/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*-*/ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this file, * You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "AudioNodeStream.h" #include "MediaStreamGraphImpl.h" #include "MediaStreamListener.h" #include "AudioNodeEngine.h" #include "ThreeDPoint.h" #include "AudioChannelFormat.h" #include "AudioParamTimeline.h" #include "AudioContext.h" #include "nsMathUtils.h" using namespace mozilla::dom; namespace mozilla { /** * An AudioNodeStream produces a single audio track with ID * AUDIO_TRACK. This track has rate AudioContext::sIdealAudioRate * for regular audio contexts, and the rate requested by the web content * for offline audio contexts. * Each chunk in the track is a single block of WEBAUDIO_BLOCK_SIZE samples. * Note: This must be a different value than MEDIA_STREAM_DEST_TRACK_ID */ AudioNodeStream::AudioNodeStream(AudioNodeEngine* aEngine, Flags aFlags, TrackRate aSampleRate) : ProcessedMediaStream(), mEngine(aEngine), mSampleRate(aSampleRate), mFlags(aFlags), mNumberOfInputChannels(2), mIsActive(aEngine->IsActive()), mMarkAsFinishedAfterThisBlock(false), mAudioParamStream(false), mPassThrough(false) { MOZ_ASSERT(NS_IsMainThread()); mSuspendedCount = !(mIsActive || mFlags & EXTERNAL_OUTPUT); mChannelCountMode = ChannelCountMode::Max; mChannelInterpretation = ChannelInterpretation::Speakers; // AudioNodes are always producing data mHasCurrentData = true; mLastChunks.SetLength(std::max(uint16_t(1), mEngine->OutputCount())); MOZ_COUNT_CTOR(AudioNodeStream); } AudioNodeStream::~AudioNodeStream() { MOZ_ASSERT(mActiveInputCount == 0); MOZ_COUNT_DTOR(AudioNodeStream); } void AudioNodeStream::DestroyImpl() { // These are graph thread objects, so clean up on graph thread. mInputChunks.Clear(); mLastChunks.Clear(); ProcessedMediaStream::DestroyImpl(); } /* static */ already_AddRefed AudioNodeStream::Create(AudioContext* aCtx, AudioNodeEngine* aEngine, Flags aFlags, MediaStreamGraph* aGraph) { MOZ_ASSERT(NS_IsMainThread()); MOZ_RELEASE_ASSERT(aGraph); // MediaRecorders use an AudioNodeStream, but no AudioNode AudioNode* node = aEngine->NodeMainThread(); RefPtr stream = new AudioNodeStream(aEngine, aFlags, aGraph->GraphRate()); stream->mSuspendedCount += aCtx->ShouldSuspendNewStream(); if (node) { stream->SetChannelMixingParametersImpl(node->ChannelCount(), node->ChannelCountModeValue(), node->ChannelInterpretationValue()); } aGraph->AddStream(stream); return stream.forget(); } size_t AudioNodeStream::SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const { size_t amount = 0; // Not reported: // - mEngine amount += ProcessedMediaStream::SizeOfExcludingThis(aMallocSizeOf); amount += mLastChunks.ShallowSizeOfExcludingThis(aMallocSizeOf); for (size_t i = 0; i < mLastChunks.Length(); i++) { // NB: This is currently unshared only as there are instances of // double reporting in DMD otherwise. amount += mLastChunks[i].SizeOfExcludingThisIfUnshared(aMallocSizeOf); } return amount; } size_t AudioNodeStream::SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const { return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf); } void AudioNodeStream::SizeOfAudioNodesIncludingThis(MallocSizeOf aMallocSizeOf, AudioNodeSizes& aUsage) const { // Explicitly separate out the stream memory. aUsage.mStream = SizeOfIncludingThis(aMallocSizeOf); if (mEngine) { // This will fill out the rest of |aUsage|. mEngine->SizeOfIncludingThis(aMallocSizeOf, aUsage); } } void AudioNodeStream::SetStreamTimeParameter(uint32_t aIndex, AudioContext* aContext, double aStreamTime) { class Message final : public ControlMessage { public: Message(AudioNodeStream* aStream, uint32_t aIndex, MediaStream* aRelativeToStream, double aStreamTime) : ControlMessage(aStream), mStreamTime(aStreamTime), mRelativeToStream(aRelativeToStream), mIndex(aIndex) {} void Run() override { static_cast(mStream)-> SetStreamTimeParameterImpl(mIndex, mRelativeToStream, mStreamTime); } double mStreamTime; MediaStream* mRelativeToStream; uint32_t mIndex; }; GraphImpl()->AppendMessage(MakeUnique(this, aIndex, aContext->DestinationStream(), aStreamTime)); } void AudioNodeStream::SetStreamTimeParameterImpl(uint32_t aIndex, MediaStream* aRelativeToStream, double aStreamTime) { StreamTime ticks = aRelativeToStream->SecondsToNearestStreamTime(aStreamTime); mEngine->SetStreamTimeParameter(aIndex, ticks); } void AudioNodeStream::SetDoubleParameter(uint32_t aIndex, double aValue) { class Message final : public ControlMessage { public: Message(AudioNodeStream* aStream, uint32_t aIndex, double aValue) : ControlMessage(aStream), mValue(aValue), mIndex(aIndex) {} void Run() override { static_cast(mStream)->Engine()-> SetDoubleParameter(mIndex, mValue); } double mValue; uint32_t mIndex; }; GraphImpl()->AppendMessage(MakeUnique(this, aIndex, aValue)); } void AudioNodeStream::SetInt32Parameter(uint32_t aIndex, int32_t aValue) { class Message final : public ControlMessage { public: Message(AudioNodeStream* aStream, uint32_t aIndex, int32_t aValue) : ControlMessage(aStream), mValue(aValue), mIndex(aIndex) {} void Run() override { static_cast(mStream)->Engine()-> SetInt32Parameter(mIndex, mValue); } int32_t mValue; uint32_t mIndex; }; GraphImpl()->AppendMessage(MakeUnique(this, aIndex, aValue)); } void AudioNodeStream::SendTimelineEvent(uint32_t aIndex, const AudioTimelineEvent& aEvent) { class Message final : public ControlMessage { public: Message(AudioNodeStream* aStream, uint32_t aIndex, const AudioTimelineEvent& aEvent) : ControlMessage(aStream), mEvent(aEvent), mSampleRate(aStream->SampleRate()), mIndex(aIndex) {} void Run() override { static_cast(mStream)->Engine()-> RecvTimelineEvent(mIndex, mEvent); } AudioTimelineEvent mEvent; TrackRate mSampleRate; uint32_t mIndex; }; GraphImpl()->AppendMessage(MakeUnique(this, aIndex, aEvent)); } void AudioNodeStream::SetThreeDPointParameter(uint32_t aIndex, const ThreeDPoint& aValue) { class Message final : public ControlMessage { public: Message(AudioNodeStream* aStream, uint32_t aIndex, const ThreeDPoint& aValue) : ControlMessage(aStream), mValue(aValue), mIndex(aIndex) {} void Run() override { static_cast(mStream)->Engine()-> SetThreeDPointParameter(mIndex, mValue); } ThreeDPoint mValue; uint32_t mIndex; }; GraphImpl()->AppendMessage(MakeUnique(this, aIndex, aValue)); } void AudioNodeStream::SetBuffer(already_AddRefed&& aBuffer) { class Message final : public ControlMessage { public: Message(AudioNodeStream* aStream, already_AddRefed& aBuffer) : ControlMessage(aStream), mBuffer(aBuffer) {} void Run() override { static_cast(mStream)->Engine()-> SetBuffer(mBuffer.forget()); } RefPtr mBuffer; }; GraphImpl()->AppendMessage(MakeUnique(this, aBuffer)); } void AudioNodeStream::SetRawArrayData(nsTArray& aData) { class Message final : public ControlMessage { public: Message(AudioNodeStream* aStream, nsTArray& aData) : ControlMessage(aStream) { mData.SwapElements(aData); } void Run() override { static_cast(mStream)->Engine()->SetRawArrayData(mData); } nsTArray mData; }; GraphImpl()->AppendMessage(MakeUnique(this, aData)); } void AudioNodeStream::SetChannelMixingParameters(uint32_t aNumberOfChannels, ChannelCountMode aChannelCountMode, ChannelInterpretation aChannelInterpretation) { class Message final : public ControlMessage { public: Message(AudioNodeStream* aStream, uint32_t aNumberOfChannels, ChannelCountMode aChannelCountMode, ChannelInterpretation aChannelInterpretation) : ControlMessage(aStream), mNumberOfChannels(aNumberOfChannels), mChannelCountMode(aChannelCountMode), mChannelInterpretation(aChannelInterpretation) {} void Run() override { static_cast(mStream)-> SetChannelMixingParametersImpl(mNumberOfChannels, mChannelCountMode, mChannelInterpretation); } uint32_t mNumberOfChannels; ChannelCountMode mChannelCountMode; ChannelInterpretation mChannelInterpretation; }; GraphImpl()->AppendMessage(MakeUnique(this, aNumberOfChannels, aChannelCountMode, aChannelInterpretation)); } void AudioNodeStream::SetPassThrough(bool aPassThrough) { class Message final : public ControlMessage { public: Message(AudioNodeStream* aStream, bool aPassThrough) : ControlMessage(aStream), mPassThrough(aPassThrough) {} void Run() override { static_cast(mStream)->mPassThrough = mPassThrough; } bool mPassThrough; }; GraphImpl()->AppendMessage(MakeUnique(this, aPassThrough)); } void AudioNodeStream::SetChannelMixingParametersImpl(uint32_t aNumberOfChannels, ChannelCountMode aChannelCountMode, ChannelInterpretation aChannelInterpretation) { // Make sure that we're not clobbering any significant bits by fitting these // values in 16 bits. MOZ_ASSERT(int(aChannelCountMode) < INT16_MAX); MOZ_ASSERT(int(aChannelInterpretation) < INT16_MAX); mNumberOfInputChannels = aNumberOfChannels; mChannelCountMode = aChannelCountMode; mChannelInterpretation = aChannelInterpretation; } uint32_t AudioNodeStream::ComputedNumberOfChannels(uint32_t aInputChannelCount) { switch (mChannelCountMode) { case ChannelCountMode::Explicit: // Disregard the channel count we've calculated from inputs, and just use // mNumberOfInputChannels. return mNumberOfInputChannels; case ChannelCountMode::Clamped_max: // Clamp the computed output channel count to mNumberOfInputChannels. return std::min(aInputChannelCount, mNumberOfInputChannels); default: case ChannelCountMode::Max: // Nothing to do here, just shut up the compiler warning. return aInputChannelCount; } } class AudioNodeStream::AdvanceAndResumeMessage final : public ControlMessage { public: AdvanceAndResumeMessage(AudioNodeStream* aStream, StreamTime aAdvance) : ControlMessage(aStream), mAdvance(aAdvance) {} void Run() override { auto ns = static_cast(mStream); ns->mTracksStartTime -= mAdvance; StreamTracks::Track* track = ns->EnsureTrack(AUDIO_TRACK); track->Get()->AppendNullData(mAdvance); ns->GraphImpl()->DecrementSuspendCount(mStream); } private: StreamTime mAdvance; }; void AudioNodeStream::AdvanceAndResume(StreamTime aAdvance) { mMainThreadCurrentTime += aAdvance; GraphImpl()->AppendMessage(MakeUnique(this, aAdvance)); } void AudioNodeStream::ObtainInputBlock(AudioBlock& aTmpChunk, uint32_t aPortIndex) { uint32_t inputCount = mInputs.Length(); uint32_t outputChannelCount = 1; AutoTArray inputChunks; for (uint32_t i = 0; i < inputCount; ++i) { if (aPortIndex != mInputs[i]->InputNumber()) { // This input is connected to a different port continue; } MediaStream* s = mInputs[i]->GetSource(); AudioNodeStream* a = static_cast(s); MOZ_ASSERT(a == s->AsAudioNodeStream()); if (a->IsAudioParamStream()) { continue; } const AudioBlock* chunk = &a->mLastChunks[mInputs[i]->OutputNumber()]; MOZ_ASSERT(chunk); if (chunk->IsNull() || chunk->mChannelData.IsEmpty()) { continue; } inputChunks.AppendElement(chunk); outputChannelCount = GetAudioChannelsSuperset(outputChannelCount, chunk->ChannelCount()); } outputChannelCount = ComputedNumberOfChannels(outputChannelCount); uint32_t inputChunkCount = inputChunks.Length(); if (inputChunkCount == 0 || (inputChunkCount == 1 && inputChunks[0]->ChannelCount() == 0)) { aTmpChunk.SetNull(WEBAUDIO_BLOCK_SIZE); return; } if (inputChunkCount == 1 && inputChunks[0]->ChannelCount() == outputChannelCount) { aTmpChunk = *inputChunks[0]; return; } if (outputChannelCount == 0) { aTmpChunk.SetNull(WEBAUDIO_BLOCK_SIZE); return; } aTmpChunk.AllocateChannels(outputChannelCount); DownmixBufferType downmixBuffer; ASSERT_ALIGNED16(downmixBuffer.Elements()); for (uint32_t i = 0; i < inputChunkCount; ++i) { AccumulateInputChunk(i, *inputChunks[i], &aTmpChunk, &downmixBuffer); } } void AudioNodeStream::AccumulateInputChunk(uint32_t aInputIndex, const AudioBlock& aChunk, AudioBlock* aBlock, DownmixBufferType* aDownmixBuffer) { AutoTArray channels; UpMixDownMixChunk(&aChunk, aBlock->ChannelCount(), channels, *aDownmixBuffer); for (uint32_t c = 0; c < channels.Length(); ++c) { const float* inputData = static_cast(channels[c]); float* outputData = aBlock->ChannelFloatsForWrite(c); if (inputData) { if (aInputIndex == 0) { AudioBlockCopyChannelWithScale(inputData, aChunk.mVolume, outputData); } else { AudioBlockAddChannelWithScale(inputData, aChunk.mVolume, outputData); } } else { if (aInputIndex == 0) { PodZero(outputData, WEBAUDIO_BLOCK_SIZE); } } } } void AudioNodeStream::UpMixDownMixChunk(const AudioBlock* aChunk, uint32_t aOutputChannelCount, nsTArray& aOutputChannels, DownmixBufferType& aDownmixBuffer) { for (uint32_t i = 0; i < aChunk->ChannelCount(); i++) { aOutputChannels.AppendElement(static_cast(aChunk->mChannelData[i])); } if (aOutputChannels.Length() < aOutputChannelCount) { if (mChannelInterpretation == ChannelInterpretation::Speakers) { AudioChannelsUpMix(&aOutputChannels, aOutputChannelCount, nullptr); NS_ASSERTION(aOutputChannelCount == aOutputChannels.Length(), "We called GetAudioChannelsSuperset to avoid this"); } else { // Fill up the remaining aOutputChannels by zeros for (uint32_t j = aOutputChannels.Length(); j < aOutputChannelCount; ++j) { aOutputChannels.AppendElement(nullptr); } } } else if (aOutputChannels.Length() > aOutputChannelCount) { if (mChannelInterpretation == ChannelInterpretation::Speakers) { AutoTArray outputChannels; outputChannels.SetLength(aOutputChannelCount); aDownmixBuffer.SetLength(aOutputChannelCount * WEBAUDIO_BLOCK_SIZE); for (uint32_t j = 0; j < aOutputChannelCount; ++j) { outputChannels[j] = &aDownmixBuffer[j * WEBAUDIO_BLOCK_SIZE]; } AudioChannelsDownMix(aOutputChannels, outputChannels.Elements(), aOutputChannelCount, WEBAUDIO_BLOCK_SIZE); aOutputChannels.SetLength(aOutputChannelCount); for (uint32_t j = 0; j < aOutputChannels.Length(); ++j) { aOutputChannels[j] = outputChannels[j]; } } else { // Drop the remaining aOutputChannels aOutputChannels.RemoveElementsAt(aOutputChannelCount, aOutputChannels.Length() - aOutputChannelCount); } } } // The MediaStreamGraph guarantees that this is actually one block, for // AudioNodeStreams. void AudioNodeStream::ProcessInput(GraphTime aFrom, GraphTime aTo, uint32_t aFlags) { uint16_t outputCount = mLastChunks.Length(); MOZ_ASSERT(outputCount == std::max(uint16_t(1), mEngine->OutputCount())); if (!mIsActive) { // mLastChunks are already null. #ifdef DEBUG for (const auto& chunk : mLastChunks) { MOZ_ASSERT(chunk.IsNull()); } #endif } else if (InMutedCycle()) { mInputChunks.Clear(); for (uint16_t i = 0; i < outputCount; ++i) { mLastChunks[i].SetNull(WEBAUDIO_BLOCK_SIZE); } } else { // We need to generate at least one input uint16_t maxInputs = std::max(uint16_t(1), mEngine->InputCount()); mInputChunks.SetLength(maxInputs); for (uint16_t i = 0; i < maxInputs; ++i) { ObtainInputBlock(mInputChunks[i], i); } bool finished = false; if (mPassThrough) { MOZ_ASSERT(outputCount == 1, "For now, we only support nodes that have one output port"); mLastChunks[0] = mInputChunks[0]; } else { if (maxInputs <= 1 && outputCount <= 1) { mEngine->ProcessBlock(this, aFrom, mInputChunks[0], &mLastChunks[0], &finished); } else { mEngine->ProcessBlocksOnPorts(this, mInputChunks, mLastChunks, &finished); } } for (uint16_t i = 0; i < outputCount; ++i) { NS_ASSERTION(mLastChunks[i].GetDuration() == WEBAUDIO_BLOCK_SIZE, "Invalid WebAudio chunk size"); } if (finished) { mMarkAsFinishedAfterThisBlock = true; if (mIsActive) { ScheduleCheckForInactive(); } } if (GetDisabledTrackMode(static_cast(AUDIO_TRACK)) != DisabledTrackMode::ENABLED) { for (uint32_t i = 0; i < outputCount; ++i) { mLastChunks[i].SetNull(WEBAUDIO_BLOCK_SIZE); } } } if (!mFinished) { // Don't output anything while finished if (mFlags & EXTERNAL_OUTPUT) { AdvanceOutputSegment(); } if (mMarkAsFinishedAfterThisBlock && (aFlags & ALLOW_FINISH)) { // This stream was finished the last time that we looked at it, and all // of the depending streams have finished their output as well, so now // it's time to mark this stream as finished. if (mFlags & EXTERNAL_OUTPUT) { FinishOutput(); } FinishOnGraphThread(); } } } void AudioNodeStream::ProduceOutputBeforeInput(GraphTime aFrom) { MOZ_ASSERT(mEngine->AsDelayNodeEngine()); MOZ_ASSERT(mEngine->OutputCount() == 1, "DelayNodeEngine output count should be 1"); MOZ_ASSERT(!InMutedCycle(), "DelayNodes should break cycles"); MOZ_ASSERT(mLastChunks.Length() == 1); if (!mIsActive) { mLastChunks[0].SetNull(WEBAUDIO_BLOCK_SIZE); } else { mEngine->ProduceBlockBeforeInput(this, aFrom, &mLastChunks[0]); NS_ASSERTION(mLastChunks[0].GetDuration() == WEBAUDIO_BLOCK_SIZE, "Invalid WebAudio chunk size"); if (GetDisabledTrackMode(static_cast(AUDIO_TRACK)) != DisabledTrackMode::ENABLED) { mLastChunks[0].SetNull(WEBAUDIO_BLOCK_SIZE); } } } void AudioNodeStream::AdvanceOutputSegment() { StreamTracks::Track* track = EnsureTrack(AUDIO_TRACK); // No more tracks will be coming mTracks.AdvanceKnownTracksTime(STREAM_TIME_MAX); AudioSegment* segment = track->Get(); if (!mLastChunks[0].IsNull()) { segment->AppendAndConsumeChunk(mLastChunks[0].AsMutableChunk()); } else { segment->AppendNullData(mLastChunks[0].GetDuration()); } for (uint32_t j = 0; j < mListeners.Length(); ++j) { MediaStreamListener* l = mListeners[j]; AudioChunk copyChunk = mLastChunks[0].AsAudioChunk(); AudioSegment tmpSegment; tmpSegment.AppendAndConsumeChunk(©Chunk); l->NotifyQueuedTrackChanges(Graph(), AUDIO_TRACK, segment->GetDuration(), TrackEventCommand::TRACK_EVENT_NONE, tmpSegment); } } void AudioNodeStream::FinishOutput() { StreamTracks::Track* track = EnsureTrack(AUDIO_TRACK); track->SetEnded(); for (uint32_t j = 0; j < mListeners.Length(); ++j) { MediaStreamListener* l = mListeners[j]; AudioSegment emptySegment; l->NotifyQueuedTrackChanges(Graph(), AUDIO_TRACK, track->GetSegment()->GetDuration(), TrackEventCommand::TRACK_EVENT_ENDED, emptySegment); } } void AudioNodeStream::AddInput(MediaInputPort* aPort) { ProcessedMediaStream::AddInput(aPort); AudioNodeStream* ns = aPort->GetSource()->AsAudioNodeStream(); // Streams that are not AudioNodeStreams are considered active. if (!ns || (ns->mIsActive && !ns->IsAudioParamStream())) { IncrementActiveInputCount(); } } void AudioNodeStream::RemoveInput(MediaInputPort* aPort) { ProcessedMediaStream::RemoveInput(aPort); AudioNodeStream* ns = aPort->GetSource()->AsAudioNodeStream(); // Streams that are not AudioNodeStreams are considered active. if (!ns || (ns->mIsActive && !ns->IsAudioParamStream())) { DecrementActiveInputCount(); } } void AudioNodeStream::SetActive() { if (mIsActive || mMarkAsFinishedAfterThisBlock) { return; } mIsActive = true; if (!(mFlags & EXTERNAL_OUTPUT)) { GraphImpl()->DecrementSuspendCount(this); } if (IsAudioParamStream()) { // Consumers merely influence stream order. // They do not read from the stream. return; } for (const auto& consumer : mConsumers) { AudioNodeStream* ns = consumer->GetDestination()->AsAudioNodeStream(); if (ns) { ns->IncrementActiveInputCount(); } } } class AudioNodeStream::CheckForInactiveMessage final : public ControlMessage { public: explicit CheckForInactiveMessage(AudioNodeStream* aStream) : ControlMessage(aStream) {} void Run() override { auto ns = static_cast(mStream); ns->CheckForInactive(); } }; void AudioNodeStream::ScheduleCheckForInactive() { if (mActiveInputCount > 0 && !mMarkAsFinishedAfterThisBlock) { return; } auto message = MakeUnique(this); GraphImpl()->RunMessageAfterProcessing(Move(message)); } void AudioNodeStream::CheckForInactive() { if (((mActiveInputCount > 0 || mEngine->IsActive()) && !mMarkAsFinishedAfterThisBlock) || !mIsActive) { return; } mIsActive = false; mInputChunks.Clear(); // not required for foreseeable future for (auto& chunk : mLastChunks) { chunk.SetNull(WEBAUDIO_BLOCK_SIZE); } if (!(mFlags & EXTERNAL_OUTPUT)) { GraphImpl()->IncrementSuspendCount(this); } if (IsAudioParamStream()) { return; } for (const auto& consumer : mConsumers) { AudioNodeStream* ns = consumer->GetDestination()->AsAudioNodeStream(); if (ns) { ns->DecrementActiveInputCount(); } } } void AudioNodeStream::IncrementActiveInputCount() { ++mActiveInputCount; SetActive(); } void AudioNodeStream::DecrementActiveInputCount() { MOZ_ASSERT(mActiveInputCount > 0); --mActiveInputCount; CheckForInactive(); } } // namespace mozilla