform->b_clut; float c0_r, c1_r, c2_r, c3_r; float c0_g, c1_g, c2_g, c3_g; float c0_b, c1_b, c2_b, c3_b; float clut_r, clut_g, clut_b; float pcs_r, pcs_g, pcs_b; for (i = 0; i < length; i++) { float device_r = *src++; float device_g = *src++; float device_b = *src++; float linear_r = lut_interp_linear_float(device_r, transform->input_clut_table_r, transform->input_clut_table_length); float linear_g = lut_interp_linear_float(device_g, transform->input_clut_table_g, transform->input_clut_table_length); float linear_b = lut_interp_linear_float(device_b, transform->input_clut_table_b, transform->input_clut_table_length); int x = floorf(linear_r * (transform->grid_size-1)); int y = floorf(linear_g * (transform->grid_size-1)); int z = floorf(linear_b * (transform->grid_size-1)); int x_n = ceilf(linear_r * (transform->grid_size-1)); int y_n = ceilf(linear_g * (transform->grid_size-1)); int z_n = ceilf(linear_b * (transform->grid_size-1)); float rx = linear_r * (transform->grid_size-1) - x; float ry = linear_g * (transform->grid_size-1) - y; float rz = linear_b * (transform->grid_size-1) - z; c0_r = CLU(r_table, x, y, z); c0_g = CLU(g_table, x, y, z); c0_b = CLU(b_table, x, y, z); if( rx >= ry ) { if (ry >= rz) { //rx >= ry && ry >= rz c1_r = CLU(r_table, x_n, y, z) - c0_r; c2_r = CLU(r_table, x_n, y_n, z) - CLU(r_table, x_n, y, z); c3_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y_n, z); c1_g = CLU(g_table, x_n, y, z) - c0_g; c2_g = CLU(g_table, x_n, y_n, z) - CLU(g_table, x_n, y, z); c3_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y_n, z); c1_b = CLU(b_table, x_n, y, z) - c0_b; c2_b = CLU(b_table, x_n, y_n, z) - CLU(b_table, x_n, y, z); c3_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y_n, z); } else { if (rx >= rz) { //rx >= rz && rz >= ry c1_r = CLU(r_table, x_n, y, z) - c0_r; c2_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y, z_n); c3_r = CLU(r_table, x_n, y, z_n) - CLU(r_table, x_n, y, z); c1_g = CLU(g_table, x_n, y, z) - c0_g; c2_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y, z_n); c3_g = CLU(g_table, x_n, y, z_n) - CLU(g_table, x_n, y, z); c1_b = CLU(b_table, x_n, y, z) - c0_b; c2_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y, z_n); c3_b = CLU(b_table, x_n, y, z_n) - CLU(b_table, x_n, y, z); } else { //rz > rx && rx >= ry c1_r = CLU(r_table, x_n, y, z_n) - CLU(r_table, x, y, z_n); c2_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y, z_n); c3_r = CLU(r_table, x, y, z_n) - c0_r; c1_g = CLU(g_table, x_n, y, z_n) - CLU(g_table, x, y, z_n); c2_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y, z_n); c3_g = CLU(g_table, x, y, z_n) - c0_g; c1_b = CLU(b_table, x_n, y, z_n) - CLU(b_table, x, y, z_n); c2_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y, z_n); c3_b = CLU(b_table, x, y, z_n) - c0_b; } } } else { if (rx >= rz) { //ry > rx && rx >= rz c1_r = CLU(r_table, x_n, y_n, z) - CLU(r_table, x, y_n, z); c2_r = CLU(r_table, x_n, y_n, z) - c0_r; c3_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y_n, z); c1_g = CLU(g_table, x_n, y_n, z) - CLU(g_table, x, y_n, z); c2_g = CLU(g_table, x_n, y_n, z) - c0_g; c3_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y_n, z); c1_b = CLU(b_table, x_n, y_n, z) - CLU(b_table, x, y_n, z); c2_b = CLU(b_table, x_n, y_n, z) - c0_b; c3_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y_n, z); } else { if (ry >= rz) { //ry >= rz && rz > rx c1_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x, y_n, z_n); c2_r = CLU(r_table, x, y_n, z) - c0_r; c3_r = CLU(r_table, x, y_n, z_n) - CLU(r_table, x, y_n, z); c1_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x, y_n, z_n); c2_g = CLU(g_table, x, y_n, z) - c0_g; c3_g = CLU(g_table, x, y_n, z_n) - CLU(g_table, x, y_n, z); c1_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x, y_n, z_n); c2_b = CLU(b_table, x, y_n, z) - c0_b; c3_b = CLU(b_table, x, y_n, z_n) - CLU(b_table, x, y_n, z); } else { //rz > ry && ry > rx c1_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x, y_n, z_n); c2_r = CLU(r_table, x, y_n, z) - c0_r; c3_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y_n, z); c1_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x, y_n, z_n); c2_g = CLU(g_table, x, y_n, z) - c0_g; c3_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y_n, z); c1_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x, y_n, z_n); c2_b = CLU(b_table, x, y_n, z) - c0_b; c3_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y_n, z); } } } clut_r = c0_r + c1_r*rx + c2_r*ry + c3_r*rz; clut_g = c0_g + c1_g*rx + c2_g*ry + c3_g*rz; clut_b = c0_b + c1_b*rx + c2_b*ry + c3_b*rz; pcs_r = lut_interp_linear_float(clut_r, transform->output_clut_table_r, transform->output_clut_table_length); pcs_g = lut_interp_linear_float(clut_g, transform->output_clut_table_g, transform->output_clut_table_length); pcs_b = lut_interp_linear_float(clut_b, transform->output_clut_table_b, transform->output_clut_table_length); *dest++ = clamp_float(pcs_r); *dest++ = clamp_float(pcs_g); *dest++ = clamp_float(pcs_b); } } */ static void qcms_transform_module_gamma_table(struct qcms_modular_transform *transform, float *src, float *dest, size_t length) { size_t i; float out_r, out_g, out_b; for (i = 0; i < length; i++) { float in_r = *src++; float in_g = *src++; float in_b = *src++; out_r = lut_interp_linear_float(in_r, transform->input_clut_table_r, 256); out_g = lut_interp_linear_float(in_g, transform->input_clut_table_g, 256); out_b = lut_interp_linear_float(in_b, transform->input_clut_table_b, 256); *dest++ = clamp_float(out_r); *dest++ = clamp_float(out_g); *dest++ = clamp_float(out_b); } } static void qcms_transform_module_gamma_lut(struct qcms_modular_transform *transform, float *src, float *dest, size_t length) { size_t i; float out_r, out_g, out_b; for (i = 0; i < length; i++) { float in_r = *src++; float in_g = *src++; float in_b = *src++; out_r = lut_interp_linear(in_r, transform->output_gamma_lut_r, transform->output_gamma_lut_r_length); out_g = lut_interp_linear(in_g, transform->output_gamma_lut_g, transform->output_gamma_lut_g_length); out_b = lut_interp_linear(in_b, transform->output_gamma_lut_b, transform->output_gamma_lut_b_length); *dest++ = clamp_float(out_r); *dest++ = clamp_float(out_g); *dest++ = clamp_float(out_b); } } static void qcms_transform_module_matrix_translate(struct qcms_modular_transform *transform, float *src, float *dest, size_t length) { size_t i; struct matrix mat; /* store the results in column major mode * this makes doing the multiplication with sse easier */ mat.m[0][0] = transform->matrix.m[0][0]; mat.m[1][0] = transform->matrix.m[0][1]; mat.m[2][0] = transform->matrix.m[0][2]; mat.m[0][1] = transform->matrix.m[1][0]; mat.m[1][1] = transform->matrix.m[1][1]; mat.m[2][1] = transform->matrix.m[1][2]; mat.m[0][2] = transform->matrix.m[2][0]; mat.m[1][2] = transform->matrix.m[2][1]; mat.m[2][2] = transform->matrix.m[2][2]; for (i = 0; i < length; i++) { float in_r = *src++; float in_g = *src++; float in_b = *src++; float out_r = mat.m[0][0]*in_r + mat.m[1][0]*in_g + mat.m[2][0]*in_b + transform->tx; float out_g = mat.m[0][1]*in_r + mat.m[1][1]*in_g + mat.m[2][1]*in_b + transform->ty; float out_b = mat.m[0][2]*in_r + mat.m[1][2]*in_g + mat.m[2][2]*in_b + transform->tz; *dest++ = clamp_float(out_r); *dest++ = clamp_float(out_g); *dest++ = clamp_float(out_b); } } static void qcms_transform_module_matrix(struct qcms_modular_transform *transform, float *src, float *dest, size_t length) { size_t i; struct matrix mat; /* store the results in column major mode * this makes doing the multiplication with sse easier */ mat.m[0][0] = transform->matrix.m[0][0]; mat.m[1][0] = transform->matrix.m[0][1]; mat.m[2][0] = transform->matrix.m[0][2]; mat.m[0][1] = transform->matrix.m[1][0]; mat.m[1][1] = transform->matrix.m[1][1]; mat.m[2][1] = transform->matrix.m[1][2]; mat.m[0][2] = transform->matrix.m[2][0]; mat.m[1][2] = transform->matrix.m[2][1]; mat.m[2][2] = transform->matrix.m[2][2]; for (i = 0; i < length; i++) { float in_r = *src++; float in_g = *src++; float in_b = *src++; float out_r = mat.m[0][0]*in_r + mat.m[1][0]*in_g + mat.m[2][0]*in_b; float out_g = mat.m[0][1]*in_r + mat.m[1][1]*in_g + mat.m[2][1]*in_b; float out_b = mat.m[0][2]*in_r + mat.m[1][2]*in_g + mat.m[2][2]*in_b; *dest++ = clamp_float(out_r); *dest++ = clamp_float(out_g); *dest++ = clamp_float(out_b); } } static struct qcms_modular_transform* qcms_modular_transform_alloc() { return calloc(1, sizeof(struct qcms_modular_transform)); } static void qcms_modular_transform_release(struct qcms_modular_transform *transform) { struct qcms_modular_transform *next_transform; while (transform != NULL) { next_transform = transform->next_transform; // clut may use a single block of memory. // Perhaps we should remove this to simply the code. if (transform->input_clut_table_r + transform->input_clut_table_length == transform->input_clut_table_g && transform->input_clut_table_g + transform->input_clut_table_length == transform->input_clut_table_b) { if (transform->input_clut_table_r) free(transform->input_clut_table_r); } else { if (transform->input_clut_table_r) free(transform->input_clut_table_r); if (transform->input_clut_table_g) free(transform->input_clut_table_g); if (transform->input_clut_table_b) free(transform->input_clut_table_b); } if (transform->r_clut + 1 == transform->g_clut && transform->g_clut + 1 == transform->b_clut) { if (transform->r_clut) free(transform->r_clut); } else { if (transform->r_clut) free(transform->r_clut); if (transform->g_clut) free(transform->g_clut); if (transform->b_clut) free(transform->b_clut); } if (transform->output_clut_table_r + transform->output_clut_table_length == transform->output_clut_table_g && transform->output_clut_table_g+ transform->output_clut_table_length == transform->output_clut_table_b) { if (transform->output_clut_table_r) free(transform->output_clut_table_r); } else { if (transform->output_clut_table_r) free(transform->output_clut_table_r); if (transform->output_clut_table_g) free(transform->output_clut_table_g); if (transform->output_clut_table_b) free(transform->output_clut_table_b); } if (transform->output_gamma_lut_r) free(transform->output_gamma_lut_r); if (transform->output_gamma_lut_g) free(transform->output_gamma_lut_g); if (transform->output_gamma_lut_b) free(transform->output_gamma_lut_b); free(transform); transform = next_transform; } } /* Set transform to be the next element in the linked list. */ static void append_transform(struct qcms_modular_transform *transform, struct qcms_modular_transform ***next_transform) { **next_transform = transform; while (transform) { *next_transform = &(transform->next_transform); transform = transform->next_transform; } } /* reverse the transformation list (used by mBA) */ static struct qcms_modular_transform* reverse_transform(struct qcms_modular_transform *transform) { struct qcms_modular_transform *prev_transform = NULL; while (transform != NULL) { struct qcms_modular_transform *next_transform = transform->next_transform; transform->next_transform = prev_transform; prev_transform = transform; transform = next_transform; } return prev_transform; } #define EMPTY_TRANSFORM_LIST NULL static struct qcms_modular_transform* qcms_modular_transform_create_mAB(struct lutmABType *lut) { struct qcms_modular_transform *first_transform = NULL; struct qcms_modular_transform **next_transform = &first_transform; struct qcms_modular_transform *transform = NULL; if (lut->a_curves[0] != NULL) { size_t clut_length; float *clut; // If the A curve is present this also implies the // presence of a CLUT. if (!lut->clut_table) goto fail; // Prepare A curve. transform = qcms_modular_transform_alloc(); if (!transform) goto fail; append_transform(transform, &next_transform); transform->input_clut_table_r = build_input_gamma_table(lut->a_curves[0]); transform->input_clut_table_g = build_input_gamma_table(lut->a_curves[1]); transform->input_clut_table_b = build_input_gamma_table(lut->a_curves[2]); transform->transform_module_fn = qcms_transform_module_gamma_table; if (lut->num_grid_points[0] != lut->num_grid_points[1] || lut->num_grid_points[1] != lut->num_grid_points[2] ) { //XXX: We don't currently support clut that are not squared! goto fail; } // Prepare CLUT transform = qcms_modular_transform_alloc(); if (!transform) goto fail; append_transform(transform, &next_transform); clut_length = sizeof(float)*pow(lut->num_grid_points[0], 3)*3; clut = malloc(clut_length); if (!clut) goto fail; memcpy(clut, lut->clut_table, clut_length); transform->r_clut = clut + 0; transform->g_clut = clut + 1; transform->b_clut = clut + 2; transform->grid_size = lut->num_grid_points[0]; transform->transform_module_fn = qcms_transform_module_clut_only; } if (lut->m_curves[0] != NULL) { // M curve imples the presence of a Matrix // Prepare M curve transform = qcms_modular_transform_alloc(); if (!transform) goto fail; append_transform(transform, &next_transform); transform->input_clut_table_r = build_input_gamma_table(lut->m_curves[0]); transform->input_clut_table_g = build_input_gamma_table(lut->m_curves[1]); transform->input_clut_table_b = build_input_gamma_table(lut->m_curves[2]); transform->transform_module_fn = qcms_transform_module_gamma_table; // Prepare Matrix transform = qcms_modular_transform_alloc(); if (!transform) goto fail; append_transform(transform, &next_transform); transform->matrix = build_mAB_matrix(lut); if (transform->matrix.invalid) goto fail; transform->tx = s15Fixed16Number_to_float(lut->e03); transform->ty = s15Fixed16Number_to_float(lut->e13); transform->tz = s15Fixed16Number_to_float(lut->e23); transform->transform_module_fn = qcms_transform_module_matrix_translate; } if (lut->b_curves[0] != NULL) { // Prepare B curve transform = qcms_modular_transform_alloc(); if (!transform) goto fail; append_transform(transform, &next_transform); transform->input_clut_table_r = build_input_gamma_table(lut->b_curves[0]); transform->input_clut_table_g = build_input_gamma_table(lut->b_curves[1]); transform->input_clut_table_b = build_input_gamma_table(lut->b_curves[2]); transform->transform_module_fn = qcms_transform_module_gamma_table; } else { // B curve is mandatory goto fail; } if (lut->reversed) { // mBA are identical to mAB except that the transformation order // is reversed first_transform = reverse_transform(first_transform); } return first_transform; fail: qcms_modular_transform_release(first_transform); return NULL; } static struct qcms_modular_transform* qcms_modular_transform_create_lut(struct lutType *lut) { struct qcms_modular_transform *first_transform = NULL; struct qcms_modular_transform **next_transform = &first_transform; struct qcms_modular_transform *transform = NULL; size_t in_curve_len, clut_length, out_curve_len; float *in_curves, *clut, *out_curves; // Prepare Matrix transform = qcms_modular_transform_alloc(); if (!transform) goto fail; append_transform(transform, &next_transform); transform->matrix = build_lut_matrix(lut); if (transform->matrix.invalid) goto fail; transform->transform_module_fn = qcms_transform_module_matrix; // Prepare input curves transform = qcms_modular_transform_alloc(); if (!transform) goto fail; append_transform(transform, &next_transform); in_curve_len = sizeof(float)*lut->num_input_table_entries * 3; in_curves = malloc(in_curve_len); if (!in_curves) goto fail; memcpy(in_curves, lut->input_table, in_curve_len); transform->input_clut_table_r = in_curves + lut->num_input_table_entries * 0; transform->input_clut_table_g = in_curves + lut->num_input_table_entries * 1; transform->input_clut_table_b = in_curves + lut->num_input_table_entries * 2; transform->input_clut_table_length = lut->num_input_table_entries; // Prepare table clut_length = sizeof(float)*pow(lut->num_clut_grid_points, 3)*3; clut = malloc(clut_length); if (!clut) goto fail; memcpy(clut, lut->clut_table, clut_length); transform->r_clut = clut + 0; transform->g_clut = clut + 1; transform->b_clut = clut + 2; transform->grid_size = lut->num_clut_grid_points; // Prepare output curves out_curve_len = sizeof(float) * lut->num_output_table_entries * 3; out_curves = malloc(out_curve_len); if (!out_curves) goto fail; memcpy(out_curves, lut->output_table, out_curve_len); transform->output_clut_table_r = out_curves + lut->num_output_table_entries * 0; transform->output_clut_table_g = out_curves + lut->num_output_table_entries * 1; transform->output_clut_table_b = out_curves + lut->num_output_table_entries * 2; transform->output_clut_table_length = lut->num_output_table_entries; transform->transform_module_fn = qcms_transform_module_clut; return first_transform; fail: qcms_modular_transform_release(first_transform); return NULL; } struct qcms_modular_transform* qcms_modular_transform_create_input(qcms_profile *in) { struct qcms_modular_transform *first_transform = NULL; struct qcms_modular_transform **next_transform = &first_transform; if (in->A2B0) { struct qcms_modular_transform *lut_transform; lut_transform = qcms_modular_transform_create_lut(in->A2B0); if (!lut_transform) goto fail; append_transform(lut_transform, &next_transform); } else if (in->mAB && in->mAB->num_in_channels == 3 && in->mAB->num_out_channels == 3) { struct qcms_modular_transform *mAB_transform; mAB_transform = qcms_modular_transform_create_mAB(in->mAB); if (!mAB_transform) goto fail; append_transform(mAB_transform, &next_transform); } else { struct qcms_modular_transform *transform; transform = qcms_modular_transform_alloc(); if (!transform) goto fail; append_transform(transform, &next_transform); transform->input_clut_table_r = build_input_gamma_table(in->redTRC); transform->input_clut_table_g = build_input_gamma_table(in->greenTRC); transform->input_clut_table_b = build_input_gamma_table(in->blueTRC); transform->transform_module_fn = qcms_transform_module_gamma_table; if (!transform->input_clut_table_r || !transform->input_clut_table_g || !transform->input_clut_table_b) { goto fail; } transform = qcms_modular_transform_alloc(); if (!transform) goto fail; append_transform(transform, &next_transform); transform->matrix.m[0][0] = 1/1.999969482421875f; transform->matrix.m[0][1] = 0.f; transform->matrix.m[0][2] = 0.f; transform->matrix.m[1][0] = 0.f; transform->matrix.m[1][1] = 1/1.999969482421875f; transform->matrix.m[1][2] = 0.f; transform->matrix.m[2][0] = 0.f; transform->matrix.m[2][1] = 0.f; transform->matrix.m[2][2] = 1/1.999969482421875f; transform->matrix.invalid = false; transform->transform_module_fn = qcms_transform_module_matrix; transform = qcms_modular_transform_alloc(); if (!transform) goto fail; append_transform(transform, &next_transform); transform->matrix = build_colorant_matrix(in); transform->transform_module_fn = qcms_transform_module_matrix; } return first_transform; fail: qcms_modular_transform_release(first_transform); return EMPTY_TRANSFORM_LIST; } static struct qcms_modular_transform* qcms_modular_transform_create_output(qcms_profile *out) { struct qcms_modular_transform *first_transform = NULL; struct qcms_modular_transform **next_transform = &first_transform; if (out->B2A0) { struct qcms_modular_transform *lut_transform; lut_transform = qcms_modular_transform_create_lut(out->B2A0); if (!lut_transform) goto fail; append_transform(lut_transform, &next_transform); } else if (out->mBA && out->mBA->num_in_channels == 3 && out->mBA->num_out_channels == 3) { struct qcms_modular_transform *lut_transform; lut_transform = qcms_modular_transform_create_mAB(out->mBA); if (!lut_transform) goto fail; append_transform(lut_transform, &next_transform); } else if (out->redTRC && out->greenTRC && out->blueTRC) { struct qcms_modular_transform *transform; transform = qcms_modular_transform_alloc(); if (!transform) goto fail; append_transform(transform, &next_transform); transform->matrix = matrix_invert(build_colorant_matrix(out)); transform->transform_module_fn = qcms_transform_module_matrix; transform = qcms_modular_transform_alloc(); if (!transform) goto fail; append_transform(transform, &next_transform); transform->matrix.m[0][0] = 1.999969482421875f; transform->matrix.m[0][1] = 0.f; transform->matrix.m[0][2] = 0.f; transform->matrix.m[1][0] = 0.f; transform->matrix.m[1][1] = 1.999969482421875f; transform->matrix.m[1][2] = 0.f; transform->matrix.m[2][0] = 0.f; transform->matrix.m[2][1] = 0.f; transform->matrix.m[2][2] = 1.999969482421875f; transform->matrix.invalid = false; transform->transform_module_fn = qcms_transform_module_matrix; transform = qcms_modular_transform_alloc(); if (!transform) goto fail; append_transform(transform, &next_transform); build_output_lut(out->redTRC, &transform->output_gamma_lut_r, &transform->output_gamma_lut_r_length); build_output_lut(out->greenTRC, &transform->output_gamma_lut_g, &transform->output_gamma_lut_g_length); build_output_lut(out->blueTRC, &transform->output_gamma_lut_b, &transform->output_gamma_lut_b_length); transform->transform_module_fn = qcms_transform_module_gamma_lut; if (!transform->output_gamma_lut_r || !transform->output_gamma_lut_g || !transform->output_gamma_lut_b) { goto fail; } } else { assert(0 && "Unsupported output profile workflow."); return NULL; } return first_transform; fail: qcms_modular_transform_release(first_transform); return EMPTY_TRANSFORM_LIST; } /* Not Completed // Simplify the transformation chain to an equivalent transformation chain static struct qcms_modular_transform* qcms_modular_transform_reduce(struct qcms_modular_transform *transform) { struct qcms_modular_transform *first_transform = NULL; struct qcms_modular_transform *curr_trans = transform; struct qcms_modular_transform *prev_trans = NULL; while (curr_trans) { struct qcms_modular_transform *next_trans = curr_trans->next_transform; if (curr_trans->transform_module_fn == qcms_transform_module_matrix) { if (next_trans && next_trans->transform_module_fn == qcms_transform_module_matrix) { curr_trans->matrix = matrix_multiply(curr_trans->matrix, next_trans->matrix); goto remove_next; } } if (curr_trans->transform_module_fn == qcms_transform_module_gamma_table) { bool isLinear = true; uint16_t i; for (i = 0; isLinear && i < 256; i++) { isLinear &= (int)(curr_trans->input_clut_table_r[i] * 255) == i; isLinear &= (int)(curr_trans->input_clut_table_g[i] * 255) == i; isLinear &= (int)(curr_trans->input_clut_table_b[i] * 255) == i; } goto remove_current; } next_transform: if (!next_trans) break; prev_trans = curr_trans; curr_trans = next_trans; continue; remove_current: if (curr_trans == transform) { //Update head transform = next_trans; } else { prev_trans->next_transform = next_trans; } curr_trans->next_transform = NULL; qcms_modular_transform_release(curr_trans); //return transform; return qcms_modular_transform_reduce(transform); remove_next: curr_trans->next_transform = next_trans->next_transform; next_trans->next_transform = NULL; qcms_modular_transform_release(next_trans); continue; } return transform; } */ static struct qcms_modular_transform* qcms_modular_transform_create(qcms_profile *in, qcms_profile *out) { struct qcms_modular_transform *first_transform = NULL; struct qcms_modular_transform **next_transform = &first_transform; if (in->color_space == RGB_SIGNATURE) { struct qcms_modular_transform* rgb_to_pcs; rgb_to_pcs = qcms_modular_transform_create_input(in); if (!rgb_to_pcs) goto fail; append_transform(rgb_to_pcs, &next_transform); } else { assert(0 && "input color space not supported"); goto fail; } if (in->pcs == LAB_SIGNATURE && out->pcs == XYZ_SIGNATURE) { struct qcms_modular_transform* lab_to_pcs; lab_to_pcs = qcms_modular_transform_alloc(); if (!lab_to_pcs) goto fail; append_transform(lab_to_pcs, &next_transform); lab_to_pcs->transform_module_fn = qcms_transform_module_LAB_to_XYZ; } // This does not improve accuracy in practice, something is wrong here. //if (in->chromaticAdaption.invalid == false) { // struct qcms_modular_transform* chromaticAdaption; // chromaticAdaption = qcms_modular_transform_alloc(); // if (!chromaticAdaption) // goto fail; // append_transform(chromaticAdaption, &next_transform); // chromaticAdaption->matrix = matrix_invert(in->chromaticAdaption); // chromaticAdaption->transform_module_fn = qcms_transform_module_matrix; //} if (in->pcs == XYZ_SIGNATURE && out->pcs == LAB_SIGNATURE) { struct qcms_modular_transform* pcs_to_lab; pcs_to_lab = qcms_modular_transform_alloc(); if (!pcs_to_lab) goto fail; append_transform(pcs_to_lab, &next_transform); pcs_to_lab->transform_module_fn = qcms_transform_module_XYZ_to_LAB; } if (out->color_space == RGB_SIGNATURE) { struct qcms_modular_transform* pcs_to_rgb; pcs_to_rgb = qcms_modular_transform_create_output(out); if (!pcs_to_rgb) goto fail; append_transform(pcs_to_rgb, &next_transform); } else { assert(0 && "output color space not supported"); goto fail; } // Not Completed //return qcms_modular_transform_reduce(first_transform); return first_transform; fail: qcms_modular_transform_release(first_transform); return EMPTY_TRANSFORM_LIST; } static float* qcms_modular_transform_data(struct qcms_modular_transform *transform, float *src, float *dest, size_t len) { while (transform != NULL) { // Keep swaping src/dest when performing a transform to use less memory. float *new_src = dest; const transform_module_fn_t transform_fn = transform->transform_module_fn; if (transform_fn != qcms_transform_module_gamma_table && transform_fn != qcms_transform_module_gamma_lut && transform_fn != qcms_transform_module_clut && transform_fn != qcms_transform_module_clut_only && transform_fn != qcms_transform_module_matrix && transform_fn != qcms_transform_module_matrix_translate && transform_fn != qcms_transform_module_LAB_to_XYZ && transform_fn != qcms_transform_module_XYZ_to_LAB) { assert(0 && "Unsupported transform module"); return NULL; } if (transform->grid_size <= 0 && (transform_fn == qcms_transform_module_clut || transform_fn == qcms_transform_module_clut_only)) { assert(0 && "Invalid transform"); return NULL; } transform->transform_module_fn(transform,src,dest,len); dest = src; src = new_src; transform = transform->next_transform; } // The results end up in the src buffer because of the switching return src; } float* qcms_chain_transform(qcms_profile *in, qcms_profile *out, float *src, float *dest, size_t lutSize) { struct qcms_modular_transform *transform_list = qcms_modular_transform_create(in, out); if (transform_list != NULL) { float *lut = qcms_modular_transform_data(transform_list, src, dest, lutSize/3); qcms_modular_transform_release(transform_list); return lut; } return NULL; }