/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim:set ts=2 sw=2 sts=2 et cindent: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef VideoUtils_h #define VideoUtils_h #include "MediaInfo.h" #include "mozilla/Attributes.h" #include "mozilla/CheckedInt.h" #include "mozilla/MozPromise.h" #include "mozilla/ReentrantMonitor.h" #include "mozilla/RefPtr.h" #include "mozilla/UniquePtr.h" #include "nsAutoPtr.h" #include "nsIThread.h" #include "nsSize.h" #include "nsRect.h" #include "nsThreadUtils.h" #include "prtime.h" #include "AudioSampleFormat.h" #include "TimeUnits.h" #include "nsITimer.h" #include "nsCOMPtr.h" #include "VideoLimits.h" using mozilla::CheckedInt64; using mozilla::CheckedUint64; using mozilla::CheckedInt32; using mozilla::CheckedUint32; // This file contains stuff we'd rather put elsewhere, but which is // dependent on other changes which we don't want to wait for. We plan to // remove this file in the near future. // This belongs in xpcom/monitor/Monitor.h, once we've made // mozilla::Monitor non-reentrant. namespace mozilla { class MediaContentType; // EME Key System String. extern const nsLiteralCString kEMEKeySystemClearkey; extern const nsLiteralCString kEMEKeySystemWidevine; extern const nsLiteralCString kEMEKeySystemPrimetime; /** * ReentrantMonitorConditionallyEnter * * Enters the supplied monitor only if the conditional value |aEnter| is true. * E.g. Used to allow unmonitored read access on the decode thread, * and monitored access on all other threads. */ class MOZ_STACK_CLASS ReentrantMonitorConditionallyEnter { public: ReentrantMonitorConditionallyEnter(bool aEnter, ReentrantMonitor &aReentrantMonitor) : mReentrantMonitor(nullptr) { MOZ_COUNT_CTOR(ReentrantMonitorConditionallyEnter); if (aEnter) { mReentrantMonitor = &aReentrantMonitor; NS_ASSERTION(mReentrantMonitor, "null monitor"); mReentrantMonitor->Enter(); } } ~ReentrantMonitorConditionallyEnter(void) { if (mReentrantMonitor) { mReentrantMonitor->Exit(); } MOZ_COUNT_DTOR(ReentrantMonitorConditionallyEnter); } private: // Restrict to constructor and destructor defined above. ReentrantMonitorConditionallyEnter(); ReentrantMonitorConditionallyEnter(const ReentrantMonitorConditionallyEnter&); ReentrantMonitorConditionallyEnter& operator =(const ReentrantMonitorConditionallyEnter&); static void* operator new(size_t) CPP_THROW_NEW; static void operator delete(void*); ReentrantMonitor* mReentrantMonitor; }; // Shuts down a thread asynchronously. class ShutdownThreadEvent : public Runnable { public: explicit ShutdownThreadEvent(nsIThread* aThread) : mThread(aThread) {} ~ShutdownThreadEvent() {} NS_IMETHOD Run() override { mThread->Shutdown(); mThread = nullptr; return NS_OK; } private: nsCOMPtr<nsIThread> mThread; }; template<class T> class DeleteObjectTask: public Runnable { public: explicit DeleteObjectTask(nsAutoPtr<T>& aObject) : mObject(aObject) { } NS_IMETHOD Run() override { NS_ASSERTION(NS_IsMainThread(), "Must be on main thread."); mObject = nullptr; return NS_OK; } private: nsAutoPtr<T> mObject; }; template<class T> void DeleteOnMainThread(nsAutoPtr<T>& aObject) { NS_DispatchToMainThread(new DeleteObjectTask<T>(aObject)); } class MediaResource; // Estimates the buffered ranges of a MediaResource using a simple // (byteOffset/length)*duration method. Probably inaccurate, but won't // do file I/O, and can be used when we don't have detailed knowledge // of the byte->time mapping of a resource. aDurationUsecs is the duration // of the media in microseconds. Estimated buffered ranges are stored in // aOutBuffered. Ranges are 0-normalized, i.e. in the range of (0,duration]. media::TimeIntervals GetEstimatedBufferedTimeRanges(mozilla::MediaResource* aStream, int64_t aDurationUsecs); // Converts from number of audio frames (aFrames) to microseconds, given // the specified audio rate (aRate). CheckedInt64 FramesToUsecs(int64_t aFrames, uint32_t aRate); // Converts from number of audio frames (aFrames) TimeUnit, given // the specified audio rate (aRate). media::TimeUnit FramesToTimeUnit(int64_t aFrames, uint32_t aRate); // Perform aValue * aMul / aDiv, reducing the possibility of overflow due to // aValue * aMul overflowing. CheckedInt64 SaferMultDiv(int64_t aValue, uint32_t aMul, uint32_t aDiv); // Converts from microseconds (aUsecs) to number of audio frames, given the // specified audio rate (aRate). Stores the result in aOutFrames. Returns // true if the operation succeeded, or false if there was an integer // overflow while calulating the conversion. CheckedInt64 UsecsToFrames(int64_t aUsecs, uint32_t aRate); // Format TimeUnit as number of frames at given rate. CheckedInt64 TimeUnitToFrames(const media::TimeUnit& aTime, uint32_t aRate); // Converts milliseconds to seconds. #define MS_TO_SECONDS(ms) ((double)(ms) / (PR_MSEC_PER_SEC)) // Converts seconds to milliseconds. #define SECONDS_TO_MS(s) ((int)((s) * (PR_MSEC_PER_SEC))) // Converts from seconds to microseconds. Returns failure if the resulting // integer is too big to fit in an int64_t. nsresult SecondsToUsecs(double aSeconds, int64_t& aOutUsecs); // Scales the display rect aDisplay by aspect ratio aAspectRatio. // Note that aDisplay must be validated by IsValidVideoRegion() // before being used! void ScaleDisplayByAspectRatio(nsIntSize& aDisplay, float aAspectRatio); // Downmix Stereo audio samples to Mono. // Input are the buffer contains stereo data and the number of frames. void DownmixStereoToMono(mozilla::AudioDataValue* aBuffer, uint32_t aFrames); bool IsVideoContentType(const nsCString& aContentType); // Returns true if it's safe to use aPicture as the picture to be // extracted inside a frame of size aFrame, and scaled up to and displayed // at a size of aDisplay. You should validate the frame, picture, and // display regions before using them to display video frames. bool IsValidVideoRegion(const nsIntSize& aFrame, const nsIntRect& aPicture, const nsIntSize& aDisplay); // Template to automatically set a variable to a value on scope exit. // Useful for unsetting flags, etc. template<typename T> class AutoSetOnScopeExit { public: AutoSetOnScopeExit(T& aVar, T aValue) : mVar(aVar) , mValue(aValue) {} ~AutoSetOnScopeExit() { mVar = mValue; } private: T& mVar; const T mValue; }; class SharedThreadPool; // The MediaDataDecoder API blocks, with implementations waiting on platform // decoder tasks. These platform decoder tasks are queued on a separate // thread pool to ensure they can run when the MediaDataDecoder clients' // thread pool is blocked. Tasks on the PLATFORM_DECODER thread pool must not // wait on tasks in the PLAYBACK thread pool. // // No new dependencies on this mechanism should be added, as methods are being // made async supported by MozPromise, making this unnecessary and // permitting unifying the pool. enum class MediaThreadType { PLAYBACK, // MediaDecoderStateMachine and MediaDecoderReader PLATFORM_DECODER }; // Returns the thread pool that is shared amongst all decoder state machines // for decoding streams. already_AddRefed<SharedThreadPool> GetMediaThreadPool(MediaThreadType aType); enum H264_PROFILE { H264_PROFILE_UNKNOWN = 0, H264_PROFILE_BASE = 0x42, H264_PROFILE_MAIN = 0x4D, H264_PROFILE_EXTENDED = 0x58, H264_PROFILE_HIGH = 0x64, }; enum H264_LEVEL { H264_LEVEL_1 = 10, H264_LEVEL_1_b = 11, H264_LEVEL_1_1 = 11, H264_LEVEL_1_2 = 12, H264_LEVEL_1_3 = 13, H264_LEVEL_2 = 20, H264_LEVEL_2_1 = 21, H264_LEVEL_2_2 = 22, H264_LEVEL_3 = 30, H264_LEVEL_3_1 = 31, H264_LEVEL_3_2 = 32, H264_LEVEL_4 = 40, H264_LEVEL_4_1 = 41, H264_LEVEL_4_2 = 42, H264_LEVEL_5 = 50, H264_LEVEL_5_1 = 51, H264_LEVEL_5_2 = 52 }; // Extracts the H.264/AVC profile and level from an H.264 codecs string. // H.264 codecs parameters have a type defined as avc1.PPCCLL, where // PP = profile_idc, CC = constraint_set flags, LL = level_idc. // See http://blog.pearce.org.nz/2013/11/what-does-h264avc1-codecs-parameters.html // for more details. // Returns false on failure. bool ExtractH264CodecDetails(const nsAString& aCodecs, int16_t& aProfile, int16_t& aLevel); // Use a cryptographic quality PRNG to generate raw random bytes // and convert that to a base64 string. nsresult GenerateRandomName(nsCString& aOutSalt, uint32_t aLength); // This version returns a string suitable for use as a file or URL // path. This is based on code from nsExternalAppHandler::SetUpTempFile. nsresult GenerateRandomPathName(nsCString& aOutSalt, uint32_t aLength); already_AddRefed<TaskQueue> CreateMediaDecodeTaskQueue(); // Iteratively invokes aWork until aCondition returns true, or aWork returns false. // Use this rather than a while loop to avoid bogarting the task queue. template<class Work, class Condition> RefPtr<GenericPromise> InvokeUntil(Work aWork, Condition aCondition) { RefPtr<GenericPromise::Private> p = new GenericPromise::Private(__func__); if (aCondition()) { p->Resolve(true, __func__); } struct Helper { static void Iteration(RefPtr<GenericPromise::Private> aPromise, Work aLocalWork, Condition aLocalCondition) { if (!aLocalWork()) { aPromise->Reject(NS_ERROR_FAILURE, __func__); } else if (aLocalCondition()) { aPromise->Resolve(true, __func__); } else { nsCOMPtr<nsIRunnable> r = NS_NewRunnableFunction([aPromise, aLocalWork, aLocalCondition] () { Iteration(aPromise, aLocalWork, aLocalCondition); }); AbstractThread::GetCurrent()->Dispatch(r.forget()); } } }; Helper::Iteration(p, aWork, aCondition); return p.forget(); } // Simple timer to run a runnable after a timeout. class SimpleTimer : public nsITimerCallback { public: NS_DECL_ISUPPORTS // Create a new timer to run aTask after aTimeoutMs milliseconds // on thread aTarget. If aTarget is null, task is run on the main thread. static already_AddRefed<SimpleTimer> Create(nsIRunnable* aTask, uint32_t aTimeoutMs, nsIThread* aTarget = nullptr); void Cancel(); NS_IMETHOD Notify(nsITimer *timer) override; private: virtual ~SimpleTimer() {} nsresult Init(nsIRunnable* aTask, uint32_t aTimeoutMs, nsIThread* aTarget); RefPtr<nsIRunnable> mTask; nsCOMPtr<nsITimer> mTimer; }; void LogToBrowserConsole(const nsAString& aMsg); bool ParseMIMETypeString(const nsAString& aMIMEType, nsString& aOutContainerType, nsTArray<nsString>& aOutCodecs); bool ParseCodecsString(const nsAString& aCodecs, nsTArray<nsString>& aOutCodecs); bool IsH264CodecString(const nsAString& aCodec); bool IsAACCodecString(const nsAString& aCodec); bool IsVP8CodecString(const nsAString& aCodec); bool IsVP9CodecString(const nsAString& aCodec); #ifdef MOZ_AV1 bool IsAV1CodecString(const nsAString& aCodec); #endif // Try and create a TrackInfo with a given codec MIME type. UniquePtr<TrackInfo> CreateTrackInfoWithMIMEType(const nsACString& aCodecMIMEType); // Try and create a TrackInfo with a given codec MIME type, and optional extra // parameters from a content type (its MIME type and codecs are ignored). UniquePtr<TrackInfo> CreateTrackInfoWithMIMETypeAndContentTypeExtraParameters( const nsACString& aCodecMIMEType, const MediaContentType& aContentType); template <typename String> class StringListRange { typedef typename String::char_type CharType; typedef const CharType* Pointer; public: // Iterator into range, trims items and skips empty items. class Iterator { public: bool operator!=(const Iterator& a) const { return mStart != a.mStart || mEnd != a.mEnd; } Iterator& operator++() { SearchItemAt(mComma + 1); return *this; } typedef decltype(Substring(Pointer(), Pointer())) DereferencedType; DereferencedType operator*() { return Substring(mStart, mEnd); } private: friend class StringListRange; Iterator(const CharType* aRangeStart, uint32_t aLength) : mRangeEnd(aRangeStart + aLength) { SearchItemAt(aRangeStart); } void SearchItemAt(Pointer start) { // First, skip leading whitespace. for (Pointer p = start; ; ++p) { if (p >= mRangeEnd) { mStart = mEnd = mComma = mRangeEnd; return; } auto c = *p; if (c == CharType(',')) { // Comma -> Empty item -> Skip. } else if (c != CharType(' ')) { mStart = p; break; } } // Find comma, recording start of trailing space. Pointer trailingWhitespace = nullptr; for (Pointer p = mStart + 1; ; ++p) { if (p >= mRangeEnd) { mEnd = trailingWhitespace ? trailingWhitespace : p; mComma = p; return; } auto c = *p; if (c == CharType(',')) { mEnd = trailingWhitespace ? trailingWhitespace : p; mComma = p; return; } if (c == CharType(' ')) { // Found a whitespace -> Record as trailing if not first one. if (!trailingWhitespace) { trailingWhitespace = p; } } else { // Found a non-whitespace -> Reset trailing whitespace if needed. if (trailingWhitespace) { trailingWhitespace = nullptr; } } } } const Pointer mRangeEnd; Pointer mStart; Pointer mEnd; Pointer mComma; }; explicit StringListRange(const String& aList) : mList(aList) {} Iterator begin() { return Iterator(mList.Data(), mList.Length()); } Iterator end() { return Iterator(mList.Data() + mList.Length(), 0); } private: const String& mList; }; template <typename String> StringListRange<String> MakeStringListRange(const String& aList) { return StringListRange<String>(aList); } template <typename ListString, typename ItemString> static bool StringListContains(const ListString& aList, const ItemString& aItem) { for (const auto& listItem : MakeStringListRange(aList)) { if (listItem.Equals(aItem)) { return true; } } return false; } } // end namespace mozilla #endif