From ec910d81405c736a4490383a250299a7837c2e64 Mon Sep 17 00:00:00 2001 From: trav90 Date: Thu, 18 Oct 2018 21:53:44 -0500 Subject: Update aom to commit id e87fb2378f01103d5d6e477a4ef6892dc714e614 --- third_party/aom/av1/common/cfl.c | 609 +++++++++++++++++++++++++-------------- 1 file changed, 397 insertions(+), 212 deletions(-) (limited to 'third_party/aom/av1/common/cfl.c') diff --git a/third_party/aom/av1/common/cfl.c b/third_party/aom/av1/common/cfl.c index 7c88dd0c8..f9acfcbc9 100644 --- a/third_party/aom/av1/common/cfl.c +++ b/third_party/aom/av1/common/cfl.c @@ -13,117 +13,148 @@ #include "av1/common/common_data.h" #include "av1/common/onyxc_int.h" -#include "aom/internal/aom_codec_internal.h" - void cfl_init(CFL_CTX *cfl, AV1_COMMON *cm) { if (!((cm->subsampling_x == 0 && cm->subsampling_y == 0) || (cm->subsampling_x == 1 && cm->subsampling_y == 1))) { aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, "Only 4:4:4 and 4:2:0 are currently supported by CfL"); } - memset(&cfl->y_pix, 0, sizeof(uint8_t) * MAX_SB_SQUARE); + memset(&cfl->pred_buf_q3, 0, sizeof(cfl->pred_buf_q3)); cfl->subsampling_x = cm->subsampling_x; cfl->subsampling_y = cm->subsampling_y; cfl->are_parameters_computed = 0; + cfl->store_y = 0; +#if CONFIG_CHROMA_SUB8X8 && CONFIG_DEBUG + cfl_clear_sub8x8_val(cfl); +#endif // CONFIG_CHROMA_SUB8X8 && CONFIG_DEBUG } -// Load from the CfL pixel buffer into output -static void cfl_load(CFL_CTX *cfl, int row, int col, int width, int height) { - const int sub_x = cfl->subsampling_x; - const int sub_y = cfl->subsampling_y; - const int off_log2 = tx_size_wide_log2[0]; - - // TODO(ltrudeau) convert to uint16 to add HBD support - const uint8_t *y_pix; - // TODO(ltrudeau) convert to uint16 to add HBD support - uint8_t *output = cfl->y_down_pix; - - int pred_row_offset = 0; - int output_row_offset = 0; - - // TODO(ltrudeau) should be faster to downsample when we store the values - // TODO(ltrudeau) add support for 4:2:2 - if (sub_y == 0 && sub_x == 0) { - y_pix = &cfl->y_pix[(row * MAX_SB_SIZE + col) << off_log2]; - for (int j = 0; j < height; j++) { - for (int i = 0; i < width; i++) { - // In 4:4:4, pixels match 1 to 1 - output[output_row_offset + i] = y_pix[pred_row_offset + i]; - } - pred_row_offset += MAX_SB_SIZE; - output_row_offset += MAX_SB_SIZE; - } - } else if (sub_y == 1 && sub_x == 1) { - y_pix = &cfl->y_pix[(row * MAX_SB_SIZE + col) << (off_log2 + sub_y)]; - for (int j = 0; j < height; j++) { - for (int i = 0; i < width; i++) { - int top_left = (pred_row_offset + i) << sub_y; - int bot_left = top_left + MAX_SB_SIZE; - // In 4:2:0, average pixels in 2x2 grid - output[output_row_offset + i] = OD_SHR_ROUND( - y_pix[top_left] + y_pix[top_left + 1] // Top row - + y_pix[bot_left] + y_pix[bot_left + 1] // Bottom row - , - 2); - } - pred_row_offset += MAX_SB_SIZE; - output_row_offset += MAX_SB_SIZE; - } - } else { - assert(0); // Unsupported chroma subsampling - } - // Due to frame boundary issues, it is possible that the total area of - // covered by Chroma exceeds that of Luma. When this happens, we write over - // the broken data by repeating the last columns and/or rows. - // - // Note that in order to manage the case where both rows and columns - // overrun, - // we apply rows first. This way, when the rows overrun the bottom of the - // frame, the columns will be copied over them. - const int uv_width = (col << off_log2) + width; - const int uv_height = (row << off_log2) + height; - - const int diff_width = uv_width - (cfl->y_width >> sub_x); - const int diff_height = uv_height - (cfl->y_height >> sub_y); +// Due to frame boundary issues, it is possible that the total area covered by +// chroma exceeds that of luma. When this happens, we fill the missing pixels by +// repeating the last columns and/or rows. +static INLINE void cfl_pad(CFL_CTX *cfl, int width, int height) { + const int diff_width = width - cfl->buf_width; + const int diff_height = height - cfl->buf_height; if (diff_width > 0) { - int last_pixel; - output_row_offset = width - diff_width; - - for (int j = 0; j < height; j++) { - last_pixel = output_row_offset - 1; + const int min_height = height - diff_height; + int16_t *pred_buf_q3 = cfl->pred_buf_q3 + (width - diff_width); + for (int j = 0; j < min_height; j++) { + const int last_pixel = pred_buf_q3[-1]; for (int i = 0; i < diff_width; i++) { - output[output_row_offset + i] = output[last_pixel]; + pred_buf_q3[i] = last_pixel; } - output_row_offset += MAX_SB_SIZE; + pred_buf_q3 += MAX_SB_SIZE; } + cfl->buf_width = width; } - if (diff_height > 0) { - output_row_offset = (height - diff_height) * MAX_SB_SIZE; - const int last_row_offset = output_row_offset - MAX_SB_SIZE; - + int16_t *pred_buf_q3 = + cfl->pred_buf_q3 + ((height - diff_height) * MAX_SB_SIZE); for (int j = 0; j < diff_height; j++) { + const int16_t *last_row_q3 = pred_buf_q3 - MAX_SB_SIZE; for (int i = 0; i < width; i++) { - output[output_row_offset + i] = output[last_row_offset + i]; + pred_buf_q3[i] = last_row_q3[i]; } - output_row_offset += MAX_SB_SIZE; + pred_buf_q3 += MAX_SB_SIZE; } + cfl->buf_height = height; } } -// CfL computes its own block-level DC_PRED. This is required to compute both -// alpha_cb and alpha_cr before the prediction are computed. -static void cfl_dc_pred(MACROBLOCKD *xd, BLOCK_SIZE plane_bsize) { +static void sum_above_row_lbd(const uint8_t *above_u, const uint8_t *above_v, + int width, int *out_sum_u, int *out_sum_v) { + int sum_u = 0; + int sum_v = 0; + for (int i = 0; i < width; i++) { + sum_u += above_u[i]; + sum_v += above_v[i]; + } + *out_sum_u += sum_u; + *out_sum_v += sum_v; +} +#if CONFIG_HIGHBITDEPTH +static void sum_above_row_hbd(const uint16_t *above_u, const uint16_t *above_v, + int width, int *out_sum_u, int *out_sum_v) { + int sum_u = 0; + int sum_v = 0; + for (int i = 0; i < width; i++) { + sum_u += above_u[i]; + sum_v += above_v[i]; + } + *out_sum_u += sum_u; + *out_sum_v += sum_v; +} +#endif // CONFIG_HIGHBITDEPTH + +static void sum_above_row(const MACROBLOCKD *xd, int width, int *out_sum_u, + int *out_sum_v) { const struct macroblockd_plane *const pd_u = &xd->plane[AOM_PLANE_U]; const struct macroblockd_plane *const pd_v = &xd->plane[AOM_PLANE_V]; +#if CONFIG_HIGHBITDEPTH + if (get_bitdepth_data_path_index(xd)) { + const uint16_t *above_u_16 = + CONVERT_TO_SHORTPTR(pd_u->dst.buf) - pd_u->dst.stride; + const uint16_t *above_v_16 = + CONVERT_TO_SHORTPTR(pd_v->dst.buf) - pd_v->dst.stride; + sum_above_row_hbd(above_u_16, above_v_16, width, out_sum_u, out_sum_v); + return; + } +#endif // CONFIG_HIGHBITDEPTH + const uint8_t *above_u = pd_u->dst.buf - pd_u->dst.stride; + const uint8_t *above_v = pd_v->dst.buf - pd_v->dst.stride; + sum_above_row_lbd(above_u, above_v, width, out_sum_u, out_sum_v); +} - const uint8_t *const dst_u = pd_u->dst.buf; - const uint8_t *const dst_v = pd_v->dst.buf; +static void sum_left_col_lbd(const uint8_t *left_u, int u_stride, + const uint8_t *left_v, int v_stride, int height, + int *out_sum_u, int *out_sum_v) { + int sum_u = 0; + int sum_v = 0; + for (int i = 0; i < height; i++) { + sum_u += left_u[i * u_stride]; + sum_v += left_v[i * v_stride]; + } + *out_sum_u += sum_u; + *out_sum_v += sum_v; +} +#if CONFIG_HIGHBITDEPTH +static void sum_left_col_hbd(const uint16_t *left_u, int u_stride, + const uint16_t *left_v, int v_stride, int height, + int *out_sum_u, int *out_sum_v) { + int sum_u = 0; + int sum_v = 0; + for (int i = 0; i < height; i++) { + sum_u += left_u[i * u_stride]; + sum_v += left_v[i * v_stride]; + } + *out_sum_u += sum_u; + *out_sum_v += sum_v; +} +#endif // CONFIG_HIGHBITDEPTH +static void sum_left_col(const MACROBLOCKD *xd, int height, int *out_sum_u, + int *out_sum_v) { + const struct macroblockd_plane *const pd_u = &xd->plane[AOM_PLANE_U]; + const struct macroblockd_plane *const pd_v = &xd->plane[AOM_PLANE_V]; - const int dst_u_stride = pd_u->dst.stride; - const int dst_v_stride = pd_v->dst.stride; +#if CONFIG_HIGHBITDEPTH + if (get_bitdepth_data_path_index(xd)) { + const uint16_t *left_u_16 = CONVERT_TO_SHORTPTR(pd_u->dst.buf) - 1; + const uint16_t *left_v_16 = CONVERT_TO_SHORTPTR(pd_v->dst.buf) - 1; + sum_left_col_hbd(left_u_16, pd_u->dst.stride, left_v_16, pd_v->dst.stride, + height, out_sum_u, out_sum_v); + return; + } +#endif // CONFIG_HIGHBITDEPTH + const uint8_t *left_u = pd_u->dst.buf - 1; + const uint8_t *left_v = pd_v->dst.buf - 1; + sum_left_col_lbd(left_u, pd_u->dst.stride, left_v, pd_v->dst.stride, height, + out_sum_u, out_sum_v); +} +// CfL computes its own block-level DC_PRED. This is required to compute both +// alpha_cb and alpha_cr before the prediction are computed. +static void cfl_dc_pred(MACROBLOCKD *xd, BLOCK_SIZE plane_bsize) { CFL_CTX *const cfl = xd->cfl; // Compute DC_PRED until block boundary. We can't assume the neighbor will use @@ -138,14 +169,13 @@ static void cfl_dc_pred(MACROBLOCKD *xd, BLOCK_SIZE plane_bsize) { int sum_u = 0; int sum_v = 0; -// Match behavior of build_intra_predictors (reconintra.c) at superblock +// Match behavior of build_intra_predictors_high (reconintra.c) at superblock // boundaries: -// -// 127 127 127 .. 127 127 127 127 127 127 -// 129 A B .. Y Z -// 129 C D .. W X -// 129 E F .. U V -// 129 G H .. S T T T T T +// base-1 base-1 base-1 .. base-1 base-1 base-1 base-1 base-1 base-1 +// base+1 A B .. Y Z +// base+1 C D .. W X +// base+1 E F .. U V +// base+1 G H .. S T T T T T // .. #if CONFIG_CHROMA_SUB8X8 @@ -153,14 +183,11 @@ static void cfl_dc_pred(MACROBLOCKD *xd, BLOCK_SIZE plane_bsize) { #else if (xd->up_available && xd->mb_to_right_edge >= 0) { #endif - // TODO(ltrudeau) replace this with DC_PRED assembly - for (int i = 0; i < width; i++) { - sum_u += dst_u[-dst_u_stride + i]; - sum_v += dst_v[-dst_v_stride + i]; - } + sum_above_row(xd, width, &sum_u, &sum_v); } else { - sum_u = width * 127; - sum_v = width * 127; + const int base = 128 << (xd->bd - 8); + sum_u = width * (base - 1); + sum_v = width * (base - 1); } #if CONFIG_CHROMA_SUB8X8 @@ -168,13 +195,11 @@ static void cfl_dc_pred(MACROBLOCKD *xd, BLOCK_SIZE plane_bsize) { #else if (xd->left_available && xd->mb_to_bottom_edge >= 0) { #endif - for (int i = 0; i < height; i++) { - sum_u += dst_u[i * dst_u_stride - 1]; - sum_v += dst_v[i * dst_v_stride - 1]; - } + sum_left_col(xd, height, &sum_u, &sum_v); } else { - sum_u += height * 129; - sum_v += height * 129; + const int base = 128 << (xd->bd - 8); + sum_u += height * (base + 1); + sum_v += height * (base + 1); } // TODO(ltrudeau) Because of max_block_wide and max_block_high, num_pel will @@ -183,64 +208,103 @@ static void cfl_dc_pred(MACROBLOCKD *xd, BLOCK_SIZE plane_bsize) { cfl->dc_pred[CFL_PRED_V] = (sum_v + (num_pel >> 1)) / num_pel; } -static void cfl_compute_averages(CFL_CTX *cfl, TX_SIZE tx_size) { +static void cfl_subtract_averages(CFL_CTX *cfl, TX_SIZE tx_size) { const int width = cfl->uv_width; const int height = cfl->uv_height; const int tx_height = tx_size_high[tx_size]; const int tx_width = tx_size_wide[tx_size]; - const int stride = width >> tx_size_wide_log2[tx_size]; const int block_row_stride = MAX_SB_SIZE << tx_size_high_log2[tx_size]; const int num_pel_log2 = (tx_size_high_log2[tx_size] + tx_size_wide_log2[tx_size]); - // TODO(ltrudeau) Convert to uint16 for HBD support - const uint8_t *y_pix = cfl->y_down_pix; - // TODO(ltrudeau) Convert to uint16 for HBD support - const uint8_t *t_y_pix; - int *averages_q3 = cfl->y_averages_q3; + int16_t *pred_buf_q3 = cfl->pred_buf_q3; - cfl_load(cfl, 0, 0, width, height); + cfl_pad(cfl, width, height); - int a = 0; for (int b_j = 0; b_j < height; b_j += tx_height) { for (int b_i = 0; b_i < width; b_i += tx_width) { - int sum = 0; - t_y_pix = y_pix; + int sum_q3 = 0; + int16_t *tx_pred_buf_q3 = pred_buf_q3; for (int t_j = 0; t_j < tx_height; t_j++) { for (int t_i = b_i; t_i < b_i + tx_width; t_i++) { - sum += t_y_pix[t_i]; + sum_q3 += tx_pred_buf_q3[t_i]; } - t_y_pix += MAX_SB_SIZE; + tx_pred_buf_q3 += MAX_SB_SIZE; } - averages_q3[a++] = - ((sum << 3) + (1 << (num_pel_log2 - 1))) >> num_pel_log2; - + int avg_q3 = (sum_q3 + (1 << (num_pel_log2 - 1))) >> num_pel_log2; // Loss is never more than 1/2 (in Q3) - assert(fabs((double)averages_q3[a - 1] - - (sum / ((double)(1 << num_pel_log2))) * (1 << 3)) <= 0.5); + assert(fabs((double)avg_q3 - (sum_q3 / ((double)(1 << num_pel_log2)))) <= + 0.5); + + tx_pred_buf_q3 = pred_buf_q3; + for (int t_j = 0; t_j < tx_height; t_j++) { + for (int t_i = b_i; t_i < b_i + tx_width; t_i++) { + tx_pred_buf_q3[t_i] -= avg_q3; + } + + tx_pred_buf_q3 += MAX_SB_SIZE; + } } - assert(a % stride == 0); - y_pix += block_row_stride; + pred_buf_q3 += block_row_stride; } - - cfl->y_averages_stride = stride; - assert(a <= MAX_NUM_TXB); } -static INLINE int cfl_idx_to_alpha(int alpha_idx, CFL_SIGN_TYPE alpha_sign, +static INLINE int cfl_idx_to_alpha(int alpha_idx, int joint_sign, CFL_PRED_TYPE pred_type) { - const int mag_idx = cfl_alpha_codes[alpha_idx][pred_type]; - const int abs_alpha_q3 = cfl_alpha_mags_q3[mag_idx]; - if (alpha_sign == CFL_SIGN_POS) { - return abs_alpha_q3; - } else { - assert(abs_alpha_q3 != 0); - assert(cfl_alpha_mags_q3[mag_idx + 1] == -abs_alpha_q3); - return -abs_alpha_q3; + const int alpha_sign = (pred_type == CFL_PRED_U) ? CFL_SIGN_U(joint_sign) + : CFL_SIGN_V(joint_sign); + if (alpha_sign == CFL_SIGN_ZERO) return 0; + const int abs_alpha_q3 = + (pred_type == CFL_PRED_U) ? CFL_IDX_U(alpha_idx) : CFL_IDX_V(alpha_idx); + return (alpha_sign == CFL_SIGN_POS) ? abs_alpha_q3 + 1 : -abs_alpha_q3 - 1; +} + +static void cfl_build_prediction_lbd(const int16_t *pred_buf_q3, uint8_t *dst, + int dst_stride, int width, int height, + int alpha_q3, int dc_pred) { + for (int j = 0; j < height; j++) { + for (int i = 0; i < width; i++) { + dst[i] = + clip_pixel(get_scaled_luma_q0(alpha_q3, pred_buf_q3[i]) + dc_pred); + } + dst += dst_stride; + pred_buf_q3 += MAX_SB_SIZE; } } -// Predict the current transform block using CfL. +#if CONFIG_HIGHBITDEPTH +static void cfl_build_prediction_hbd(const int16_t *pred_buf_q3, uint16_t *dst, + int dst_stride, int width, int height, + int alpha_q3, int dc_pred, int bit_depth) { + for (int j = 0; j < height; j++) { + for (int i = 0; i < width; i++) { + dst[i] = clip_pixel_highbd( + get_scaled_luma_q0(alpha_q3, pred_buf_q3[i]) + dc_pred, bit_depth); + } + dst += dst_stride; + pred_buf_q3 += MAX_SB_SIZE; + } +} +#endif // CONFIG_HIGHBITDEPTH + +static void cfl_build_prediction(const int16_t *pred_buf_q3, uint8_t *dst, + int dst_stride, int width, int height, + int alpha_q3, int dc_pred, int use_hbd, + int bit_depth) { +#if CONFIG_HIGHBITDEPTH + if (use_hbd) { + uint16_t *dst_16 = CONVERT_TO_SHORTPTR(dst); + cfl_build_prediction_hbd(pred_buf_q3, dst_16, dst_stride, width, height, + alpha_q3, dc_pred, bit_depth); + return; + } +#endif // CONFIG_HIGHBITDEPTH + (void)use_hbd; + (void)bit_depth; + cfl_build_prediction_lbd(pred_buf_q3, dst, dst_stride, width, height, + alpha_q3, dc_pred); +} + void cfl_predict_block(MACROBLOCKD *const xd, uint8_t *dst, int dst_stride, int row, int col, TX_SIZE tx_size, int plane) { CFL_CTX *const cfl = xd->cfl; @@ -249,74 +313,112 @@ void cfl_predict_block(MACROBLOCKD *const xd, uint8_t *dst, int dst_stride, // CfL parameters must be computed before prediction can be done. assert(cfl->are_parameters_computed == 1); - const int width = tx_size_wide[tx_size]; - const int height = tx_size_high[tx_size]; - // TODO(ltrudeau) Convert to uint16 to support HBD - const uint8_t *y_pix = cfl->y_down_pix; + const int16_t *pred_buf_q3 = + cfl->pred_buf_q3 + ((row * MAX_SB_SIZE + col) << tx_size_wide_log2[0]); + const int alpha_q3 = + cfl_idx_to_alpha(mbmi->cfl_alpha_idx, mbmi->cfl_alpha_signs, plane - 1); - const int dc_pred = cfl->dc_pred[plane - 1]; - const int alpha_q3 = cfl_idx_to_alpha( - mbmi->cfl_alpha_idx, mbmi->cfl_alpha_signs[plane - 1], plane - 1); - - const int avg_row = - (row << tx_size_wide_log2[0]) >> tx_size_wide_log2[tx_size]; - const int avg_col = - (col << tx_size_high_log2[0]) >> tx_size_high_log2[tx_size]; - const int avg_q3 = - cfl->y_averages_q3[cfl->y_averages_stride * avg_row + avg_col]; + cfl_build_prediction(pred_buf_q3, dst, dst_stride, tx_size_wide[tx_size], + tx_size_high[tx_size], alpha_q3, cfl->dc_pred[plane - 1], + get_bitdepth_data_path_index(xd), xd->bd); +} - cfl_load(cfl, row, col, width, height); +static void cfl_luma_subsampling_420_lbd(const uint8_t *input, int input_stride, + int16_t *output_q3, int width, + int height) { for (int j = 0; j < height; j++) { for (int i = 0; i < width; i++) { - // TODO(ltrudeau) add support for HBD. - dst[i] = - clip_pixel(get_scaled_luma_q0(alpha_q3, y_pix[i], avg_q3) + dc_pred); + int top = i << 1; + int bot = top + input_stride; + output_q3[i] = (input[top] + input[top + 1] + input[bot] + input[bot + 1]) + << 1; } - dst += dst_stride; - y_pix += MAX_SB_SIZE; + input += input_stride << 1; + output_q3 += MAX_SB_SIZE; } } -void cfl_store(CFL_CTX *cfl, const uint8_t *input, int input_stride, int row, - int col, TX_SIZE tx_size, BLOCK_SIZE bsize) { - const int tx_width = tx_size_wide[tx_size]; - const int tx_height = tx_size_high[tx_size]; - const int tx_off_log2 = tx_size_wide_log2[0]; +static void cfl_luma_subsampling_444_lbd(const uint8_t *input, int input_stride, + int16_t *output_q3, int width, + int height) { + for (int j = 0; j < height; j++) { + for (int i = 0; i < width; i++) { + output_q3[i] = input[i] << 3; + } + input += input_stride; + output_q3 += MAX_SB_SIZE; + } +} -#if CONFIG_CHROMA_SUB8X8 - if (bsize < BLOCK_8X8) { - // Transform cannot be smaller than - assert(tx_width >= 4); - assert(tx_height >= 4); - - const int bw = block_size_wide[bsize]; - const int bh = block_size_high[bsize]; - - // For chroma_sub8x8, the CfL prediction for prediction blocks smaller than - // 8X8 uses non chroma reference reconstructed luma pixels. To do so, we - // combine the 4X4 non chroma reference into the CfL pixel buffers based on - // their row and column index. - - // The following code is adapted from the is_chroma_reference() function. - if ((cfl->mi_row & - 0x01) // Increment the row index for odd indexed 4X4 blocks - && (bh == 4) // But not for 4X8 blocks - && cfl->subsampling_y) { // And only when chroma is subsampled - assert(row == 0); - row++; +#if CONFIG_HIGHBITDEPTH +static void cfl_luma_subsampling_420_hbd(const uint16_t *input, + int input_stride, int16_t *output_q3, + int width, int height) { + for (int j = 0; j < height; j++) { + for (int i = 0; i < width; i++) { + int top = i << 1; + int bot = top + input_stride; + output_q3[i] = (input[top] + input[top + 1] + input[bot] + input[bot + 1]) + << 1; } + input += input_stride << 1; + output_q3 += MAX_SB_SIZE; + } +} - if ((cfl->mi_col & - 0x01) // Increment the col index for odd indexed 4X4 blocks - && (bw == 4) // But not for 8X4 blocks - && cfl->subsampling_x) { // And only when chroma is subsampled - assert(col == 0); - col++; +static void cfl_luma_subsampling_444_hbd(const uint16_t *input, + int input_stride, int16_t *output_q3, + int width, int height) { + for (int j = 0; j < height; j++) { + for (int i = 0; i < width; i++) { + output_q3[i] = input[i] << 3; } + input += input_stride; + output_q3 += MAX_SB_SIZE; } -#else - (void)bsize; -#endif +} +#endif // CONFIG_HIGHBITDEPTH + +static void cfl_luma_subsampling_420(const uint8_t *input, int input_stride, + int16_t *output_q3, int width, int height, + int use_hbd) { +#if CONFIG_HIGHBITDEPTH + if (use_hbd) { + const uint16_t *input_16 = CONVERT_TO_SHORTPTR(input); + cfl_luma_subsampling_420_hbd(input_16, input_stride, output_q3, width, + height); + return; + } +#endif // CONFIG_HIGHBITDEPTH + (void)use_hbd; + cfl_luma_subsampling_420_lbd(input, input_stride, output_q3, width, height); +} + +static void cfl_luma_subsampling_444(const uint8_t *input, int input_stride, + int16_t *output_q3, int width, int height, + int use_hbd) { +#if CONFIG_HIGHBITDEPTH + if (use_hbd) { + uint16_t *input_16 = CONVERT_TO_SHORTPTR(input); + cfl_luma_subsampling_444_hbd(input_16, input_stride, output_q3, width, + height); + return; + } +#endif // CONFIG_HIGHBITDEPTH + (void)use_hbd; + cfl_luma_subsampling_444_lbd(input, input_stride, output_q3, width, height); +} + +static INLINE void cfl_store(CFL_CTX *cfl, const uint8_t *input, + int input_stride, int row, int col, int width, + int height, int use_hbd) { + const int tx_off_log2 = tx_size_wide_log2[0]; + const int sub_x = cfl->subsampling_x; + const int sub_y = cfl->subsampling_y; + const int store_row = row << (tx_off_log2 - sub_y); + const int store_col = col << (tx_off_log2 - sub_x); + const int store_height = height >> sub_y; + const int store_width = width >> sub_x; // Invalidate current parameters cfl->are_parameters_computed = 0; @@ -325,29 +427,109 @@ void cfl_store(CFL_CTX *cfl, const uint8_t *input, int input_stride, int row, // can manage chroma overrun (e.g. when the chroma surfaces goes beyond the // frame boundary) if (col == 0 && row == 0) { - cfl->y_width = tx_width; - cfl->y_height = tx_height; + cfl->buf_width = store_width; + cfl->buf_height = store_height; } else { - cfl->y_width = OD_MAXI((col << tx_off_log2) + tx_width, cfl->y_width); - cfl->y_height = OD_MAXI((row << tx_off_log2) + tx_height, cfl->y_height); + cfl->buf_width = OD_MAXI(store_col + store_width, cfl->buf_width); + cfl->buf_height = OD_MAXI(store_row + store_height, cfl->buf_height); } // Check that we will remain inside the pixel buffer. - assert((row << tx_off_log2) + tx_height <= MAX_SB_SIZE); - assert((col << tx_off_log2) + tx_width <= MAX_SB_SIZE); + assert(store_row + store_height <= MAX_SB_SIZE); + assert(store_col + store_width <= MAX_SB_SIZE); // Store the input into the CfL pixel buffer - uint8_t *y_pix = &cfl->y_pix[(row * MAX_SB_SIZE + col) << tx_off_log2]; + int16_t *pred_buf_q3 = + cfl->pred_buf_q3 + (store_row * MAX_SB_SIZE + store_col); - // TODO(ltrudeau) Speedup possible by moving the downsampling to cfl_store - for (int j = 0; j < tx_height; j++) { - for (int i = 0; i < tx_width; i++) { - y_pix[i] = input[i]; + if (sub_y == 0 && sub_x == 0) { + cfl_luma_subsampling_444(input, input_stride, pred_buf_q3, store_width, + store_height, use_hbd); + } else if (sub_y == 1 && sub_x == 1) { + cfl_luma_subsampling_420(input, input_stride, pred_buf_q3, store_width, + store_height, use_hbd); + } else { + // TODO(ltrudeau) add support for 4:2:2 + assert(0); // Unsupported chroma subsampling + } +} + +#if CONFIG_CHROMA_SUB8X8 +// Adjust the row and column of blocks smaller than 8X8, as chroma-referenced +// and non-chroma-referenced blocks are stored together in the CfL buffer. +static INLINE void sub8x8_adjust_offset(const CFL_CTX *cfl, int *row_out, + int *col_out) { + // Increment row index for bottom: 8x4, 16x4 or both bottom 4x4s. + if ((cfl->mi_row & 0x01) && cfl->subsampling_y) { + assert(*row_out == 0); + (*row_out)++; + } + + // Increment col index for right: 4x8, 4x16 or both right 4x4s. + if ((cfl->mi_col & 0x01) && cfl->subsampling_x) { + assert(*col_out == 0); + (*col_out)++; + } +} +#if CONFIG_DEBUG +static INLINE void sub8x8_set_val(CFL_CTX *cfl, int row, int col, int val_high, + int val_wide) { + for (int val_r = 0; val_r < val_high; val_r++) { + assert(row + val_r < CFL_SUB8X8_VAL_MI_SIZE); + int row_off = (row + val_r) * CFL_SUB8X8_VAL_MI_SIZE; + for (int val_c = 0; val_c < val_wide; val_c++) { + assert(col + val_c < CFL_SUB8X8_VAL_MI_SIZE); + assert(cfl->sub8x8_val[row_off + col + val_c] == 0); + cfl->sub8x8_val[row_off + col + val_c]++; } - y_pix += MAX_SB_SIZE; - input += input_stride; } } +#endif // CONFIG_DEBUG +#endif // CONFIG_CHROMA_SUB8X8 + +void cfl_store_tx(MACROBLOCKD *const xd, int row, int col, TX_SIZE tx_size, + BLOCK_SIZE bsize) { + CFL_CTX *const cfl = xd->cfl; + struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y]; + uint8_t *dst = + &pd->dst.buf[(row * pd->dst.stride + col) << tx_size_wide_log2[0]]; + (void)bsize; +#if CONFIG_CHROMA_SUB8X8 + + if (block_size_high[bsize] == 4 || block_size_wide[bsize] == 4) { + // Only dimensions of size 4 can have an odd offset. + assert(!((col & 1) && tx_size_wide[tx_size] != 4)); + assert(!((row & 1) && tx_size_high[tx_size] != 4)); + sub8x8_adjust_offset(cfl, &row, &col); +#if CONFIG_DEBUG + sub8x8_set_val(cfl, row, col, tx_size_high_unit[tx_size], + tx_size_wide_unit[tx_size]); +#endif // CONFIG_DEBUG + } +#endif + cfl_store(cfl, dst, pd->dst.stride, row, col, tx_size_wide[tx_size], + tx_size_high[tx_size], get_bitdepth_data_path_index(xd)); +} + +void cfl_store_block(MACROBLOCKD *const xd, BLOCK_SIZE bsize, TX_SIZE tx_size) { + CFL_CTX *const cfl = xd->cfl; + struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y]; + int row = 0; + int col = 0; +#if CONFIG_CHROMA_SUB8X8 + bsize = AOMMAX(BLOCK_4X4, bsize); + if (block_size_high[bsize] == 4 || block_size_wide[bsize] == 4) { + sub8x8_adjust_offset(cfl, &row, &col); +#if CONFIG_DEBUG + sub8x8_set_val(cfl, row, col, mi_size_high[bsize], mi_size_wide[bsize]); +#endif // CONFIG_DEBUG + } +#endif // CONFIG_CHROMA_SUB8X8 + const int width = max_intra_block_width(xd, bsize, AOM_PLANE_Y, tx_size); + const int height = max_intra_block_height(xd, bsize, AOM_PLANE_Y, tx_size); + cfl_store(cfl, pd->dst.buf, pd->dst.stride, row, col, width, height, + get_bitdepth_data_path_index(xd)); +} void cfl_compute_parameters(MACROBLOCKD *const xd, TX_SIZE tx_size) { CFL_CTX *const cfl = xd->cfl; @@ -359,6 +541,16 @@ void cfl_compute_parameters(MACROBLOCKD *const xd, TX_SIZE tx_size) { #if CONFIG_CHROMA_SUB8X8 const BLOCK_SIZE plane_bsize = AOMMAX( BLOCK_4X4, get_plane_block_size(mbmi->sb_type, &xd->plane[AOM_PLANE_U])); +#if CONFIG_DEBUG + if (mbmi->sb_type < BLOCK_8X8) { + for (int val_r = 0; val_r < mi_size_high[mbmi->sb_type]; val_r++) { + for (int val_c = 0; val_c < mi_size_wide[mbmi->sb_type]; val_c++) { + assert(cfl->sub8x8_val[val_r * CFL_SUB8X8_VAL_MI_SIZE + val_c] == 1); + } + } + cfl_clear_sub8x8_val(cfl); + } +#endif // CONFIG_DEBUG #else const BLOCK_SIZE plane_bsize = get_plane_block_size(mbmi->sb_type, &xd->plane[AOM_PLANE_U]); @@ -368,17 +560,10 @@ void cfl_compute_parameters(MACROBLOCKD *const xd, TX_SIZE tx_size) { cfl->uv_height = max_intra_block_height(xd, plane_bsize, AOM_PLANE_U, tx_size); -#if CONFIG_DEBUG - if (mbmi->sb_type >= BLOCK_8X8) { - assert(cfl->y_width <= cfl->uv_width << cfl->subsampling_x); - assert(cfl->y_height <= cfl->uv_height << cfl->subsampling_y); - } -#endif + assert(cfl->buf_width <= cfl->uv_width); + assert(cfl->buf_height <= cfl->uv_height); - // Compute block-level DC_PRED for both chromatic planes. - // DC_PRED replaces beta in the linear model. cfl_dc_pred(xd, plane_bsize); - // Compute transform-level average on reconstructed luma input. - cfl_compute_averages(cfl, tx_size); + cfl_subtract_averages(cfl, tx_size); cfl->are_parameters_computed = 1; } -- cgit v1.2.3