/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef MOZILLA_AUDIOCHANNELFORMAT_H_
#define MOZILLA_AUDIOCHANNELFORMAT_H_

#include <stdint.h>

#include "nsTArrayForwardDeclare.h"
#include "AudioSampleFormat.h"
#include "nsTArray.h"

namespace mozilla {

/*
 * This file provides utilities for upmixing and downmixing channels.
 *
 * The channel layouts, upmixing and downmixing are consistent with the
 * Web Audio spec.
 *
 * Channel layouts for up to 6 channels:
 *   mono   { M }
 *   stereo { L, R }
 *          { L, R, C }
 *   quad   { L, R, SL, SR }
 *          { L, R, C, SL, SR }
 *   5.1    { L, R, C, LFE, SL, SR }
 *
 * Only 1, 2, 4 and 6 are currently defined in Web Audio.
 */

enum {
  SURROUND_L,
  SURROUND_R,
  SURROUND_C,
  SURROUND_LFE,
  SURROUND_SL,
  SURROUND_SR
};

const uint32_t CUSTOM_CHANNEL_LAYOUTS = 6;

// This is defined by some Windows SDK header.
#undef IGNORE

const int IGNORE = CUSTOM_CHANNEL_LAYOUTS;
const float IGNORE_F = 0.0f;

const int gMixingMatrixIndexByChannels[CUSTOM_CHANNEL_LAYOUTS - 1] =
  { 0, 5, 9, 12, 14 };

/**
 * Return a channel count whose channel layout includes all the channels from
 * aChannels1 and aChannels2.
 */
uint32_t
GetAudioChannelsSuperset(uint32_t aChannels1, uint32_t aChannels2);

/**
 * DownMixMatrix represents a conversion matrix efficiently by exploiting the
 * fact that each input channel contributes to at most one output channel,
 * except possibly for the C input channel in layouts that have one. Also,
 * every input channel is multiplied by the same coefficient for every output
 * channel it contributes to.
 */
const float SQRT_ONE_HALF = 0.7071067811865476f;

struct DownMixMatrix {
  // Every input channel c is copied to output channel mInputDestination[c]
  // after multiplying by mInputCoefficient[c].
  uint8_t mInputDestination[CUSTOM_CHANNEL_LAYOUTS];
  // If not IGNORE, then the C channel is copied to this output channel after
  // multiplying by its coefficient.
  uint8_t mCExtraDestination;
  float mInputCoefficient[CUSTOM_CHANNEL_LAYOUTS];
};

static const DownMixMatrix
gDownMixMatrices[CUSTOM_CHANNEL_LAYOUTS*(CUSTOM_CHANNEL_LAYOUTS - 1)/2] =
{
  // Downmixes to mono
  { { 0, 0 }, IGNORE, { 0.5f, 0.5f } },
  { { 0, IGNORE, IGNORE }, IGNORE, { 1.0f, IGNORE_F, IGNORE_F } },
  { { 0, 0, 0, 0 }, IGNORE, { 0.25f, 0.25f, 0.25f, 0.25f } },
  { { 0, IGNORE, IGNORE, IGNORE, IGNORE }, IGNORE, { 1.0f, IGNORE_F, IGNORE_F, IGNORE_F, IGNORE_F } },
  { { 0, 0, 0, IGNORE, 0, 0 }, IGNORE, { SQRT_ONE_HALF, SQRT_ONE_HALF, 1.0f, IGNORE_F, 0.5f, 0.5f } },
  // Downmixes to stereo
  { { 0, 1, IGNORE }, IGNORE, { 1.0f, 1.0f, IGNORE_F } },
  { { 0, 1, 0, 1 }, IGNORE, { 0.5f, 0.5f, 0.5f, 0.5f } },
  { { 0, 1, IGNORE, IGNORE, IGNORE }, IGNORE, { 1.0f, 1.0f, IGNORE_F, IGNORE_F, IGNORE_F } },
  { { 0, 1, 0, IGNORE, 0, 1 }, 1, { 1.0f, 1.0f, SQRT_ONE_HALF, IGNORE_F, SQRT_ONE_HALF, SQRT_ONE_HALF } },
  // Downmixes to 3-channel
  { { 0, 1, 2, IGNORE }, IGNORE, { 1.0f, 1.0f, 1.0f, IGNORE_F } },
  { { 0, 1, 2, IGNORE, IGNORE }, IGNORE, { 1.0f, 1.0f, 1.0f, IGNORE_F, IGNORE_F } },
  { { 0, 1, 2, IGNORE, IGNORE, IGNORE }, IGNORE, { 1.0f, 1.0f, 1.0f, IGNORE_F, IGNORE_F, IGNORE_F } },
  // Downmixes to quad
  { { 0, 1, 2, 3, IGNORE }, IGNORE, { 1.0f, 1.0f, 1.0f, 1.0f, IGNORE_F } },
  { { 0, 1, 0, IGNORE, 2, 3 }, 1, { 1.0f, 1.0f, SQRT_ONE_HALF, IGNORE_F, 1.0f, 1.0f } },
  // Downmixes to 5-channel
  { { 0, 1, 2, 3, 4, IGNORE }, IGNORE, { 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, IGNORE_F } }
};

/**
 * Given an array of input channels, downmix to aOutputChannelCount, and copy
 * the results to the channel buffers in aOutputChannels.  Don't call this with
 * input count <= output count.
 */
template<typename T>
void AudioChannelsDownMix(const nsTArray<const T*>& aChannelArray,
                          T** aOutputChannels,
                          uint32_t aOutputChannelCount,
                          uint32_t aDuration)
{
  uint32_t inputChannelCount = aChannelArray.Length();
  const T* const* inputChannels = aChannelArray.Elements();
  NS_ASSERTION(inputChannelCount > aOutputChannelCount, "Nothing to do");

  if (inputChannelCount > 6) {
    // Just drop the unknown channels.
    for (uint32_t o = 0; o < aOutputChannelCount; ++o) {
      PodCopy(aOutputChannels[o], inputChannels[o], aDuration);
    }
    return;
  }

  // Ignore unknown channels, they're just dropped.
  inputChannelCount = std::min<uint32_t>(6, inputChannelCount);

  const DownMixMatrix& m = gDownMixMatrices[
    gMixingMatrixIndexByChannels[aOutputChannelCount - 1] +
    inputChannelCount - aOutputChannelCount - 1];

  // This is slow, but general. We can define custom code for special
  // cases later.
  for (uint32_t s = 0; s < aDuration; ++s) {
    // Reserve an extra junk channel at the end for the cases where we
    // want an input channel to contribute to nothing
    T outputChannels[CUSTOM_CHANNEL_LAYOUTS + 1] = {0};
    for (uint32_t c = 0; c < inputChannelCount; ++c) {
      outputChannels[m.mInputDestination[c]] +=
        m.mInputCoefficient[c]*(static_cast<const T*>(inputChannels[c]))[s];
    }
    // Utilize the fact that in every layout, C is the third channel.
    if (m.mCExtraDestination != IGNORE) {
      outputChannels[m.mCExtraDestination] +=
        m.mInputCoefficient[SURROUND_C]*(static_cast<const T*>(inputChannels[SURROUND_C]))[s];
    }

    for (uint32_t c = 0; c < aOutputChannelCount; ++c) {
      aOutputChannels[c][s] = outputChannels[c];
    }
  }
}

/**
 * UpMixMatrix represents a conversion matrix by exploiting the fact that
 * each output channel comes from at most one input channel.
 */
struct UpMixMatrix {
  uint8_t mInputDestination[CUSTOM_CHANNEL_LAYOUTS];
};

static const UpMixMatrix
gUpMixMatrices[CUSTOM_CHANNEL_LAYOUTS*(CUSTOM_CHANNEL_LAYOUTS - 1)/2] =
{
  // Upmixes from mono
  { { 0, 0 } },
  { { 0, IGNORE, IGNORE } },
  { { 0, 0, IGNORE, IGNORE } },
  { { 0, IGNORE, IGNORE, IGNORE, IGNORE } },
  { { IGNORE, IGNORE, 0, IGNORE, IGNORE, IGNORE } },
  // Upmixes from stereo
  { { 0, 1, IGNORE } },
  { { 0, 1, IGNORE, IGNORE } },
  { { 0, 1, IGNORE, IGNORE, IGNORE } },
  { { 0, 1, IGNORE, IGNORE, IGNORE, IGNORE } },
  // Upmixes from 3-channel
  { { 0, 1, 2, IGNORE } },
  { { 0, 1, 2, IGNORE, IGNORE } },
  { { 0, 1, 2, IGNORE, IGNORE, IGNORE } },
  // Upmixes from quad
  { { 0, 1, 2, 3, IGNORE } },
  { { 0, 1, IGNORE, IGNORE, 2, 3 } },
  // Upmixes from 5-channel
  { { 0, 1, 2, 3, 4, IGNORE } }
};


/**
 * Given an array of input channel data, and an output channel count,
 * replaces the array with an array of upmixed channels.
 * This shuffles the array and may set some channel buffers to aZeroChannel.
 * Don't call this with input count >= output count.
 * This may return *more* channels than requested. In that case, downmixing
 * is required to to get to aOutputChannelCount. (This is how we handle
 * odd cases like 3 -> 4 upmixing.)
 * If aChannelArray.Length() was the input to one of a series of
 * GetAudioChannelsSuperset calls resulting in aOutputChannelCount,
 * no downmixing will be required.
 */
template<typename T>
void
AudioChannelsUpMix(nsTArray<const T*>* aChannelArray,
                   uint32_t aOutputChannelCount,
                   const T* aZeroChannel)
{
  uint32_t inputChannelCount = aChannelArray->Length();
  uint32_t outputChannelCount =
    GetAudioChannelsSuperset(aOutputChannelCount, inputChannelCount);
  NS_ASSERTION(outputChannelCount > inputChannelCount,
               "No up-mix needed");
  MOZ_ASSERT(inputChannelCount > 0, "Bad number of channels");
  MOZ_ASSERT(outputChannelCount > 0, "Bad number of channels");

  aChannelArray->SetLength(outputChannelCount);

  if (inputChannelCount < CUSTOM_CHANNEL_LAYOUTS &&
      outputChannelCount <= CUSTOM_CHANNEL_LAYOUTS) {
    const UpMixMatrix& m = gUpMixMatrices[
      gMixingMatrixIndexByChannels[inputChannelCount - 1] +
      outputChannelCount - inputChannelCount - 1];

    const T* outputChannels[CUSTOM_CHANNEL_LAYOUTS];

    for (uint32_t i = 0; i < outputChannelCount; ++i) {
      uint8_t channelIndex = m.mInputDestination[i];
      if (channelIndex == IGNORE) {
        outputChannels[i] = aZeroChannel;
      } else {
        outputChannels[i] = aChannelArray->ElementAt(channelIndex);
      }
    }
    for (uint32_t i = 0; i < outputChannelCount; ++i) {
      aChannelArray->ElementAt(i) = outputChannels[i];
    }
    return;
  }

  for (uint32_t i = inputChannelCount; i < outputChannelCount; ++i) {
    aChannelArray->ElementAt(i) = aZeroChannel;
  }
}

} // namespace mozilla

#endif /* MOZILLA_AUDIOCHANNELFORMAT_H_ */