/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "Blur.h" #include "SSEHelpers.h" #include <string.h> namespace mozilla { namespace gfx { MOZ_ALWAYS_INLINE __m128i Divide(__m128i aValues, __m128i aDivisor) { const __m128i mask = _mm_setr_epi32(0x0, 0xffffffff, 0x0, 0xffffffff); static const union { int64_t i64[2]; __m128i m; } roundingAddition = { { int64_t(1) << 31, int64_t(1) << 31 } }; __m128i multiplied31 = _mm_mul_epu32(aValues, aDivisor); __m128i multiplied42 = _mm_mul_epu32(_mm_srli_epi64(aValues, 32), aDivisor); // Add 1 << 31 before shifting or masking the lower 32 bits away, so that the // result is rounded. __m128i p_3_1 = _mm_srli_epi64(_mm_add_epi64(multiplied31, roundingAddition.m), 32); __m128i p4_2_ = _mm_and_si128(_mm_add_epi64(multiplied42, roundingAddition.m), mask); __m128i p4321 = _mm_or_si128(p_3_1, p4_2_); return p4321; } MOZ_ALWAYS_INLINE __m128i BlurFourPixels(const __m128i& aTopLeft, const __m128i& aTopRight, const __m128i& aBottomRight, const __m128i& aBottomLeft, const __m128i& aDivisor) { __m128i values = _mm_add_epi32(_mm_sub_epi32(_mm_sub_epi32(aBottomRight, aTopRight), aBottomLeft), aTopLeft); return Divide(values, aDivisor); } MOZ_ALWAYS_INLINE void LoadIntegralRowFromRow(uint32_t *aDest, const uint8_t *aSource, int32_t aSourceWidth, int32_t aLeftInflation, int32_t aRightInflation) { int32_t currentRowSum = 0; for (int x = 0; x < aLeftInflation; x++) { currentRowSum += aSource[0]; aDest[x] = currentRowSum; } for (int x = aLeftInflation; x < (aSourceWidth + aLeftInflation); x++) { currentRowSum += aSource[(x - aLeftInflation)]; aDest[x] = currentRowSum; } for (int x = (aSourceWidth + aLeftInflation); x < (aSourceWidth + aLeftInflation + aRightInflation); x++) { currentRowSum += aSource[aSourceWidth - 1]; aDest[x] = currentRowSum; } } // This function calculates an integral of four pixels stored in the 4 // 32-bit integers on aPixels. i.e. for { 30, 50, 80, 100 } this returns // { 30, 80, 160, 260 }. This seems to be the fastest way to do this after // much testing. MOZ_ALWAYS_INLINE __m128i AccumulatePixelSums(__m128i aPixels) { __m128i sumPixels = aPixels; __m128i currentPixels = _mm_slli_si128(aPixels, 4); sumPixels = _mm_add_epi32(sumPixels, currentPixels); currentPixels = _mm_unpacklo_epi64(_mm_setzero_si128(), sumPixels); return _mm_add_epi32(sumPixels, currentPixels); } MOZ_ALWAYS_INLINE void GenerateIntegralImage_SSE2(int32_t aLeftInflation, int32_t aRightInflation, int32_t aTopInflation, int32_t aBottomInflation, uint32_t *aIntegralImage, size_t aIntegralImageStride, uint8_t *aSource, int32_t aSourceStride, const IntSize &aSize) { MOZ_ASSERT(!(aLeftInflation & 3)); uint32_t stride32bit = aIntegralImageStride / 4; IntSize integralImageSize(aSize.width + aLeftInflation + aRightInflation, aSize.height + aTopInflation + aBottomInflation); LoadIntegralRowFromRow(aIntegralImage, aSource, aSize.width, aLeftInflation, aRightInflation); for (int y = 1; y < aTopInflation + 1; y++) { uint32_t *intRow = aIntegralImage + (y * stride32bit); uint32_t *intPrevRow = aIntegralImage + (y - 1) * stride32bit; uint32_t *intFirstRow = aIntegralImage; for (int x = 0; x < integralImageSize.width; x += 4) { __m128i firstRow = _mm_load_si128((__m128i*)(intFirstRow + x)); __m128i previousRow = _mm_load_si128((__m128i*)(intPrevRow + x)); _mm_store_si128((__m128i*)(intRow + x), _mm_add_epi32(firstRow, previousRow)); } } for (int y = aTopInflation + 1; y < (aSize.height + aTopInflation); y++) { __m128i currentRowSum = _mm_setzero_si128(); uint32_t *intRow = aIntegralImage + (y * stride32bit); uint32_t *intPrevRow = aIntegralImage + (y - 1) * stride32bit; uint8_t *sourceRow = aSource + aSourceStride * (y - aTopInflation); uint32_t pixel = sourceRow[0]; for (int x = 0; x < aLeftInflation; x += 4) { __m128i sumPixels = AccumulatePixelSums(_mm_shuffle_epi32(_mm_set1_epi32(pixel), _MM_SHUFFLE(0, 0, 0, 0))); sumPixels = _mm_add_epi32(sumPixels, currentRowSum); currentRowSum = _mm_shuffle_epi32(sumPixels, _MM_SHUFFLE(3, 3, 3, 3)); _mm_store_si128((__m128i*)(intRow + x), _mm_add_epi32(sumPixels, _mm_load_si128((__m128i*)(intPrevRow + x)))); } for (int x = aLeftInflation; x < (aSize.width + aLeftInflation); x += 4) { uint32_t pixels = *(uint32_t*)(sourceRow + (x - aLeftInflation)); // It's important to shuffle here. When we exit this loop currentRowSum // has to be set to sumPixels, so that the following loop can get the // correct pixel for the currentRowSum. The highest order pixel in // currentRowSum could've originated from accumulation in the stride. currentRowSum = _mm_shuffle_epi32(currentRowSum, _MM_SHUFFLE(3, 3, 3, 3)); __m128i sumPixels = AccumulatePixelSums(_mm_unpacklo_epi16(_mm_unpacklo_epi8( _mm_set1_epi32(pixels), _mm_setzero_si128()), _mm_setzero_si128())); sumPixels = _mm_add_epi32(sumPixels, currentRowSum); currentRowSum = sumPixels; _mm_store_si128((__m128i*)(intRow + x), _mm_add_epi32(sumPixels, _mm_load_si128((__m128i*)(intPrevRow + x)))); } pixel = sourceRow[aSize.width - 1]; int x = (aSize.width + aLeftInflation); if ((aSize.width & 3)) { // Deal with unaligned portion. Get the correct pixel from currentRowSum, // see explanation above. uint32_t intCurrentRowSum = ((uint32_t*)¤tRowSum)[(aSize.width % 4) - 1]; for (; x < integralImageSize.width; x++) { // We could be unaligned here! if (!(x & 3)) { // aligned! currentRowSum = _mm_set1_epi32(intCurrentRowSum); break; } intCurrentRowSum += pixel; intRow[x] = intPrevRow[x] + intCurrentRowSum; } } else { currentRowSum = _mm_shuffle_epi32(currentRowSum, _MM_SHUFFLE(3, 3, 3, 3)); } for (; x < integralImageSize.width; x += 4) { __m128i sumPixels = AccumulatePixelSums(_mm_set1_epi32(pixel)); sumPixels = _mm_add_epi32(sumPixels, currentRowSum); currentRowSum = _mm_shuffle_epi32(sumPixels, _MM_SHUFFLE(3, 3, 3, 3)); _mm_store_si128((__m128i*)(intRow + x), _mm_add_epi32(sumPixels, _mm_load_si128((__m128i*)(intPrevRow + x)))); } } if (aBottomInflation) { // Store the last valid row of our source image in the last row of // our integral image. This will be overwritten with the correct values // in the upcoming loop. LoadIntegralRowFromRow(aIntegralImage + (integralImageSize.height - 1) * stride32bit, aSource + (aSize.height - 1) * aSourceStride, aSize.width, aLeftInflation, aRightInflation); for (int y = aSize.height + aTopInflation; y < integralImageSize.height; y++) { __m128i *intRow = (__m128i*)(aIntegralImage + (y * stride32bit)); __m128i *intPrevRow = (__m128i*)(aIntegralImage + (y - 1) * stride32bit); __m128i *intLastRow = (__m128i*)(aIntegralImage + (integralImageSize.height - 1) * stride32bit); for (int x = 0; x < integralImageSize.width; x += 4) { _mm_store_si128(intRow + (x / 4), _mm_add_epi32(_mm_load_si128(intLastRow + (x / 4)), _mm_load_si128(intPrevRow + (x / 4)))); } } } } /** * Attempt to do an in-place box blur using an integral image. */ void AlphaBoxBlur::BoxBlur_SSE2(uint8_t* aData, int32_t aLeftLobe, int32_t aRightLobe, int32_t aTopLobe, int32_t aBottomLobe, uint32_t *aIntegralImage, size_t aIntegralImageStride) { IntSize size = GetSize(); MOZ_ASSERT(size.height > 0); // Our 'left' or 'top' lobe will include the current pixel. i.e. when // looking at an integral image the value of a pixel at 'x,y' is calculated // using the value of the integral image values above/below that. aLeftLobe++; aTopLobe++; int32_t boxSize = (aLeftLobe + aRightLobe) * (aTopLobe + aBottomLobe); MOZ_ASSERT(boxSize > 0); if (boxSize == 1) { return; } uint32_t reciprocal = uint32_t((uint64_t(1) << 32) / boxSize); uint32_t stride32bit = aIntegralImageStride / 4; int32_t leftInflation = RoundUpToMultipleOf4(aLeftLobe).value(); GenerateIntegralImage_SSE2(leftInflation, aRightLobe, aTopLobe, aBottomLobe, aIntegralImage, aIntegralImageStride, aData, mStride, size); __m128i divisor = _mm_set1_epi32(reciprocal); // This points to the start of the rectangle within the IntegralImage that overlaps // the surface being blurred. uint32_t *innerIntegral = aIntegralImage + (aTopLobe * stride32bit) + leftInflation; IntRect skipRect = mSkipRect; int32_t stride = mStride; uint8_t *data = aData; for (int32_t y = 0; y < size.height; y++) { bool inSkipRectY = y > skipRect.y && y < skipRect.YMost(); uint32_t *topLeftBase = innerIntegral + ((y - aTopLobe) * ptrdiff_t(stride32bit) - aLeftLobe); uint32_t *topRightBase = innerIntegral + ((y - aTopLobe) * ptrdiff_t(stride32bit) + aRightLobe); uint32_t *bottomRightBase = innerIntegral + ((y + aBottomLobe) * ptrdiff_t(stride32bit) + aRightLobe); uint32_t *bottomLeftBase = innerIntegral + ((y + aBottomLobe) * ptrdiff_t(stride32bit) - aLeftLobe); int32_t x = 0; // Process 16 pixels at a time for as long as possible. for (; x <= size.width - 16; x += 16) { if (inSkipRectY && x > skipRect.x && x < skipRect.XMost()) { x = skipRect.XMost() - 16; // Trigger early jump on coming loop iterations, this will be reset // next line anyway. inSkipRectY = false; continue; } __m128i topLeft; __m128i topRight; __m128i bottomRight; __m128i bottomLeft; topLeft = loadUnaligned128((__m128i*)(topLeftBase + x)); topRight = loadUnaligned128((__m128i*)(topRightBase + x)); bottomRight = loadUnaligned128((__m128i*)(bottomRightBase + x)); bottomLeft = loadUnaligned128((__m128i*)(bottomLeftBase + x)); __m128i result1 = BlurFourPixels(topLeft, topRight, bottomRight, bottomLeft, divisor); topLeft = loadUnaligned128((__m128i*)(topLeftBase + x + 4)); topRight = loadUnaligned128((__m128i*)(topRightBase + x + 4)); bottomRight = loadUnaligned128((__m128i*)(bottomRightBase + x + 4)); bottomLeft = loadUnaligned128((__m128i*)(bottomLeftBase + x + 4)); __m128i result2 = BlurFourPixels(topLeft, topRight, bottomRight, bottomLeft, divisor); topLeft = loadUnaligned128((__m128i*)(topLeftBase + x + 8)); topRight = loadUnaligned128((__m128i*)(topRightBase + x + 8)); bottomRight = loadUnaligned128((__m128i*)(bottomRightBase + x + 8)); bottomLeft = loadUnaligned128((__m128i*)(bottomLeftBase + x + 8)); __m128i result3 = BlurFourPixels(topLeft, topRight, bottomRight, bottomLeft, divisor); topLeft = loadUnaligned128((__m128i*)(topLeftBase + x + 12)); topRight = loadUnaligned128((__m128i*)(topRightBase + x + 12)); bottomRight = loadUnaligned128((__m128i*)(bottomRightBase + x + 12)); bottomLeft = loadUnaligned128((__m128i*)(bottomLeftBase + x + 12)); __m128i result4 = BlurFourPixels(topLeft, topRight, bottomRight, bottomLeft, divisor); __m128i final = _mm_packus_epi16(_mm_packs_epi32(result1, result2), _mm_packs_epi32(result3, result4)); _mm_storeu_si128((__m128i*)(data + stride * y + x), final); } // Process the remaining pixels 4 bytes at a time. for (; x < size.width; x += 4) { if (inSkipRectY && x > skipRect.x && x < skipRect.XMost()) { x = skipRect.XMost() - 4; // Trigger early jump on coming loop iterations, this will be reset // next line anyway. inSkipRectY = false; continue; } __m128i topLeft = loadUnaligned128((__m128i*)(topLeftBase + x)); __m128i topRight = loadUnaligned128((__m128i*)(topRightBase + x)); __m128i bottomRight = loadUnaligned128((__m128i*)(bottomRightBase + x)); __m128i bottomLeft = loadUnaligned128((__m128i*)(bottomLeftBase + x)); __m128i result = BlurFourPixels(topLeft, topRight, bottomRight, bottomLeft, divisor); __m128i final = _mm_packus_epi16(_mm_packs_epi32(result, _mm_setzero_si128()), _mm_setzero_si128()); *(uint32_t*)(data + stride * y + x) = _mm_cvtsi128_si32(final); } } } } // namespace gfx } // namespace mozilla