// Copyright (c) 2014-2015 The Chromium Authors. All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in // the documentation and/or other materials provided with the // distribution. // * Neither the name of Google, Inc. nor the names of its contributors // may be used to endorse or promote products derived from this // software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, // BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS // OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED // AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT // OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF // SUCH DAMAGE. #include "convolver.h" #include <algorithm> #include "skia/include/core/SkTypes.h" #if defined(_MIPS_ARCH_LOONGSON3A) #include "MMIHelpers.h" namespace skia { // Convolves horizontally along a single row. The row data is given in // |src_data| and continues for the num_values() of the filter. void ConvolveHorizontally_LS3(const unsigned char* src_data, const ConvolutionFilter1D& filter, unsigned char* out_row) { int num_values = filter.num_values(); int tmp, filter_offset, filter_length; double zero, mask[4], shuf_50, shuf_fa; asm volatile ( ".set push \n\t" ".set arch=loongson3a \n\t" "xor %[zero], %[zero], %[zero] \n\t" // |mask| will be used to decimate all extra filter coefficients that are // loaded by SIMD when |filter_length| is not divisible by 4. // mask[0] is not used in following algorithm. "li %[tmp], 1 \n\t" "dsll32 %[tmp], 0x10 \n\t" "daddiu %[tmp], -1 \n\t" "dmtc1 %[tmp], %[mask3] \n\t" "dsrl %[tmp], 0x10 \n\t" "mtc1 %[tmp], %[mask2] \n\t" "dsrl %[tmp], 0x10 \n\t" "mtc1 %[tmp], %[mask1] \n\t" "ori %[tmp], $0, 0x50 \n\t" "mtc1 %[tmp], %[shuf_50] \n\t" "ori %[tmp], $0, 0xfa \n\t" "mtc1 %[tmp], %[shuf_fa] \n\t" ".set pop \n\t" :[zero]"=f"(zero), [mask1]"=f"(mask[1]), [mask2]"=f"(mask[2]), [mask3]"=f"(mask[3]), [shuf_50]"=f"(shuf_50), [shuf_fa]"=f"(shuf_fa), [tmp]"=&r"(tmp) ); // Output one pixel each iteration, calculating all channels (RGBA) together. for (int out_x = 0; out_x < num_values; out_x++) { const ConvolutionFilter1D::Fixed* filter_values = filter.FilterForValue(out_x, &filter_offset, &filter_length); double accumh, accuml; // Compute the first pixel in this row that the filter affects. It will // touch |filter_length| pixels (4 bytes each) after this. const void *row_to_filter = reinterpret_cast<const void*>(&src_data[filter_offset << 2]); asm volatile ( ".set push \n\t" ".set arch=loongson3a \n\t" _mm_xor(accum, accum, accum) ".set pop \n\t" :[accumh]"=f"(accumh), [accuml]"=f"(accuml) ); // We will load and accumulate with four coefficients per iteration. for (int filter_x = 0; filter_x < filter_length >> 2; filter_x++) { double src16h, src16l, mul_hih, mul_hil, mul_loh, mul_lol; double coeffh, coeffl, src8h, src8l, th, tl, coeff16h, coeff16l; asm volatile ( ".set push \n\t" ".set arch=loongson3a \n\t" // Load 4 coefficients => duplicate 1st and 2nd of them for all channels. // [16] xx xx xx xx c3 c2 c1 c0 "gsldlc1 %[coeffl], 7(%[fval]) \n\t" "gsldrc1 %[coeffl], (%[fval]) \n\t" "xor %[coeffh], %[coeffh], %[coeffh] \n\t" // [16] xx xx xx xx c1 c1 c0 c0 _mm_pshuflh(coeff16, coeff, shuf_50) // [16] c1 c1 c1 c1 c0 c0 c0 c0 _mm_punpcklhw(coeff16, coeff16, coeff16) // Load four pixels => unpack the first two pixels to 16 bits => // multiply with coefficients => accumulate the convolution result. // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 "gsldlc1 %[src8h], 0xf(%[rtf]) \n\t" "gsldrc1 %[src8h], 0x8(%[rtf]) \n\t" "gsldlc1 %[src8l], 0x7(%[rtf]) \n\t" "gsldrc1 %[src8l], 0x0(%[rtf]) \n\t" // [16] a1 b1 g1 r1 a0 b0 g0 r0 _mm_punpcklbh(src16, src8, zero) _mm_pmulhh(mul_hi, src16, coeff16) _mm_pmullh(mul_lo, src16, coeff16) // [32] a0*c0 b0*c0 g0*c0 r0*c0 _mm_punpcklhw(t, mul_lo, mul_hi) _mm_paddw(accum, accum, t) // [32] a1*c1 b1*c1 g1*c1 r1*c1 _mm_punpckhhw(t, mul_lo, mul_hi) _mm_paddw(accum, accum, t) // Duplicate 3rd and 4th coefficients for all channels => // unpack the 3rd and 4th pixels to 16 bits => multiply with coefficients // => accumulate the convolution results. // [16] xx xx xx xx c3 c3 c2 c2 _mm_pshuflh(coeff16, coeff, shuf_fa) // [16] c3 c3 c3 c3 c2 c2 c2 c2 _mm_punpcklhw(coeff16, coeff16, coeff16) // [16] a3 g3 b3 r3 a2 g2 b2 r2 _mm_punpckhbh(src16, src8, zero) _mm_pmulhh(mul_hi, src16, coeff16) _mm_pmullh(mul_lo, src16, coeff16) // [32] a2*c2 b2*c2 g2*c2 r2*c2 _mm_punpcklhw(t, mul_lo, mul_hi) _mm_paddw(accum, accum, t) // [32] a3*c3 b3*c3 g3*c3 r3*c3 _mm_punpckhhw(t, mul_lo, mul_hi) _mm_paddw(accum, accum, t) ".set pop \n\t" :[th]"=&f"(th), [tl]"=&f"(tl), [src8h]"=&f"(src8h), [src8l]"=&f"(src8l), [accumh]"+f"(accumh), [accuml]"+f"(accuml), [src16h]"=&f"(src16h), [src16l]"=&f"(src16l), [coeffh]"=&f"(coeffh), [coeffl]"=&f"(coeffl), [coeff16h]"=&f"(coeff16h), [coeff16l]"=&f"(coeff16l), [mul_hih]"=&f"(mul_hih), [mul_hil]"=&f"(mul_hil), [mul_loh]"=&f"(mul_loh), [mul_lol]"=&f"(mul_lol) :[zeroh]"f"(zero), [zerol]"f"(zero), [shuf_50]"f"(shuf_50), [shuf_fa]"f"(shuf_fa), [fval]"r"(filter_values), [rtf]"r"(row_to_filter) ); // Advance the pixel and coefficients pointers. row_to_filter += 16; filter_values += 4; } // When |filter_length| is not divisible by 4, we need to decimate some of // the filter coefficient that was loaded incorrectly to zero; Other than // that the algorithm is same with above, except that the 4th pixel will be // always absent. int r = filter_length & 3; if (r) { double coeffh, coeffl, th, tl, coeff16h, coeff16l; double src8h, src8l, src16h, src16l, mul_hih, mul_hil, mul_loh, mul_lol; asm volatile ( ".set push \n\t" ".set arch=loongson3a \n\t" "gsldlc1 %[coeffl], 7(%[fval]) \n\t" "gsldrc1 %[coeffl], (%[fval]) \n\t" "xor %[coeffh], %[coeffh], %[coeffh] \n\t" // Mask out extra filter taps. "and %[coeffl], %[coeffl], %[mask] \n\t" _mm_pshuflh(coeff16, coeff, shuf_50) _mm_punpcklhw(coeff16, coeff16, coeff16) "gsldlc1 %[src8h], 0xf(%[rtf]) \n\t" "gsldrc1 %[src8h], 0x8(%[rtf]) \n\t" "gsldlc1 %[src8l], 0x7(%[rtf]) \n\t" "gsldrc1 %[src8l], 0x0(%[rtf]) \n\t" _mm_punpcklbh(src16, src8, zero) _mm_pmulhh(mul_hi, src16, coeff16) _mm_pmullh(mul_lo, src16, coeff16) _mm_punpcklhw(t, mul_lo, mul_hi) _mm_paddw(accum, accum, t) _mm_punpckhhw(t, mul_lo, mul_hi) _mm_paddw(accum, accum, t) _mm_punpckhbh(src16, src8, zero) _mm_pshuflh(coeff16, coeff, shuf_fa) _mm_punpcklhw(coeff16, coeff16, coeff16) _mm_pmulhh(mul_hi, src16, coeff16) _mm_pmullh(mul_lo, src16, coeff16) _mm_punpcklhw(t, mul_lo, mul_hi) _mm_paddw(accum, accum, t) ".set pop \n\t" :[th]"=&f"(th), [tl]"=&f"(tl), [src8h]"=&f"(src8h), [src8l]"=&f"(src8l), [accumh]"+f"(accumh), [accuml]"+f"(accuml), [src16h]"=&f"(src16h), [src16l]"=&f"(src16l), [coeffh]"=&f"(coeffh), [coeffl]"=&f"(coeffl), [coeff16h]"=&f"(coeff16h), [coeff16l]"=&f"(coeff16l), [mul_hih]"=&f"(mul_hih), [mul_hil]"=&f"(mul_hil), [mul_loh]"=&f"(mul_loh), [mul_lol]"=&f"(mul_lol) :[fval]"r"(filter_values), [rtf]"r"(row_to_filter), [zeroh]"f"(zero), [zerol]"f"(zero), [mask]"f"(mask[r]), [shuf_50]"f"(shuf_50), [shuf_fa]"f"(shuf_fa) ); } double t, sra; asm volatile ( ".set push \n\t" ".set arch=loongson3a \n\t" "ori %[tmp], $0, %[sk_sra] \n\t" "mtc1 %[tmp], %[sra] \n\t" // Shift right for fixed point implementation. _mm_psraw(accum, accum, sra) // Packing 32 bits |accum| to 16 bits per channel (signed saturation). _mm_packsswh(accum, accum, zero, t) // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation). _mm_packushb(accum, accum, zero, t) // Store the pixel value of 32 bits. "swc1 %[accuml], (%[out_row]) \n\t" ".set pop \n\t" :[sra]"=&f"(sra), [t]"=&f"(t), [tmp]"=&r"(tmp), [accumh]"+f"(accumh), [accuml]"+f"(accuml) :[sk_sra]"i"(ConvolutionFilter1D::kShiftBits), [out_row]"r"(out_row), [zeroh]"f"(zero), [zerol]"f"(zero) :"memory" ); out_row += 4; } } // Convolves horizontally along a single row. The row data is given in // |src_data| and continues for the [begin, end) of the filter. // Process one pixel at a time. void ConvolveHorizontally1_LS3(const unsigned char* src_data, const ConvolutionFilter1D& filter, unsigned char* out_row) { int num_values = filter.num_values(); double zero; double sra; asm volatile ( ".set push \n" ".set arch=loongson3a \n" "xor %[zero], %[zero], %[zero] \n" "mtc1 %[sk_sra], %[sra] \n" ".set pop \n" :[zero]"=&f"(zero), [sra]"=&f"(sra) :[sk_sra]"r"(ConvolutionFilter1D::kShiftBits) ); // Loop over each pixel on this row in the output image. for (int out_x = 0; out_x < num_values; out_x++) { // Get the filter that determines the current output pixel. int filter_offset; int filter_length; const ConvolutionFilter1D::Fixed* filter_values = filter.FilterForValue(out_x, &filter_offset, &filter_length); // Compute the first pixel in this row that the filter affects. It will // touch |filter_length| pixels (4 bytes each) after this. const unsigned char* row_to_filter = &src_data[filter_offset * 4]; // Apply the filter to the row to get the destination pixel in |accum|. double accuml; double accumh; asm volatile ( ".set push \n" ".set arch=loongson3a \n" "xor %[accuml], %[accuml], %[accuml] \n" "xor %[accumh], %[accumh], %[accumh] \n" ".set pop \n" :[accuml]"=&f"(accuml), [accumh]"=&f"(accumh) ); for (int filter_x = 0; filter_x < filter_length; filter_x++) { double src8; double src16; double coeff; double coeff16; asm volatile ( ".set push \n" ".set arch=loongson3a \n" "lwc1 %[src8], %[rtf] \n" "mtc1 %[fv], %[coeff] \n" "pshufh %[coeff16], %[coeff], %[zero] \n" "punpcklbh %[src16], %[src8], %[zero] \n" "pmullh %[src8], %[src16], %[coeff16] \n" "pmulhh %[coeff], %[src16], %[coeff16] \n" "punpcklhw %[src16], %[src8], %[coeff] \n" "punpckhhw %[coeff16], %[src8], %[coeff] \n" "paddw %[accuml], %[accuml], %[src16] \n" "paddw %[accumh], %[accumh], %[coeff16] \n" ".set pop \n" :[accuml]"+f"(accuml), [accumh]"+f"(accumh), [src8]"=&f"(src8), [src16]"=&f"(src16), [coeff]"=&f"(coeff), [coeff16]"=&f"(coeff16) :[rtf]"m"(row_to_filter[filter_x * 4]), [fv]"r"(filter_values[filter_x]), [zero]"f"(zero) ); } asm volatile ( ".set push \n" ".set arch=loongson3a \n" // Bring this value back in range. All of the filter scaling factors // are in fixed point with kShiftBits bits of fractional part. "psraw %[accuml], %[accuml], %[sra] \n" "psraw %[accumh], %[accumh], %[sra] \n" // Store the new pixel. "packsswh %[accuml], %[accuml], %[accumh] \n" "packushb %[accuml], %[accuml], %[zero] \n" "swc1 %[accuml], %[out_row] \n" ".set pop \n" :[accuml]"+f"(accuml), [accumh]"+f"(accumh) :[sra]"f"(sra), [zero]"f"(zero), [out_row]"m"(out_row[out_x * 4]) :"memory" ); } } // Convolves horizontally along four rows. The row data is given in // |src_data| and continues for the num_values() of the filter. // The algorithm is almost same as |ConvolveHorizontally_LS3|. Please // refer to that function for detailed comments. void ConvolveHorizontally4_LS3(const unsigned char* src_data[4], const ConvolutionFilter1D& filter, unsigned char* out_row[4]) { int num_values = filter.num_values(); int tmp, filter_offset, filter_length; double zero, mask[4], shuf_50, shuf_fa; asm volatile ( ".set push \n\t" ".set arch=loongson3a \n\t" "xor %[zero], %[zero], %[zero] \n\t" // |mask| will be used to decimate all extra filter coefficients that are // loaded by SIMD when |filter_length| is not divisible by 4. // mask[0] is not used in following algorithm. "li %[tmp], 1 \n\t" "dsll32 %[tmp], 0x10 \n\t" "daddiu %[tmp], -1 \n\t" "dmtc1 %[tmp], %[mask3] \n\t" "dsrl %[tmp], 0x10 \n\t" "mtc1 %[tmp], %[mask2] \n\t" "dsrl %[tmp], 0x10 \n\t" "mtc1 %[tmp], %[mask1] \n\t" "ori %[tmp], $0, 0x50 \n\t" "mtc1 %[tmp], %[shuf_50] \n\t" "ori %[tmp], $0, 0xfa \n\t" "mtc1 %[tmp], %[shuf_fa] \n\t" ".set pop \n\t" :[zero]"=f"(zero), [mask1]"=f"(mask[1]), [mask2]"=f"(mask[2]), [mask3]"=f"(mask[3]), [shuf_50]"=f"(shuf_50), [shuf_fa]"=f"(shuf_fa), [tmp]"=&r"(tmp) ); // Output one pixel each iteration, calculating all channels (RGBA) together. for (int out_x = 0; out_x < num_values; out_x++) { const ConvolutionFilter1D::Fixed* filter_values = filter.FilterForValue(out_x, &filter_offset, &filter_length); double accum0h, accum0l, accum1h, accum1l; double accum2h, accum2l, accum3h, accum3l; // four pixels in a column per iteration. asm volatile ( ".set push \n\t" ".set arch=loongson3a \n\t" _mm_xor(accum0, accum0, accum0) _mm_xor(accum1, accum1, accum1) _mm_xor(accum2, accum2, accum2) _mm_xor(accum3, accum3, accum3) ".set pop \n\t" :[accum0h]"=f"(accum0h), [accum0l]"=f"(accum0l), [accum1h]"=f"(accum1h), [accum1l]"=f"(accum1l), [accum2h]"=f"(accum2h), [accum2l]"=f"(accum2l), [accum3h]"=f"(accum3h), [accum3l]"=f"(accum3l) ); int start = (filter_offset<<2); // We will load and accumulate with four coefficients per iteration. for (int filter_x = 0; filter_x < (filter_length >> 2); filter_x++) { double src8h, src8l, src16h, src16l; double mul_hih, mul_hil, mul_loh, mul_lol, th, tl; double coeffh, coeffl, coeff16loh, coeff16lol, coeff16hih, coeff16hil; asm volatile ( ".set push \n\t" ".set arch=loongson3a \n\t" // [16] xx xx xx xx c3 c2 c1 c0 "gsldlc1 %[coeffl], 7(%[fval]) \n\t" "gsldrc1 %[coeffl], (%[fval]) \n\t" "xor %[coeffh], %[coeffh], %[coeffh] \n\t" // [16] xx xx xx xx c1 c1 c0 c0 _mm_pshuflh(coeff16lo, coeff, shuf_50) // [16] c1 c1 c1 c1 c0 c0 c0 c0 _mm_punpcklhw(coeff16lo, coeff16lo, coeff16lo) // [16] xx xx xx xx c3 c3 c2 c2 _mm_pshuflh(coeff16hi, coeff, shuf_fa) // [16] c3 c3 c3 c3 c2 c2 c2 c2 _mm_punpcklhw(coeff16hi, coeff16hi, coeff16hi) ".set pop \n\t" :[coeffh]"=&f"(coeffh), [coeffl]"=&f"(coeffl), [coeff16loh]"=&f"(coeff16loh), [coeff16lol]"=&f"(coeff16lol), [coeff16hih]"=&f"(coeff16hih), [coeff16hil]"=&f"(coeff16hil) :[fval]"r"(filter_values), [shuf_50]"f"(shuf_50), [shuf_fa]"f"(shuf_fa) ); #define ITERATION(_src, _accumh, _accuml) \ asm volatile ( \ ".set push \n\t" \ ".set arch=loongson3a \n\t" \ "gsldlc1 %[src8h], 0xf(%[src]) \n\t" \ "gsldrc1 %[src8h], 0x8(%[src]) \n\t" \ "gsldlc1 %[src8l], 0x7(%[src]) \n\t" \ "gsldrc1 %[src8l], 0x0(%[src]) \n\t" \ _mm_punpcklbh(src16, src8, zero) \ _mm_pmulhh(mul_hi, src16, coeff16lo) \ _mm_pmullh(mul_lo, src16, coeff16lo) \ _mm_punpcklhw(t, mul_lo, mul_hi) \ _mm_paddw(accum, accum, t) \ _mm_punpckhhw(t, mul_lo, mul_hi) \ _mm_paddw(accum, accum, t) \ _mm_punpckhbh(src16, src8, zero) \ _mm_pmulhh(mul_hi, src16, coeff16hi) \ _mm_pmullh(mul_lo, src16, coeff16hi) \ _mm_punpcklhw(t, mul_lo, mul_hi) \ _mm_paddw(accum, accum, t) \ _mm_punpckhhw(t, mul_lo, mul_hi) \ _mm_paddw(accum, accum, t) \ ".set pop \n\t" \ :[th]"=&f"(th), [tl]"=&f"(tl), \ [src8h]"=&f"(src8h), [src8l]"=&f"(src8l), \ [src16h]"=&f"(src16h), [src16l]"=&f"(src16l), \ [mul_hih]"=&f"(mul_hih), [mul_hil]"=&f"(mul_hil), \ [mul_loh]"=&f"(mul_loh), [mul_lol]"=&f"(mul_lol), \ [accumh]"+f"(_accumh), [accuml]"+f"(_accuml) \ :[zeroh]"f"(zero), [zerol]"f"(zero), [src]"r"(_src), \ [coeff16loh]"f"(coeff16loh), [coeff16lol]"f"(coeff16lol), \ [coeff16hih]"f"(coeff16hih), [coeff16hil]"f"(coeff16hil) \ ); ITERATION(src_data[0] + start, accum0h, accum0l); ITERATION(src_data[1] + start, accum1h, accum1l); ITERATION(src_data[2] + start, accum2h, accum2l); ITERATION(src_data[3] + start, accum3h, accum3l); start += 16; filter_values += 4; } int r = filter_length & 3; if (r) { double src8h, src8l, src16h, src16l; double mul_hih, mul_hil, mul_loh, mul_lol, th, tl; double coeffh, coeffl, coeff16loh, coeff16lol, coeff16hih, coeff16hil; asm volatile ( ".set push \n\t" ".set arch=loongson3a \n\t" "gsldlc1 %[coeffl], 7(%[fval]) \n\t" "gsldrc1 %[coeffl], (%[fval]) \n\t" "xor %[coeffh], %[coeffh], %[coeffh] \n\t" // Mask out extra filter taps. "and %[coeffl], %[coeffl], %[mask] \n\t" _mm_pshuflh(coeff16lo, coeff, shuf_50) /* c1 c1 c1 c1 c0 c0 c0 c0 */ _mm_punpcklhw(coeff16lo, coeff16lo, coeff16lo) _mm_pshuflh(coeff16hi, coeff, shuf_fa) _mm_punpcklhw(coeff16hi, coeff16hi, coeff16hi) ".set pop \n\t" :[coeffh]"=&f"(coeffh), [coeffl]"=&f"(coeffl), [coeff16loh]"=&f"(coeff16loh), [coeff16lol]"=&f"(coeff16lol), [coeff16hih]"=&f"(coeff16hih), [coeff16hil]"=&f"(coeff16hil) :[fval]"r"(filter_values), [mask]"f"(mask[r]), [shuf_50]"f"(shuf_50), [shuf_fa]"f"(shuf_fa) ); ITERATION(src_data[0] + start, accum0h, accum0l); ITERATION(src_data[1] + start, accum1h, accum1l); ITERATION(src_data[2] + start, accum2h, accum2l); ITERATION(src_data[3] + start, accum3h, accum3l); } double t, sra; asm volatile ( ".set push \n\t" ".set arch=loongson3a \n\t" "ori %[tmp], $0, %[sk_sra] \n\t" "mtc1 %[tmp], %[sra] \n\t" _mm_psraw(accum0, accum0, sra) _mm_packsswh(accum0, accum0, zero, t) _mm_packushb(accum0, accum0, zero, t) _mm_psraw(accum1, accum1, sra) _mm_packsswh(accum1, accum1, zero, t) _mm_packushb(accum1, accum1, zero, t) _mm_psraw(accum2, accum2, sra) _mm_packsswh(accum2, accum2, zero, t) _mm_packushb(accum2, accum2, zero, t) _mm_psraw(accum3, accum3, sra) _mm_packsswh(accum3, accum3, zero, t) _mm_packushb(accum3, accum3, zero, t) "swc1 %[accum0l], (%[out_row0]) \n\t" "swc1 %[accum1l], (%[out_row1]) \n\t" "swc1 %[accum2l], (%[out_row2]) \n\t" "swc1 %[accum3l], (%[out_row3]) \n\t" ".set pop \n\t" :[accum0h]"+f"(accum0h), [accum0l]"+f"(accum0l), [accum1h]"+f"(accum1h), [accum1l]"+f"(accum1l), [accum2h]"+f"(accum2h), [accum2l]"+f"(accum2l), [accum3h]"+f"(accum3h), [accum3l]"+f"(accum3l), [sra]"=&f"(sra), [t]"=&f"(t), [tmp]"=&r"(tmp) :[zeroh]"f"(zero), [zerol]"f"(zero), [out_row0]"r"(out_row[0]), [out_row1]"r"(out_row[1]), [out_row2]"r"(out_row[2]), [out_row3]"r"(out_row[3]), [sk_sra]"i"(ConvolutionFilter1D::kShiftBits) :"memory" ); out_row[0] += 4; out_row[1] += 4; out_row[2] += 4; out_row[3] += 4; } } // Does vertical convolution to produce one output row. The filter values and // length are given in the first two parameters. These are applied to each // of the rows pointed to in the |source_data_rows| array, with each row // being |pixel_width| wide. // // The output must have room for |pixel_width * 4| bytes. template<bool has_alpha> void ConvolveVertically_LS3_impl(const ConvolutionFilter1D::Fixed* filter_values, int filter_length, unsigned char* const* source_data_rows, int pixel_width, unsigned char* out_row) { uint64_t tmp; int width = pixel_width & ~3; double zero, sra, coeff16h, coeff16l; double accum0h, accum0l, accum1h, accum1l; double accum2h, accum2l, accum3h, accum3l; const void *src; int out_x; asm volatile ( ".set push \n\t" ".set arch=loongson3a \n\t" "xor %[zero], %[zero], %[zero] \n\t" "ori %[tmp], $0, %[sk_sra] \n\t" "mtc1 %[tmp], %[sra] \n\t" ".set pop \n\t" :[zero]"=f"(zero), [sra]"=f"(sra), [tmp]"=&r"(tmp) :[sk_sra]"i"(ConvolutionFilter1D::kShiftBits) ); // Output four pixels per iteration (16 bytes). for (out_x = 0; out_x < width; out_x += 4) { // Accumulated result for each pixel. 32 bits per RGBA channel. asm volatile ( ".set push \n\t" ".set arch=loongson3a \n\t" _mm_xor(accum0, accum0, accum0) _mm_xor(accum1, accum1, accum1) _mm_xor(accum2, accum2, accum2) _mm_xor(accum3, accum3, accum3) ".set pop \n\t" :[accum0h]"=f"(accum0h), [accum0l]"=f"(accum0l), [accum1h]"=f"(accum1h), [accum1l]"=f"(accum1l), [accum2h]"=f"(accum2h), [accum2l]"=f"(accum2l), [accum3h]"=f"(accum3h), [accum3l]"=f"(accum3l) ); // Convolve with one filter coefficient per iteration. for (int filter_y = 0; filter_y < filter_length; filter_y++) { double src8h, src8l, src16h, src16l; double mul_hih, mul_hil, mul_loh, mul_lol, th, tl; src = reinterpret_cast<const void*>( &source_data_rows[filter_y][out_x << 2]); asm volatile ( ".set push \n\t" ".set arch=loongson3a \n\t" // Duplicate the filter coefficient 8 times. // [16] cj cj cj cj cj cj cj cj "gsldlc1 %[coeff16l], 7+%[fval] \n\t" "gsldrc1 %[coeff16l], %[fval] \n\t" "pshufh %[coeff16l], %[coeff16l], %[zerol] \n\t" "mov.d %[coeff16h], %[coeff16l] \n\t" // Load four pixels (16 bytes) together. // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 "gsldlc1 %[src8h], 0xf(%[src]) \n\t" "gsldrc1 %[src8h], 0x8(%[src]) \n\t" "gsldlc1 %[src8l], 0x7(%[src]) \n\t" "gsldrc1 %[src8l], 0x0(%[src]) \n\t" // Unpack 1st and 2nd pixels from 8 bits to 16 bits for each channels => // multiply with current coefficient => accumulate the result. // [16] a1 b1 g1 r1 a0 b0 g0 r0 _mm_punpcklbh(src16, src8, zero) _mm_pmulhh(mul_hi, src16, coeff16) _mm_pmullh(mul_lo, src16, coeff16) // [32] a0 b0 g0 r0 _mm_punpcklhw(t, mul_lo, mul_hi) _mm_paddw(accum0, accum0, t) // [32] a1 b1 g1 r1 _mm_punpckhhw(t, mul_lo, mul_hi) _mm_paddw(accum1, accum1, t) // Unpack 3rd and 4th pixels from 8 bits to 16 bits for each channels => // multiply with current coefficient => accumulate the result. // [16] a3 b3 g3 r3 a2 b2 g2 r2 _mm_punpckhbh(src16, src8, zero) _mm_pmulhh(mul_hi, src16, coeff16) _mm_pmullh(mul_lo, src16, coeff16) ".set pop \n\t" :[th]"=&f"(th), [tl]"=&f"(tl), [src8h]"=&f"(src8h), [src8l]"=&f"(src8l), [src16h]"=&f"(src16h), [src16l]"=&f"(src16l), [mul_hih]"=&f"(mul_hih), [mul_hil]"=&f"(mul_hil), [mul_loh]"=&f"(mul_loh), [mul_lol]"=&f"(mul_lol), [accum0h]"+f"(accum0h), [accum0l]"+f"(accum0l), [accum1h]"+f"(accum1h), [accum1l]"+f"(accum1l), [coeff16h]"=&f"(coeff16h), [coeff16l]"=&f"(coeff16l) :[zeroh]"f"(zero), [zerol]"f"(zero), [fval]"m"(filter_values[filter_y]), [src]"r"(src) ); asm volatile ( ".set push \n\t" ".set arch=loongson3a \n\t" // [32] a2 b2 g2 r2 _mm_punpcklhw(t, mul_lo, mul_hi) _mm_paddw(accum2, accum2, t) // [32] a3 b3 g3 r3 _mm_punpckhhw(t, mul_lo, mul_hi) _mm_paddw(accum3, accum3, t) ".set pop \n\t" :[th]"=&f"(th), [tl]"=&f"(tl), [mul_hih]"+f"(mul_hih), [mul_hil]"+f"(mul_hil), [mul_loh]"+f"(mul_loh), [mul_lol]"+f"(mul_lol), [accum2h]"+f"(accum2h), [accum2l]"+f"(accum2l), [accum3h]"+f"(accum3h), [accum3l]"+f"(accum3l) ); } double t; asm volatile ( ".set push \n\t" ".set arch=loongson3a \n\t" // Shift right for fixed point implementation. _mm_psraw(accum0, accum0, sra) _mm_psraw(accum1, accum1, sra) _mm_psraw(accum2, accum2, sra) _mm_psraw(accum3, accum3, sra) // Packing 32 bits |accum| to 16 bits per channel (signed saturation). // [16] a1 b1 g1 r1 a0 b0 g0 r0 _mm_packsswh(accum0, accum0, accum1, t) // [16] a3 b3 g3 r3 a2 b2 g2 r2 _mm_packsswh(accum2, accum2, accum3, t) // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation). // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 _mm_packushb(accum0, accum0, accum2, t) ".set pop \n\t" :[accum0h]"+f"(accum0h), [accum0l]"+f"(accum0l), [accum1h]"+f"(accum1h), [accum1l]"+f"(accum1l), [accum2h]"+f"(accum2h), [accum2l]"+f"(accum2l), [accum3h]"+f"(accum3h), [accum3l]"+f"(accum3l), [t]"=&f"(t) :[sra]"f"(sra) ); if (has_alpha) { double ah, al, bh, bl, srl8, srl16, sll24; asm volatile ( ".set push \n\t" ".set arch=loongson3a \n\t" "li %[tmp], 8 \n\t" "mtc1 %[tmp], %[srl8] \n\t" "li %[tmp], 16 \n\t" "mtc1 %[tmp], %[srl16] \n\t" "li %[tmp], 24 \n\t" "mtc1 %[tmp], %[sll24] \n\t" // Compute the max(ri, gi, bi) for each pixel. // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 _mm_psraw(a, accum0, srl8) // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 _mm_pmaxub(b, a, accum0) // Max of r and g. // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 _mm_psrlw(a, accum0, srl16) // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 _mm_pmaxub(b, a, b) // Max of r and g and b. // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 _mm_psllw(b, b, sll24) // Make sure the value of alpha channel is always larger than maximum // value of color channels. _mm_pmaxub(accum0, b, accum0) ".set pop \n\t" :[accum0h]"+f"(accum0h), [accum0l]"+f"(accum0l), [tmp]"=&r"(tmp), [ah]"=&f"(ah), [al]"=&f"(al), [bh]"=&f"(bh), [bl]"=&f"(bl), [srl8]"=&f"(srl8), [srl16]"=&f"(srl16), [sll24]"=&f"(sll24) ); } else { double maskh, maskl; asm volatile ( ".set push \n\t" ".set arch=loongson3a \n\t" // Set value of alpha channels to 0xFF. "li %[tmp], 0xff000000 \n\t" "mtc1 %[tmp], %[maskl] \n\t" "punpcklwd %[maskl], %[maskl], %[maskl] \n\t" "mov.d %[maskh], %[maskl] \n\t" _mm_or(accum0, accum0, mask) ".set pop \n\t" :[maskh]"=&f"(maskh), [maskl]"=&f"(maskl), [accum0h]"+f"(accum0h), [accum0l]"+f"(accum0l), [tmp]"=&r"(tmp) ); } // Store the convolution result (16 bytes) and advance the pixel pointers. asm volatile ( ".set push \n\t" ".set arch=loongson3a \n\t" "gssdlc1 %[accum0h], 0xf(%[out_row]) \n\t" "gssdrc1 %[accum0h], 0x8(%[out_row]) \n\t" "gssdlc1 %[accum0l], 0x7(%[out_row]) \n\t" "gssdrc1 %[accum0l], 0x0(%[out_row]) \n\t" ".set pop \n\t" ::[accum0h]"f"(accum0h), [accum0l]"f"(accum0l), [out_row]"r"(out_row) :"memory" ); out_row += 16; } // When the width of the output is not divisible by 4, We need to save one // pixel (4 bytes) each time. And also the fourth pixel is always absent. if (pixel_width & 3) { asm volatile ( ".set push \n\t" ".set arch=loongson3a \n\t" _mm_xor(accum0, accum0, accum0) _mm_xor(accum1, accum1, accum1) _mm_xor(accum2, accum2, accum2) ".set pop \n\t" :[accum0h]"=&f"(accum0h), [accum0l]"=&f"(accum0l), [accum1h]"=&f"(accum1h), [accum1l]"=&f"(accum1l), [accum2h]"=&f"(accum2h), [accum2l]"=&f"(accum2l) ); for (int filter_y = 0; filter_y < filter_length; ++filter_y) { double src8h, src8l, src16h, src16l; double th, tl, mul_hih, mul_hil, mul_loh, mul_lol; src = reinterpret_cast<const void*>( &source_data_rows[filter_y][out_x<<2]); asm volatile ( ".set push \n\t" ".set arch=loongson3a \n\t" "gsldlc1 %[coeff16l], 7+%[fval] \n\t" "gsldrc1 %[coeff16l], %[fval] \n\t" "pshufh %[coeff16l], %[coeff16l], %[zerol] \n\t" "mov.d %[coeff16h], %[coeff16l] \n\t" // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 "gsldlc1 %[src8h], 0xf(%[src]) \n\t" "gsldrc1 %[src8h], 0x8(%[src]) \n\t" "gsldlc1 %[src8l], 0x7(%[src]) \n\t" "gsldrc1 %[src8l], 0x0(%[src]) \n\t" // [16] a1 b1 g1 r1 a0 b0 g0 r0 _mm_punpcklbh(src16, src8, zero) _mm_pmulhh(mul_hi, src16, coeff16) _mm_pmullh(mul_lo, src16, coeff16) // [32] a0 b0 g0 r0 _mm_punpcklhw(t, mul_lo, mul_hi) _mm_paddw(accum0, accum0, t) // [32] a1 b1 g1 r1 _mm_punpckhhw(t, mul_lo, mul_hi) _mm_paddw(accum1, accum1, t) // [16] a3 b3 g3 r3 a2 b2 g2 r2 _mm_punpckhbh(src16, src8, zero) _mm_pmulhh(mul_hi, src16, coeff16) _mm_pmullh(mul_lo, src16, coeff16) // [32] a2 b2 g2 r2 _mm_punpcklhw(t, mul_lo, mul_hi) _mm_paddw(accum2, accum2, t) ".set pop \n\t" :[th]"=&f"(th), [tl]"=&f"(tl), [src8h]"=&f"(src8h), [src8l]"=&f"(src8l), [src16h]"=&f"(src16h), [src16l]"=&f"(src16l), [mul_hih]"=&f"(mul_hih), [mul_hil]"=&f"(mul_hil), [mul_loh]"=&f"(mul_loh), [mul_lol]"=&f"(mul_lol), [accum0h]"+f"(accum0h), [accum0l]"+f"(accum0l), [accum1h]"+f"(accum1h), [accum1l]"+f"(accum1l), [accum2h]"+f"(accum2h), [accum2l]"+f"(accum2l), [coeff16h]"=&f"(coeff16h), [coeff16l]"=&f"(coeff16l) :[zeroh]"f"(zero), [zerol]"f"(zero), [fval]"m"(filter_values[filter_y]), [src]"r"(src) ); } double t; asm volatile ( ".set push \n\t" ".set arch=loongson3a \n\t" _mm_psraw(accum0, accum0, sra) _mm_psraw(accum1, accum1, sra) _mm_psraw(accum2, accum2, sra) // [16] a1 b1 g1 r1 a0 b0 g0 r0 _mm_packsswh(accum0, accum0, accum1, t) // [16] a3 b3 g3 r3 a2 b2 g2 r2 _mm_packsswh(accum2, accum2, zero, t) // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 _mm_packushb(accum0, accum0, accum2, t) ".set pop \n\t" :[accum0h]"+f"(accum0h), [accum0l]"+f"(accum0l), [accum1h]"+f"(accum1h), [accum1l]"+f"(accum1l), [accum2h]"+f"(accum2h), [accum2l]"+f"(accum2l), [t]"=&f"(t) :[zeroh]"f"(zero), [zerol]"f"(zero), [sra]"f"(sra) ); if (has_alpha) { double ah, al, bh, bl, srl8, srl16, sll24; asm volatile ( ".set push \n\t" ".set arch=loongson3a \n\t" "li %[tmp], 8 \n\t" "mtc1 %[tmp], %[srl8] \n\t" "li %[tmp], 16 \n\t" "mtc1 %[tmp], %[srl16] \n\t" "li %[tmp], 24 \n\t" "mtc1 %[tmp], %[sll24] \n\t" // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 _mm_psrlw(a, accum0, srl8) // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 _mm_pmaxub(b, a, accum0) // Max of r and g. // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 _mm_psrlw(a, accum0, srl16) // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 _mm_pmaxub(b, a, b) // Max of r and g and b. // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 _mm_psllw(b, b, sll24) _mm_pmaxub(accum0, b, accum0) ".set pop \n\t" :[ah]"=&f"(ah), [al]"=&f"(al), [bh]"=&f"(bh), [bl]"=&f"(bl), [accum0h]"+f"(accum0h), [accum0l]"+f"(accum0l), [tmp]"=&r"(tmp), [srl8]"=&f"(srl8), [srl16]"=&f"(srl16), [sll24]"=&f"(sll24) ); } else { double maskh, maskl; asm volatile ( ".set push \n\t" ".set arch=loongson3a \n\t" // Set value of alpha channels to 0xFF. "li %[tmp], 0xff000000 \n\t" "mtc1 %[tmp], %[maskl] \n\t" "punpcklwd %[maskl], %[maskl], %[maskl] \n\t" "mov.d %[maskh], %[maskl] \n\t" _mm_or(accum0, accum0, mask) ".set pop \n\t" :[maskh]"=&f"(maskh), [maskl]"=&f"(maskl), [accum0h]"+f"(accum0h), [accum0l]"+f"(accum0l), [tmp]"=&r"(tmp) ); } double s4, s64; asm volatile ( ".set push \n\t" ".set arch=loongson3a \n\t" "li %[tmp], 4 \n\t" "mtc1 %[tmp], %[s4] \n\t" "li %[tmp], 64 \n\t" "mtc1 %[tmp], %[s64] \n\t" ".set pop \n\t" :[s4]"=f"(s4), [s64]"=f"(s64), [tmp]"=&r"(tmp) ); for (int out_x = width; out_x < pixel_width; out_x++) { double t; asm volatile ( ".set push \n\t" ".set arch=loongson3a \n\t" "swc1 %[accum0l], (%[out_row]) \n\t" _mm_psrlq(accum0, accum0, s4, s64, t) ".set pop \n\t" :[t]"=&f"(t), [accum0h]"+f"(accum0h), [accum0l]"+f"(accum0l) :[out_row]"r"(out_row), [s4]"f"(s4), [s64]"f"(s64) :"memory" ); out_row += 4; } } } void ConvolveVertically_LS3(const ConvolutionFilter1D::Fixed* filter_values, int filter_length, unsigned char* const* source_data_rows, int pixel_width, unsigned char* out_row, bool has_alpha) { if (has_alpha) { ConvolveVertically_LS3_impl<true>(filter_values, filter_length, source_data_rows, pixel_width, out_row); } else { ConvolveVertically_LS3_impl<false>(filter_values, filter_length, source_data_rows, pixel_width, out_row); } } } // namespace skia #endif /* _MIPS_ARCH_LOONGSON3A */