summaryrefslogtreecommitdiffstats
path: root/tools/profiler/lul/LulDwarf.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'tools/profiler/lul/LulDwarf.cpp')
-rw-r--r--tools/profiler/lul/LulDwarf.cpp2180
1 files changed, 0 insertions, 2180 deletions
diff --git a/tools/profiler/lul/LulDwarf.cpp b/tools/profiler/lul/LulDwarf.cpp
deleted file mode 100644
index 1bdbdabb6..000000000
--- a/tools/profiler/lul/LulDwarf.cpp
+++ /dev/null
@@ -1,2180 +0,0 @@
-/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
-/* vim: set ts=8 sts=2 et sw=2 tw=80: */
-
-// Copyright (c) 2010 Google Inc. All Rights Reserved.
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above
-// copyright notice, this list of conditions and the following disclaimer
-// in the documentation and/or other materials provided with the
-// distribution.
-// * Neither the name of Google Inc. nor the names of its
-// contributors may be used to endorse or promote products derived from
-// this software without specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
-// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-// CFI reader author: Jim Blandy <jimb@mozilla.com> <jimb@red-bean.com>
-// Original author: Jim Blandy <jimb@mozilla.com> <jimb@red-bean.com>
-
-// Implementation of dwarf2reader::LineInfo, dwarf2reader::CompilationUnit,
-// and dwarf2reader::CallFrameInfo. See dwarf2reader.h for details.
-
-// This file is derived from the following files in
-// toolkit/crashreporter/google-breakpad:
-// src/common/dwarf/bytereader.cc
-// src/common/dwarf/dwarf2reader.cc
-// src/common/dwarf_cfi_to_module.cc
-
-#include <stdint.h>
-#include <stdio.h>
-#include <string.h>
-#include <stdlib.h>
-
-#include <map>
-#include <stack>
-#include <string>
-
-#include "mozilla/Assertions.h"
-#include "mozilla/Sprintf.h"
-
-#include "LulCommonExt.h"
-#include "LulDwarfInt.h"
-
-
-// Set this to 1 for verbose logging
-#define DEBUG_DWARF 0
-
-
-namespace lul {
-
-using std::string;
-
-ByteReader::ByteReader(enum Endianness endian)
- :offset_reader_(NULL), address_reader_(NULL), endian_(endian),
- address_size_(0), offset_size_(0),
- have_section_base_(), have_text_base_(), have_data_base_(),
- have_function_base_() { }
-
-ByteReader::~ByteReader() { }
-
-void ByteReader::SetOffsetSize(uint8 size) {
- offset_size_ = size;
- MOZ_ASSERT(size == 4 || size == 8);
- if (size == 4) {
- this->offset_reader_ = &ByteReader::ReadFourBytes;
- } else {
- this->offset_reader_ = &ByteReader::ReadEightBytes;
- }
-}
-
-void ByteReader::SetAddressSize(uint8 size) {
- address_size_ = size;
- MOZ_ASSERT(size == 4 || size == 8);
- if (size == 4) {
- this->address_reader_ = &ByteReader::ReadFourBytes;
- } else {
- this->address_reader_ = &ByteReader::ReadEightBytes;
- }
-}
-
-uint64 ByteReader::ReadInitialLength(const char* start, size_t* len) {
- const uint64 initial_length = ReadFourBytes(start);
- start += 4;
-
- // In DWARF2/3, if the initial length is all 1 bits, then the offset
- // size is 8 and we need to read the next 8 bytes for the real length.
- if (initial_length == 0xffffffff) {
- SetOffsetSize(8);
- *len = 12;
- return ReadOffset(start);
- } else {
- SetOffsetSize(4);
- *len = 4;
- }
- return initial_length;
-}
-
-bool ByteReader::ValidEncoding(DwarfPointerEncoding encoding) const {
- if (encoding == DW_EH_PE_omit) return true;
- if (encoding == DW_EH_PE_aligned) return true;
- if ((encoding & 0x7) > DW_EH_PE_udata8)
- return false;
- if ((encoding & 0x70) > DW_EH_PE_funcrel)
- return false;
- return true;
-}
-
-bool ByteReader::UsableEncoding(DwarfPointerEncoding encoding) const {
- switch (encoding & 0x70) {
- case DW_EH_PE_absptr: return true;
- case DW_EH_PE_pcrel: return have_section_base_;
- case DW_EH_PE_textrel: return have_text_base_;
- case DW_EH_PE_datarel: return have_data_base_;
- case DW_EH_PE_funcrel: return have_function_base_;
- default: return false;
- }
-}
-
-uint64 ByteReader::ReadEncodedPointer(const char *buffer,
- DwarfPointerEncoding encoding,
- size_t *len) const {
- // UsableEncoding doesn't approve of DW_EH_PE_omit, so we shouldn't
- // see it here.
- MOZ_ASSERT(encoding != DW_EH_PE_omit);
-
- // The Linux Standards Base 4.0 does not make this clear, but the
- // GNU tools (gcc/unwind-pe.h; readelf/dwarf.c; gdb/dwarf2-frame.c)
- // agree that aligned pointers are always absolute, machine-sized,
- // machine-signed pointers.
- if (encoding == DW_EH_PE_aligned) {
- MOZ_ASSERT(have_section_base_);
-
- // We don't need to align BUFFER in *our* address space. Rather, we
- // need to find the next position in our buffer that would be aligned
- // when the .eh_frame section the buffer contains is loaded into the
- // program's memory. So align assuming that buffer_base_ gets loaded at
- // address section_base_, where section_base_ itself may or may not be
- // aligned.
-
- // First, find the offset to START from the closest prior aligned
- // address.
- uint64 skew = section_base_ & (AddressSize() - 1);
- // Now find the offset from that aligned address to buffer.
- uint64 offset = skew + (buffer - buffer_base_);
- // Round up to the next boundary.
- uint64 aligned = (offset + AddressSize() - 1) & -AddressSize();
- // Convert back to a pointer.
- const char *aligned_buffer = buffer_base_ + (aligned - skew);
- // Finally, store the length and actually fetch the pointer.
- *len = aligned_buffer - buffer + AddressSize();
- return ReadAddress(aligned_buffer);
- }
-
- // Extract the value first, ignoring whether it's a pointer or an
- // offset relative to some base.
- uint64 offset;
- switch (encoding & 0x0f) {
- case DW_EH_PE_absptr:
- // DW_EH_PE_absptr is weird, as it is used as a meaningful value for
- // both the high and low nybble of encoding bytes. When it appears in
- // the high nybble, it means that the pointer is absolute, not an
- // offset from some base address. When it appears in the low nybble,
- // as here, it means that the pointer is stored as a normal
- // machine-sized and machine-signed address. A low nybble of
- // DW_EH_PE_absptr does not imply that the pointer is absolute; it is
- // correct for us to treat the value as an offset from a base address
- // if the upper nybble is not DW_EH_PE_absptr.
- offset = ReadAddress(buffer);
- *len = AddressSize();
- break;
-
- case DW_EH_PE_uleb128:
- offset = ReadUnsignedLEB128(buffer, len);
- break;
-
- case DW_EH_PE_udata2:
- offset = ReadTwoBytes(buffer);
- *len = 2;
- break;
-
- case DW_EH_PE_udata4:
- offset = ReadFourBytes(buffer);
- *len = 4;
- break;
-
- case DW_EH_PE_udata8:
- offset = ReadEightBytes(buffer);
- *len = 8;
- break;
-
- case DW_EH_PE_sleb128:
- offset = ReadSignedLEB128(buffer, len);
- break;
-
- case DW_EH_PE_sdata2:
- offset = ReadTwoBytes(buffer);
- // Sign-extend from 16 bits.
- offset = (offset ^ 0x8000) - 0x8000;
- *len = 2;
- break;
-
- case DW_EH_PE_sdata4:
- offset = ReadFourBytes(buffer);
- // Sign-extend from 32 bits.
- offset = (offset ^ 0x80000000ULL) - 0x80000000ULL;
- *len = 4;
- break;
-
- case DW_EH_PE_sdata8:
- // No need to sign-extend; this is the full width of our type.
- offset = ReadEightBytes(buffer);
- *len = 8;
- break;
-
- default:
- abort();
- }
-
- // Find the appropriate base address.
- uint64 base;
- switch (encoding & 0x70) {
- case DW_EH_PE_absptr:
- base = 0;
- break;
-
- case DW_EH_PE_pcrel:
- MOZ_ASSERT(have_section_base_);
- base = section_base_ + (buffer - buffer_base_);
- break;
-
- case DW_EH_PE_textrel:
- MOZ_ASSERT(have_text_base_);
- base = text_base_;
- break;
-
- case DW_EH_PE_datarel:
- MOZ_ASSERT(have_data_base_);
- base = data_base_;
- break;
-
- case DW_EH_PE_funcrel:
- MOZ_ASSERT(have_function_base_);
- base = function_base_;
- break;
-
- default:
- abort();
- }
-
- uint64 pointer = base + offset;
-
- // Remove inappropriate upper bits.
- if (AddressSize() == 4)
- pointer = pointer & 0xffffffff;
- else
- MOZ_ASSERT(AddressSize() == sizeof(uint64));
-
- return pointer;
-}
-
-
-// A DWARF rule for recovering the address or value of a register, or
-// computing the canonical frame address. There is one subclass of this for
-// each '*Rule' member function in CallFrameInfo::Handler.
-//
-// It's annoying that we have to handle Rules using pointers (because
-// the concrete instances can have an arbitrary size). They're small,
-// so it would be much nicer if we could just handle them by value
-// instead of fretting about ownership and destruction.
-//
-// It seems like all these could simply be instances of std::tr1::bind,
-// except that we need instances to be EqualityComparable, too.
-//
-// This could logically be nested within State, but then the qualified names
-// get horrendous.
-class CallFrameInfo::Rule {
- public:
- virtual ~Rule() { }
-
- // Tell HANDLER that, at ADDRESS in the program, REGISTER can be
- // recovered using this rule. If REGISTER is kCFARegister, then this rule
- // describes how to compute the canonical frame address. Return what the
- // HANDLER member function returned.
- virtual bool Handle(Handler *handler, uint64 address, int register) const = 0;
-
- // Equality on rules. We use these to decide which rules we need
- // to report after a DW_CFA_restore_state instruction.
- virtual bool operator==(const Rule &rhs) const = 0;
-
- bool operator!=(const Rule &rhs) const { return ! (*this == rhs); }
-
- // Return a pointer to a copy of this rule.
- virtual Rule *Copy() const = 0;
-
- // If this is a base+offset rule, change its base register to REG.
- // Otherwise, do nothing. (Ugly, but required for DW_CFA_def_cfa_register.)
- virtual void SetBaseRegister(unsigned reg) { }
-
- // If this is a base+offset rule, change its offset to OFFSET. Otherwise,
- // do nothing. (Ugly, but required for DW_CFA_def_cfa_offset.)
- virtual void SetOffset(long long offset) { }
-
- // A RTTI workaround, to make it possible to implement equality
- // comparisons on classes derived from this one.
- enum CFIRTag {
- CFIR_UNDEFINED_RULE,
- CFIR_SAME_VALUE_RULE,
- CFIR_OFFSET_RULE,
- CFIR_VAL_OFFSET_RULE,
- CFIR_REGISTER_RULE,
- CFIR_EXPRESSION_RULE,
- CFIR_VAL_EXPRESSION_RULE
- };
-
- // Produce the tag that identifies the child class of this object.
- virtual CFIRTag getTag() const = 0;
-};
-
-// Rule: the value the register had in the caller cannot be recovered.
-class CallFrameInfo::UndefinedRule: public CallFrameInfo::Rule {
- public:
- UndefinedRule() { }
- ~UndefinedRule() { }
- CFIRTag getTag() const { return CFIR_UNDEFINED_RULE; }
- bool Handle(Handler *handler, uint64 address, int reg) const {
- return handler->UndefinedRule(address, reg);
- }
- bool operator==(const Rule &rhs) const {
- if (rhs.getTag() != CFIR_UNDEFINED_RULE) return false;
- return true;
- }
- Rule *Copy() const { return new UndefinedRule(*this); }
-};
-
-// Rule: the register's value is the same as that it had in the caller.
-class CallFrameInfo::SameValueRule: public CallFrameInfo::Rule {
- public:
- SameValueRule() { }
- ~SameValueRule() { }
- CFIRTag getTag() const { return CFIR_SAME_VALUE_RULE; }
- bool Handle(Handler *handler, uint64 address, int reg) const {
- return handler->SameValueRule(address, reg);
- }
- bool operator==(const Rule &rhs) const {
- if (rhs.getTag() != CFIR_SAME_VALUE_RULE) return false;
- return true;
- }
- Rule *Copy() const { return new SameValueRule(*this); }
-};
-
-// Rule: the register is saved at OFFSET from BASE_REGISTER. BASE_REGISTER
-// may be CallFrameInfo::Handler::kCFARegister.
-class CallFrameInfo::OffsetRule: public CallFrameInfo::Rule {
- public:
- OffsetRule(int base_register, long offset)
- : base_register_(base_register), offset_(offset) { }
- ~OffsetRule() { }
- CFIRTag getTag() const { return CFIR_OFFSET_RULE; }
- bool Handle(Handler *handler, uint64 address, int reg) const {
- return handler->OffsetRule(address, reg, base_register_, offset_);
- }
- bool operator==(const Rule &rhs) const {
- if (rhs.getTag() != CFIR_OFFSET_RULE) return false;
- const OffsetRule *our_rhs = static_cast<const OffsetRule *>(&rhs);
- return (base_register_ == our_rhs->base_register_ &&
- offset_ == our_rhs->offset_);
- }
- Rule *Copy() const { return new OffsetRule(*this); }
- // We don't actually need SetBaseRegister or SetOffset here, since they
- // are only ever applied to CFA rules, for DW_CFA_def_cfa_offset, and it
- // doesn't make sense to use OffsetRule for computing the CFA: it
- // computes the address at which a register is saved, not a value.
- private:
- int base_register_;
- long offset_;
-};
-
-// Rule: the value the register had in the caller is the value of
-// BASE_REGISTER plus offset. BASE_REGISTER may be
-// CallFrameInfo::Handler::kCFARegister.
-class CallFrameInfo::ValOffsetRule: public CallFrameInfo::Rule {
- public:
- ValOffsetRule(int base_register, long offset)
- : base_register_(base_register), offset_(offset) { }
- ~ValOffsetRule() { }
- CFIRTag getTag() const { return CFIR_VAL_OFFSET_RULE; }
- bool Handle(Handler *handler, uint64 address, int reg) const {
- return handler->ValOffsetRule(address, reg, base_register_, offset_);
- }
- bool operator==(const Rule &rhs) const {
- if (rhs.getTag() != CFIR_VAL_OFFSET_RULE) return false;
- const ValOffsetRule *our_rhs = static_cast<const ValOffsetRule *>(&rhs);
- return (base_register_ == our_rhs->base_register_ &&
- offset_ == our_rhs->offset_);
- }
- Rule *Copy() const { return new ValOffsetRule(*this); }
- void SetBaseRegister(unsigned reg) { base_register_ = reg; }
- void SetOffset(long long offset) { offset_ = offset; }
- private:
- int base_register_;
- long offset_;
-};
-
-// Rule: the register has been saved in another register REGISTER_NUMBER_.
-class CallFrameInfo::RegisterRule: public CallFrameInfo::Rule {
- public:
- explicit RegisterRule(int register_number)
- : register_number_(register_number) { }
- ~RegisterRule() { }
- CFIRTag getTag() const { return CFIR_REGISTER_RULE; }
- bool Handle(Handler *handler, uint64 address, int reg) const {
- return handler->RegisterRule(address, reg, register_number_);
- }
- bool operator==(const Rule &rhs) const {
- if (rhs.getTag() != CFIR_REGISTER_RULE) return false;
- const RegisterRule *our_rhs = static_cast<const RegisterRule *>(&rhs);
- return (register_number_ == our_rhs->register_number_);
- }
- Rule *Copy() const { return new RegisterRule(*this); }
- private:
- int register_number_;
-};
-
-// Rule: EXPRESSION evaluates to the address at which the register is saved.
-class CallFrameInfo::ExpressionRule: public CallFrameInfo::Rule {
- public:
- explicit ExpressionRule(const string &expression)
- : expression_(expression) { }
- ~ExpressionRule() { }
- CFIRTag getTag() const { return CFIR_EXPRESSION_RULE; }
- bool Handle(Handler *handler, uint64 address, int reg) const {
- return handler->ExpressionRule(address, reg, expression_);
- }
- bool operator==(const Rule &rhs) const {
- if (rhs.getTag() != CFIR_EXPRESSION_RULE) return false;
- const ExpressionRule *our_rhs = static_cast<const ExpressionRule *>(&rhs);
- return (expression_ == our_rhs->expression_);
- }
- Rule *Copy() const { return new ExpressionRule(*this); }
- private:
- string expression_;
-};
-
-// Rule: EXPRESSION evaluates to the previous value of the register.
-class CallFrameInfo::ValExpressionRule: public CallFrameInfo::Rule {
- public:
- explicit ValExpressionRule(const string &expression)
- : expression_(expression) { }
- ~ValExpressionRule() { }
- CFIRTag getTag() const { return CFIR_VAL_EXPRESSION_RULE; }
- bool Handle(Handler *handler, uint64 address, int reg) const {
- return handler->ValExpressionRule(address, reg, expression_);
- }
- bool operator==(const Rule &rhs) const {
- if (rhs.getTag() != CFIR_VAL_EXPRESSION_RULE) return false;
- const ValExpressionRule *our_rhs =
- static_cast<const ValExpressionRule *>(&rhs);
- return (expression_ == our_rhs->expression_);
- }
- Rule *Copy() const { return new ValExpressionRule(*this); }
- private:
- string expression_;
-};
-
-// A map from register numbers to rules.
-class CallFrameInfo::RuleMap {
- public:
- RuleMap() : cfa_rule_(NULL) { }
- RuleMap(const RuleMap &rhs) : cfa_rule_(NULL) { *this = rhs; }
- ~RuleMap() { Clear(); }
-
- RuleMap &operator=(const RuleMap &rhs);
-
- // Set the rule for computing the CFA to RULE. Take ownership of RULE.
- void SetCFARule(Rule *rule) { delete cfa_rule_; cfa_rule_ = rule; }
-
- // Return the current CFA rule. Unlike RegisterRule, this RuleMap retains
- // ownership of the rule. We use this for DW_CFA_def_cfa_offset and
- // DW_CFA_def_cfa_register, and for detecting references to the CFA before
- // a rule for it has been established.
- Rule *CFARule() const { return cfa_rule_; }
-
- // Return the rule for REG, or NULL if there is none. The caller takes
- // ownership of the result.
- Rule *RegisterRule(int reg) const;
-
- // Set the rule for computing REG to RULE. Take ownership of RULE.
- void SetRegisterRule(int reg, Rule *rule);
-
- // Make all the appropriate calls to HANDLER as if we were changing from
- // this RuleMap to NEW_RULES at ADDRESS. We use this to implement
- // DW_CFA_restore_state, where lots of rules can change simultaneously.
- // Return true if all handlers returned true; otherwise, return false.
- bool HandleTransitionTo(Handler *handler, uint64 address,
- const RuleMap &new_rules) const;
-
- private:
- // A map from register numbers to Rules.
- typedef std::map<int, Rule *> RuleByNumber;
-
- // Remove all register rules and clear cfa_rule_.
- void Clear();
-
- // The rule for computing the canonical frame address. This RuleMap owns
- // this rule.
- Rule *cfa_rule_;
-
- // A map from register numbers to postfix expressions to recover
- // their values. This RuleMap owns the Rules the map refers to.
- RuleByNumber registers_;
-};
-
-CallFrameInfo::RuleMap &CallFrameInfo::RuleMap::operator=(const RuleMap &rhs) {
- Clear();
- // Since each map owns the rules it refers to, assignment must copy them.
- if (rhs.cfa_rule_) cfa_rule_ = rhs.cfa_rule_->Copy();
- for (RuleByNumber::const_iterator it = rhs.registers_.begin();
- it != rhs.registers_.end(); it++)
- registers_[it->first] = it->second->Copy();
- return *this;
-}
-
-CallFrameInfo::Rule *CallFrameInfo::RuleMap::RegisterRule(int reg) const {
- MOZ_ASSERT(reg != Handler::kCFARegister);
- RuleByNumber::const_iterator it = registers_.find(reg);
- if (it != registers_.end())
- return it->second->Copy();
- else
- return NULL;
-}
-
-void CallFrameInfo::RuleMap::SetRegisterRule(int reg, Rule *rule) {
- MOZ_ASSERT(reg != Handler::kCFARegister);
- MOZ_ASSERT(rule);
- Rule **slot = &registers_[reg];
- delete *slot;
- *slot = rule;
-}
-
-bool CallFrameInfo::RuleMap::HandleTransitionTo(
- Handler *handler,
- uint64 address,
- const RuleMap &new_rules) const {
- // Transition from cfa_rule_ to new_rules.cfa_rule_.
- if (cfa_rule_ && new_rules.cfa_rule_) {
- if (*cfa_rule_ != *new_rules.cfa_rule_ &&
- !new_rules.cfa_rule_->Handle(handler, address, Handler::kCFARegister))
- return false;
- } else if (cfa_rule_) {
- // this RuleMap has a CFA rule but new_rules doesn't.
- // CallFrameInfo::Handler has no way to handle this --- and shouldn't;
- // it's garbage input. The instruction interpreter should have
- // detected this and warned, so take no action here.
- } else if (new_rules.cfa_rule_) {
- // This shouldn't be possible: NEW_RULES is some prior state, and
- // there's no way to remove entries.
- MOZ_ASSERT(0);
- } else {
- // Both CFA rules are empty. No action needed.
- }
-
- // Traverse the two maps in order by register number, and report
- // whatever differences we find.
- RuleByNumber::const_iterator old_it = registers_.begin();
- RuleByNumber::const_iterator new_it = new_rules.registers_.begin();
- while (old_it != registers_.end() && new_it != new_rules.registers_.end()) {
- if (old_it->first < new_it->first) {
- // This RuleMap has an entry for old_it->first, but NEW_RULES
- // doesn't.
- //
- // This isn't really the right thing to do, but since CFI generally
- // only mentions callee-saves registers, and GCC's convention for
- // callee-saves registers is that they are unchanged, it's a good
- // approximation.
- if (!handler->SameValueRule(address, old_it->first))
- return false;
- old_it++;
- } else if (old_it->first > new_it->first) {
- // NEW_RULES has entry for new_it->first, but this RuleMap
- // doesn't. This shouldn't be possible: NEW_RULES is some prior
- // state, and there's no way to remove entries.
- MOZ_ASSERT(0);
- } else {
- // Both maps have an entry for this register. Report the new
- // rule if it is different.
- if (*old_it->second != *new_it->second &&
- !new_it->second->Handle(handler, address, new_it->first))
- return false;
- new_it++, old_it++;
- }
- }
- // Finish off entries from this RuleMap with no counterparts in new_rules.
- while (old_it != registers_.end()) {
- if (!handler->SameValueRule(address, old_it->first))
- return false;
- old_it++;
- }
- // Since we only make transitions from a rule set to some previously
- // saved rule set, and we can only add rules to the map, NEW_RULES
- // must have fewer rules than *this.
- MOZ_ASSERT(new_it == new_rules.registers_.end());
-
- return true;
-}
-
-// Remove all register rules and clear cfa_rule_.
-void CallFrameInfo::RuleMap::Clear() {
- delete cfa_rule_;
- cfa_rule_ = NULL;
- for (RuleByNumber::iterator it = registers_.begin();
- it != registers_.end(); it++)
- delete it->second;
- registers_.clear();
-}
-
-// The state of the call frame information interpreter as it processes
-// instructions from a CIE and FDE.
-class CallFrameInfo::State {
- public:
- // Create a call frame information interpreter state with the given
- // reporter, reader, handler, and initial call frame info address.
- State(ByteReader *reader, Handler *handler, Reporter *reporter,
- uint64 address)
- : reader_(reader), handler_(handler), reporter_(reporter),
- address_(address), entry_(NULL), cursor_(NULL),
- saved_rules_(NULL) { }
-
- ~State() {
- if (saved_rules_)
- delete saved_rules_;
- }
-
- // Interpret instructions from CIE, save the resulting rule set for
- // DW_CFA_restore instructions, and return true. On error, report
- // the problem to reporter_ and return false.
- bool InterpretCIE(const CIE &cie);
-
- // Interpret instructions from FDE, and return true. On error,
- // report the problem to reporter_ and return false.
- bool InterpretFDE(const FDE &fde);
-
- private:
- // The operands of a CFI instruction, for ParseOperands.
- struct Operands {
- unsigned register_number; // A register number.
- uint64 offset; // An offset or address.
- long signed_offset; // A signed offset.
- string expression; // A DWARF expression.
- };
-
- // Parse CFI instruction operands from STATE's instruction stream as
- // described by FORMAT. On success, populate OPERANDS with the
- // results, and return true. On failure, report the problem and
- // return false.
- //
- // Each character of FORMAT should be one of the following:
- //
- // 'r' unsigned LEB128 register number (OPERANDS->register_number)
- // 'o' unsigned LEB128 offset (OPERANDS->offset)
- // 's' signed LEB128 offset (OPERANDS->signed_offset)
- // 'a' machine-size address (OPERANDS->offset)
- // (If the CIE has a 'z' augmentation string, 'a' uses the
- // encoding specified by the 'R' argument.)
- // '1' a one-byte offset (OPERANDS->offset)
- // '2' a two-byte offset (OPERANDS->offset)
- // '4' a four-byte offset (OPERANDS->offset)
- // '8' an eight-byte offset (OPERANDS->offset)
- // 'e' a DW_FORM_block holding a (OPERANDS->expression)
- // DWARF expression
- bool ParseOperands(const char *format, Operands *operands);
-
- // Interpret one CFI instruction from STATE's instruction stream, update
- // STATE, report any rule changes to handler_, and return true. On
- // failure, report the problem and return false.
- bool DoInstruction();
-
- // The following Do* member functions are subroutines of DoInstruction,
- // factoring out the actual work of operations that have several
- // different encodings.
-
- // Set the CFA rule to be the value of BASE_REGISTER plus OFFSET, and
- // return true. On failure, report and return false. (Used for
- // DW_CFA_def_cfa and DW_CFA_def_cfa_sf.)
- bool DoDefCFA(unsigned base_register, long offset);
-
- // Change the offset of the CFA rule to OFFSET, and return true. On
- // failure, report and return false. (Subroutine for
- // DW_CFA_def_cfa_offset and DW_CFA_def_cfa_offset_sf.)
- bool DoDefCFAOffset(long offset);
-
- // Specify that REG can be recovered using RULE, and return true. On
- // failure, report and return false.
- bool DoRule(unsigned reg, Rule *rule);
-
- // Specify that REG can be found at OFFSET from the CFA, and return true.
- // On failure, report and return false. (Subroutine for DW_CFA_offset,
- // DW_CFA_offset_extended, and DW_CFA_offset_extended_sf.)
- bool DoOffset(unsigned reg, long offset);
-
- // Specify that the caller's value for REG is the CFA plus OFFSET,
- // and return true. On failure, report and return false. (Subroutine
- // for DW_CFA_val_offset and DW_CFA_val_offset_sf.)
- bool DoValOffset(unsigned reg, long offset);
-
- // Restore REG to the rule established in the CIE, and return true. On
- // failure, report and return false. (Subroutine for DW_CFA_restore and
- // DW_CFA_restore_extended.)
- bool DoRestore(unsigned reg);
-
- // Return the section offset of the instruction at cursor. For use
- // in error messages.
- uint64 CursorOffset() { return entry_->offset + (cursor_ - entry_->start); }
-
- // Report that entry_ is incomplete, and return false. For brevity.
- bool ReportIncomplete() {
- reporter_->Incomplete(entry_->offset, entry_->kind);
- return false;
- }
-
- // For reading multi-byte values with the appropriate endianness.
- ByteReader *reader_;
-
- // The handler to which we should report the data we find.
- Handler *handler_;
-
- // For reporting problems in the info we're parsing.
- Reporter *reporter_;
-
- // The code address to which the next instruction in the stream applies.
- uint64 address_;
-
- // The entry whose instructions we are currently processing. This is
- // first a CIE, and then an FDE.
- const Entry *entry_;
-
- // The next instruction to process.
- const char *cursor_;
-
- // The current set of rules.
- RuleMap rules_;
-
- // The set of rules established by the CIE, used by DW_CFA_restore
- // and DW_CFA_restore_extended. We set this after interpreting the
- // CIE's instructions.
- RuleMap cie_rules_;
-
- // A stack of saved states, for DW_CFA_remember_state and
- // DW_CFA_restore_state.
- std::stack<RuleMap>* saved_rules_;
-};
-
-bool CallFrameInfo::State::InterpretCIE(const CIE &cie) {
- entry_ = &cie;
- cursor_ = entry_->instructions;
- while (cursor_ < entry_->end)
- if (!DoInstruction())
- return false;
- // Note the rules established by the CIE, for use by DW_CFA_restore
- // and DW_CFA_restore_extended.
- cie_rules_ = rules_;
- return true;
-}
-
-bool CallFrameInfo::State::InterpretFDE(const FDE &fde) {
- entry_ = &fde;
- cursor_ = entry_->instructions;
- while (cursor_ < entry_->end)
- if (!DoInstruction())
- return false;
- return true;
-}
-
-bool CallFrameInfo::State::ParseOperands(const char *format,
- Operands *operands) {
- size_t len;
- const char *operand;
-
- for (operand = format; *operand; operand++) {
- size_t bytes_left = entry_->end - cursor_;
- switch (*operand) {
- case 'r':
- operands->register_number = reader_->ReadUnsignedLEB128(cursor_, &len);
- if (len > bytes_left) return ReportIncomplete();
- cursor_ += len;
- break;
-
- case 'o':
- operands->offset = reader_->ReadUnsignedLEB128(cursor_, &len);
- if (len > bytes_left) return ReportIncomplete();
- cursor_ += len;
- break;
-
- case 's':
- operands->signed_offset = reader_->ReadSignedLEB128(cursor_, &len);
- if (len > bytes_left) return ReportIncomplete();
- cursor_ += len;
- break;
-
- case 'a':
- operands->offset =
- reader_->ReadEncodedPointer(cursor_, entry_->cie->pointer_encoding,
- &len);
- if (len > bytes_left) return ReportIncomplete();
- cursor_ += len;
- break;
-
- case '1':
- if (1 > bytes_left) return ReportIncomplete();
- operands->offset = static_cast<unsigned char>(*cursor_++);
- break;
-
- case '2':
- if (2 > bytes_left) return ReportIncomplete();
- operands->offset = reader_->ReadTwoBytes(cursor_);
- cursor_ += 2;
- break;
-
- case '4':
- if (4 > bytes_left) return ReportIncomplete();
- operands->offset = reader_->ReadFourBytes(cursor_);
- cursor_ += 4;
- break;
-
- case '8':
- if (8 > bytes_left) return ReportIncomplete();
- operands->offset = reader_->ReadEightBytes(cursor_);
- cursor_ += 8;
- break;
-
- case 'e': {
- size_t expression_length = reader_->ReadUnsignedLEB128(cursor_, &len);
- if (len > bytes_left || expression_length > bytes_left - len)
- return ReportIncomplete();
- cursor_ += len;
- operands->expression = string(cursor_, expression_length);
- cursor_ += expression_length;
- break;
- }
-
- default:
- MOZ_ASSERT(0);
- }
- }
-
- return true;
-}
-
-bool CallFrameInfo::State::DoInstruction() {
- CIE *cie = entry_->cie;
- Operands ops;
-
- // Our entry's kind should have been set by now.
- MOZ_ASSERT(entry_->kind != kUnknown);
-
- // We shouldn't have been invoked unless there were more
- // instructions to parse.
- MOZ_ASSERT(cursor_ < entry_->end);
-
- unsigned opcode = *cursor_++;
- if ((opcode & 0xc0) != 0) {
- switch (opcode & 0xc0) {
- // Advance the address.
- case DW_CFA_advance_loc: {
- size_t code_offset = opcode & 0x3f;
- address_ += code_offset * cie->code_alignment_factor;
- break;
- }
-
- // Find a register at an offset from the CFA.
- case DW_CFA_offset:
- if (!ParseOperands("o", &ops) ||
- !DoOffset(opcode & 0x3f, ops.offset * cie->data_alignment_factor))
- return false;
- break;
-
- // Restore the rule established for a register by the CIE.
- case DW_CFA_restore:
- if (!DoRestore(opcode & 0x3f)) return false;
- break;
-
- // The 'if' above should have excluded this possibility.
- default:
- MOZ_ASSERT(0);
- }
-
- // Return here, so the big switch below won't be indented.
- return true;
- }
-
- switch (opcode) {
- // Set the address.
- case DW_CFA_set_loc:
- if (!ParseOperands("a", &ops)) return false;
- address_ = ops.offset;
- break;
-
- // Advance the address.
- case DW_CFA_advance_loc1:
- if (!ParseOperands("1", &ops)) return false;
- address_ += ops.offset * cie->code_alignment_factor;
- break;
-
- // Advance the address.
- case DW_CFA_advance_loc2:
- if (!ParseOperands("2", &ops)) return false;
- address_ += ops.offset * cie->code_alignment_factor;
- break;
-
- // Advance the address.
- case DW_CFA_advance_loc4:
- if (!ParseOperands("4", &ops)) return false;
- address_ += ops.offset * cie->code_alignment_factor;
- break;
-
- // Advance the address.
- case DW_CFA_MIPS_advance_loc8:
- if (!ParseOperands("8", &ops)) return false;
- address_ += ops.offset * cie->code_alignment_factor;
- break;
-
- // Compute the CFA by adding an offset to a register.
- case DW_CFA_def_cfa:
- if (!ParseOperands("ro", &ops) ||
- !DoDefCFA(ops.register_number, ops.offset))
- return false;
- break;
-
- // Compute the CFA by adding an offset to a register.
- case DW_CFA_def_cfa_sf:
- if (!ParseOperands("rs", &ops) ||
- !DoDefCFA(ops.register_number,
- ops.signed_offset * cie->data_alignment_factor))
- return false;
- break;
-
- // Change the base register used to compute the CFA.
- case DW_CFA_def_cfa_register: {
- Rule *cfa_rule = rules_.CFARule();
- if (!cfa_rule) {
- reporter_->NoCFARule(entry_->offset, entry_->kind, CursorOffset());
- return false;
- }
- if (!ParseOperands("r", &ops)) return false;
- cfa_rule->SetBaseRegister(ops.register_number);
- if (!cfa_rule->Handle(handler_, address_, Handler::kCFARegister))
- return false;
- break;
- }
-
- // Change the offset used to compute the CFA.
- case DW_CFA_def_cfa_offset:
- if (!ParseOperands("o", &ops) ||
- !DoDefCFAOffset(ops.offset))
- return false;
- break;
-
- // Change the offset used to compute the CFA.
- case DW_CFA_def_cfa_offset_sf:
- if (!ParseOperands("s", &ops) ||
- !DoDefCFAOffset(ops.signed_offset * cie->data_alignment_factor))
- return false;
- break;
-
- // Specify an expression whose value is the CFA.
- case DW_CFA_def_cfa_expression: {
- if (!ParseOperands("e", &ops))
- return false;
- Rule *rule = new ValExpressionRule(ops.expression);
- rules_.SetCFARule(rule);
- if (!rule->Handle(handler_, address_, Handler::kCFARegister))
- return false;
- break;
- }
-
- // The register's value cannot be recovered.
- case DW_CFA_undefined: {
- if (!ParseOperands("r", &ops) ||
- !DoRule(ops.register_number, new UndefinedRule()))
- return false;
- break;
- }
-
- // The register's value is unchanged from its value in the caller.
- case DW_CFA_same_value: {
- if (!ParseOperands("r", &ops) ||
- !DoRule(ops.register_number, new SameValueRule()))
- return false;
- break;
- }
-
- // Find a register at an offset from the CFA.
- case DW_CFA_offset_extended:
- if (!ParseOperands("ro", &ops) ||
- !DoOffset(ops.register_number,
- ops.offset * cie->data_alignment_factor))
- return false;
- break;
-
- // The register is saved at an offset from the CFA.
- case DW_CFA_offset_extended_sf:
- if (!ParseOperands("rs", &ops) ||
- !DoOffset(ops.register_number,
- ops.signed_offset * cie->data_alignment_factor))
- return false;
- break;
-
- // The register is saved at an offset from the CFA.
- case DW_CFA_GNU_negative_offset_extended:
- if (!ParseOperands("ro", &ops) ||
- !DoOffset(ops.register_number,
- -ops.offset * cie->data_alignment_factor))
- return false;
- break;
-
- // The register's value is the sum of the CFA plus an offset.
- case DW_CFA_val_offset:
- if (!ParseOperands("ro", &ops) ||
- !DoValOffset(ops.register_number,
- ops.offset * cie->data_alignment_factor))
- return false;
- break;
-
- // The register's value is the sum of the CFA plus an offset.
- case DW_CFA_val_offset_sf:
- if (!ParseOperands("rs", &ops) ||
- !DoValOffset(ops.register_number,
- ops.signed_offset * cie->data_alignment_factor))
- return false;
- break;
-
- // The register has been saved in another register.
- case DW_CFA_register: {
- if (!ParseOperands("ro", &ops) ||
- !DoRule(ops.register_number, new RegisterRule(ops.offset)))
- return false;
- break;
- }
-
- // An expression yields the address at which the register is saved.
- case DW_CFA_expression: {
- if (!ParseOperands("re", &ops) ||
- !DoRule(ops.register_number, new ExpressionRule(ops.expression)))
- return false;
- break;
- }
-
- // An expression yields the caller's value for the register.
- case DW_CFA_val_expression: {
- if (!ParseOperands("re", &ops) ||
- !DoRule(ops.register_number, new ValExpressionRule(ops.expression)))
- return false;
- break;
- }
-
- // Restore the rule established for a register by the CIE.
- case DW_CFA_restore_extended:
- if (!ParseOperands("r", &ops) ||
- !DoRestore( ops.register_number))
- return false;
- break;
-
- // Save the current set of rules on a stack.
- case DW_CFA_remember_state:
- if (!saved_rules_) {
- saved_rules_ = new std::stack<RuleMap>();
- }
- saved_rules_->push(rules_);
- break;
-
- // Pop the current set of rules off the stack.
- case DW_CFA_restore_state: {
- if (!saved_rules_ || saved_rules_->empty()) {
- reporter_->EmptyStateStack(entry_->offset, entry_->kind,
- CursorOffset());
- return false;
- }
- const RuleMap &new_rules = saved_rules_->top();
- if (rules_.CFARule() && !new_rules.CFARule()) {
- reporter_->ClearingCFARule(entry_->offset, entry_->kind,
- CursorOffset());
- return false;
- }
- rules_.HandleTransitionTo(handler_, address_, new_rules);
- rules_ = new_rules;
- saved_rules_->pop();
- break;
- }
-
- // No operation. (Padding instruction.)
- case DW_CFA_nop:
- break;
-
- // A SPARC register window save: Registers 8 through 15 (%o0-%o7)
- // are saved in registers 24 through 31 (%i0-%i7), and registers
- // 16 through 31 (%l0-%l7 and %i0-%i7) are saved at CFA offsets
- // (0-15 * the register size). The register numbers must be
- // hard-coded. A GNU extension, and not a pretty one.
- case DW_CFA_GNU_window_save: {
- // Save %o0-%o7 in %i0-%i7.
- for (int i = 8; i < 16; i++)
- if (!DoRule(i, new RegisterRule(i + 16)))
- return false;
- // Save %l0-%l7 and %i0-%i7 at the CFA.
- for (int i = 16; i < 32; i++)
- // Assume that the byte reader's address size is the same as
- // the architecture's register size. !@#%*^ hilarious.
- if (!DoRule(i, new OffsetRule(Handler::kCFARegister,
- (i - 16) * reader_->AddressSize())))
- return false;
- break;
- }
-
- // I'm not sure what this is. GDB doesn't use it for unwinding.
- case DW_CFA_GNU_args_size:
- if (!ParseOperands("o", &ops)) return false;
- break;
-
- // An opcode we don't recognize.
- default: {
- reporter_->BadInstruction(entry_->offset, entry_->kind, CursorOffset());
- return false;
- }
- }
-
- return true;
-}
-
-bool CallFrameInfo::State::DoDefCFA(unsigned base_register, long offset) {
- Rule *rule = new ValOffsetRule(base_register, offset);
- rules_.SetCFARule(rule);
- return rule->Handle(handler_, address_, Handler::kCFARegister);
-}
-
-bool CallFrameInfo::State::DoDefCFAOffset(long offset) {
- Rule *cfa_rule = rules_.CFARule();
- if (!cfa_rule) {
- reporter_->NoCFARule(entry_->offset, entry_->kind, CursorOffset());
- return false;
- }
- cfa_rule->SetOffset(offset);
- return cfa_rule->Handle(handler_, address_, Handler::kCFARegister);
-}
-
-bool CallFrameInfo::State::DoRule(unsigned reg, Rule *rule) {
- rules_.SetRegisterRule(reg, rule);
- return rule->Handle(handler_, address_, reg);
-}
-
-bool CallFrameInfo::State::DoOffset(unsigned reg, long offset) {
- if (!rules_.CFARule()) {
- reporter_->NoCFARule(entry_->offset, entry_->kind, CursorOffset());
- return false;
- }
- return DoRule(reg,
- new OffsetRule(Handler::kCFARegister, offset));
-}
-
-bool CallFrameInfo::State::DoValOffset(unsigned reg, long offset) {
- if (!rules_.CFARule()) {
- reporter_->NoCFARule(entry_->offset, entry_->kind, CursorOffset());
- return false;
- }
- return DoRule(reg,
- new ValOffsetRule(Handler::kCFARegister, offset));
-}
-
-bool CallFrameInfo::State::DoRestore(unsigned reg) {
- // DW_CFA_restore and DW_CFA_restore_extended don't make sense in a CIE.
- if (entry_->kind == kCIE) {
- reporter_->RestoreInCIE(entry_->offset, CursorOffset());
- return false;
- }
- Rule *rule = cie_rules_.RegisterRule(reg);
- if (!rule) {
- // This isn't really the right thing to do, but since CFI generally
- // only mentions callee-saves registers, and GCC's convention for
- // callee-saves registers is that they are unchanged, it's a good
- // approximation.
- rule = new SameValueRule();
- }
- return DoRule(reg, rule);
-}
-
-bool CallFrameInfo::ReadEntryPrologue(const char *cursor, Entry *entry) {
- const char *buffer_end = buffer_ + buffer_length_;
-
- // Initialize enough of ENTRY for use in error reporting.
- entry->offset = cursor - buffer_;
- entry->start = cursor;
- entry->kind = kUnknown;
- entry->end = NULL;
-
- // Read the initial length. This sets reader_'s offset size.
- size_t length_size;
- uint64 length = reader_->ReadInitialLength(cursor, &length_size);
- if (length_size > size_t(buffer_end - cursor))
- return ReportIncomplete(entry);
- cursor += length_size;
-
- // In a .eh_frame section, a length of zero marks the end of the series
- // of entries.
- if (length == 0 && eh_frame_) {
- entry->kind = kTerminator;
- entry->end = cursor;
- return true;
- }
-
- // Validate the length.
- if (length > size_t(buffer_end - cursor))
- return ReportIncomplete(entry);
-
- // The length is the number of bytes after the initial length field;
- // we have that position handy at this point, so compute the end
- // now. (If we're parsing 64-bit-offset DWARF on a 32-bit machine,
- // and the length didn't fit in a size_t, we would have rejected it
- // above.)
- entry->end = cursor + length;
-
- // Parse the next field: either the offset of a CIE or a CIE id.
- size_t offset_size = reader_->OffsetSize();
- if (offset_size > size_t(entry->end - cursor)) return ReportIncomplete(entry);
- entry->id = reader_->ReadOffset(cursor);
-
- // Don't advance cursor past id field yet; in .eh_frame data we need
- // the id's position to compute the section offset of an FDE's CIE.
-
- // Now we can decide what kind of entry this is.
- if (eh_frame_) {
- // In .eh_frame data, an ID of zero marks the entry as a CIE, and
- // anything else is an offset from the id field of the FDE to the start
- // of the CIE.
- if (entry->id == 0) {
- entry->kind = kCIE;
- } else {
- entry->kind = kFDE;
- // Turn the offset from the id into an offset from the buffer's start.
- entry->id = (cursor - buffer_) - entry->id;
- }
- } else {
- // In DWARF CFI data, an ID of ~0 (of the appropriate width, given the
- // offset size for the entry) marks the entry as a CIE, and anything
- // else is the offset of the CIE from the beginning of the section.
- if (offset_size == 4)
- entry->kind = (entry->id == 0xffffffff) ? kCIE : kFDE;
- else {
- MOZ_ASSERT(offset_size == 8);
- entry->kind = (entry->id == 0xffffffffffffffffULL) ? kCIE : kFDE;
- }
- }
-
- // Now advance cursor past the id.
- cursor += offset_size;
-
- // The fields specific to this kind of entry start here.
- entry->fields = cursor;
-
- entry->cie = NULL;
-
- return true;
-}
-
-bool CallFrameInfo::ReadCIEFields(CIE *cie) {
- const char *cursor = cie->fields;
- size_t len;
-
- MOZ_ASSERT(cie->kind == kCIE);
-
- // Prepare for early exit.
- cie->version = 0;
- cie->augmentation.clear();
- cie->code_alignment_factor = 0;
- cie->data_alignment_factor = 0;
- cie->return_address_register = 0;
- cie->has_z_augmentation = false;
- cie->pointer_encoding = DW_EH_PE_absptr;
- cie->instructions = 0;
-
- // Parse the version number.
- if (cie->end - cursor < 1)
- return ReportIncomplete(cie);
- cie->version = reader_->ReadOneByte(cursor);
- cursor++;
-
- // If we don't recognize the version, we can't parse any more fields of the
- // CIE. For DWARF CFI, we handle versions 1 through 3 (there was never a
- // version 2 of CFI data). For .eh_frame, we handle versions 1 and 3 as well;
- // the difference between those versions seems to be the same as for
- // .debug_frame.
- if (cie->version < 1 || cie->version > 3) {
- reporter_->UnrecognizedVersion(cie->offset, cie->version);
- return false;
- }
-
- const char *augmentation_start = cursor;
- const void *augmentation_end =
- memchr(augmentation_start, '\0', cie->end - augmentation_start);
- if (! augmentation_end) return ReportIncomplete(cie);
- cursor = static_cast<const char *>(augmentation_end);
- cie->augmentation = string(augmentation_start,
- cursor - augmentation_start);
- // Skip the terminating '\0'.
- cursor++;
-
- // Is this CFI augmented?
- if (!cie->augmentation.empty()) {
- // Is it an augmentation we recognize?
- if (cie->augmentation[0] == DW_Z_augmentation_start) {
- // Linux C++ ABI 'z' augmentation, used for exception handling data.
- cie->has_z_augmentation = true;
- } else {
- // Not an augmentation we recognize. Augmentations can have arbitrary
- // effects on the form of rest of the content, so we have to give up.
- reporter_->UnrecognizedAugmentation(cie->offset, cie->augmentation);
- return false;
- }
- }
-
- // Parse the code alignment factor.
- cie->code_alignment_factor = reader_->ReadUnsignedLEB128(cursor, &len);
- if (size_t(cie->end - cursor) < len) return ReportIncomplete(cie);
- cursor += len;
-
- // Parse the data alignment factor.
- cie->data_alignment_factor = reader_->ReadSignedLEB128(cursor, &len);
- if (size_t(cie->end - cursor) < len) return ReportIncomplete(cie);
- cursor += len;
-
- // Parse the return address register. This is a ubyte in version 1, and
- // a ULEB128 in version 3.
- if (cie->version == 1) {
- if (cursor >= cie->end) return ReportIncomplete(cie);
- cie->return_address_register = uint8(*cursor++);
- } else {
- cie->return_address_register = reader_->ReadUnsignedLEB128(cursor, &len);
- if (size_t(cie->end - cursor) < len) return ReportIncomplete(cie);
- cursor += len;
- }
-
- // If we have a 'z' augmentation string, find the augmentation data and
- // use the augmentation string to parse it.
- if (cie->has_z_augmentation) {
- uint64_t data_size = reader_->ReadUnsignedLEB128(cursor, &len);
- if (size_t(cie->end - cursor) < len + data_size)
- return ReportIncomplete(cie);
- cursor += len;
- const char *data = cursor;
- cursor += data_size;
- const char *data_end = cursor;
-
- cie->has_z_lsda = false;
- cie->has_z_personality = false;
- cie->has_z_signal_frame = false;
-
- // Walk the augmentation string, and extract values from the
- // augmentation data as the string directs.
- for (size_t i = 1; i < cie->augmentation.size(); i++) {
- switch (cie->augmentation[i]) {
- case DW_Z_has_LSDA:
- // The CIE's augmentation data holds the language-specific data
- // area pointer's encoding, and the FDE's augmentation data holds
- // the pointer itself.
- cie->has_z_lsda = true;
- // Fetch the LSDA encoding from the augmentation data.
- if (data >= data_end) return ReportIncomplete(cie);
- cie->lsda_encoding = DwarfPointerEncoding(*data++);
- if (!reader_->ValidEncoding(cie->lsda_encoding)) {
- reporter_->InvalidPointerEncoding(cie->offset, cie->lsda_encoding);
- return false;
- }
- // Don't check if the encoding is usable here --- we haven't
- // read the FDE's fields yet, so we're not prepared for
- // DW_EH_PE_funcrel, although that's a fine encoding for the
- // LSDA to use, since it appears in the FDE.
- break;
-
- case DW_Z_has_personality_routine:
- // The CIE's augmentation data holds the personality routine
- // pointer's encoding, followed by the pointer itself.
- cie->has_z_personality = true;
- // Fetch the personality routine pointer's encoding from the
- // augmentation data.
- if (data >= data_end) return ReportIncomplete(cie);
- cie->personality_encoding = DwarfPointerEncoding(*data++);
- if (!reader_->ValidEncoding(cie->personality_encoding)) {
- reporter_->InvalidPointerEncoding(cie->offset,
- cie->personality_encoding);
- return false;
- }
- if (!reader_->UsableEncoding(cie->personality_encoding)) {
- reporter_->UnusablePointerEncoding(cie->offset,
- cie->personality_encoding);
- return false;
- }
- // Fetch the personality routine's pointer itself from the data.
- cie->personality_address =
- reader_->ReadEncodedPointer(data, cie->personality_encoding,
- &len);
- if (len > size_t(data_end - data))
- return ReportIncomplete(cie);
- data += len;
- break;
-
- case DW_Z_has_FDE_address_encoding:
- // The CIE's augmentation data holds the pointer encoding to use
- // for addresses in the FDE.
- if (data >= data_end) return ReportIncomplete(cie);
- cie->pointer_encoding = DwarfPointerEncoding(*data++);
- if (!reader_->ValidEncoding(cie->pointer_encoding)) {
- reporter_->InvalidPointerEncoding(cie->offset,
- cie->pointer_encoding);
- return false;
- }
- if (!reader_->UsableEncoding(cie->pointer_encoding)) {
- reporter_->UnusablePointerEncoding(cie->offset,
- cie->pointer_encoding);
- return false;
- }
- break;
-
- case DW_Z_is_signal_trampoline:
- // Frames using this CIE are signal delivery frames.
- cie->has_z_signal_frame = true;
- break;
-
- default:
- // An augmentation we don't recognize.
- reporter_->UnrecognizedAugmentation(cie->offset, cie->augmentation);
- return false;
- }
- }
- }
-
- // The CIE's instructions start here.
- cie->instructions = cursor;
-
- return true;
-}
-
-bool CallFrameInfo::ReadFDEFields(FDE *fde) {
- const char *cursor = fde->fields;
- size_t size;
-
- fde->address = reader_->ReadEncodedPointer(cursor, fde->cie->pointer_encoding,
- &size);
- if (size > size_t(fde->end - cursor))
- return ReportIncomplete(fde);
- cursor += size;
- reader_->SetFunctionBase(fde->address);
-
- // For the length, we strip off the upper nybble of the encoding used for
- // the starting address.
- DwarfPointerEncoding length_encoding =
- DwarfPointerEncoding(fde->cie->pointer_encoding & 0x0f);
- fde->size = reader_->ReadEncodedPointer(cursor, length_encoding, &size);
- if (size > size_t(fde->end - cursor))
- return ReportIncomplete(fde);
- cursor += size;
-
- // If the CIE has a 'z' augmentation string, then augmentation data
- // appears here.
- if (fde->cie->has_z_augmentation) {
- uint64_t data_size = reader_->ReadUnsignedLEB128(cursor, &size);
- if (size_t(fde->end - cursor) < size + data_size)
- return ReportIncomplete(fde);
- cursor += size;
-
- // In the abstract, we should walk the augmentation string, and extract
- // items from the FDE's augmentation data as we encounter augmentation
- // string characters that specify their presence: the ordering of items
- // in the augmentation string determines the arrangement of values in
- // the augmentation data.
- //
- // In practice, there's only ever one value in FDE augmentation data
- // that we support --- the LSDA pointer --- and we have to bail if we
- // see any unrecognized augmentation string characters. So if there is
- // anything here at all, we know what it is, and where it starts.
- if (fde->cie->has_z_lsda) {
- // Check whether the LSDA's pointer encoding is usable now: only once
- // we've parsed the FDE's starting address do we call reader_->
- // SetFunctionBase, so that the DW_EH_PE_funcrel encoding becomes
- // usable.
- if (!reader_->UsableEncoding(fde->cie->lsda_encoding)) {
- reporter_->UnusablePointerEncoding(fde->cie->offset,
- fde->cie->lsda_encoding);
- return false;
- }
-
- fde->lsda_address =
- reader_->ReadEncodedPointer(cursor, fde->cie->lsda_encoding, &size);
- if (size > data_size)
- return ReportIncomplete(fde);
- // Ideally, we would also complain here if there were unconsumed
- // augmentation data.
- }
-
- cursor += data_size;
- }
-
- // The FDE's instructions start after those.
- fde->instructions = cursor;
-
- return true;
-}
-
-bool CallFrameInfo::Start() {
- const char *buffer_end = buffer_ + buffer_length_;
- const char *cursor;
- bool all_ok = true;
- const char *entry_end;
- bool ok;
-
- // Traverse all the entries in buffer_, skipping CIEs and offering
- // FDEs to the handler.
- for (cursor = buffer_; cursor < buffer_end;
- cursor = entry_end, all_ok = all_ok && ok) {
- FDE fde;
-
- // Make it easy to skip this entry with 'continue': assume that
- // things are not okay until we've checked all the data, and
- // prepare the address of the next entry.
- ok = false;
-
- // Read the entry's prologue.
- if (!ReadEntryPrologue(cursor, &fde)) {
- if (!fde.end) {
- // If we couldn't even figure out this entry's extent, then we
- // must stop processing entries altogether.
- all_ok = false;
- break;
- }
- entry_end = fde.end;
- continue;
- }
-
- // The next iteration picks up after this entry.
- entry_end = fde.end;
-
- // Did we see an .eh_frame terminating mark?
- if (fde.kind == kTerminator) {
- // If there appears to be more data left in the section after the
- // terminating mark, warn the user. But this is just a warning;
- // we leave all_ok true.
- if (fde.end < buffer_end) reporter_->EarlyEHTerminator(fde.offset);
- break;
- }
-
- // In this loop, we skip CIEs. We only parse them fully when we
- // parse an FDE that refers to them. This limits our memory
- // consumption (beyond the buffer itself) to that needed to
- // process the largest single entry.
- if (fde.kind != kFDE) {
- ok = true;
- continue;
- }
-
- // Validate the CIE pointer.
- if (fde.id > buffer_length_) {
- reporter_->CIEPointerOutOfRange(fde.offset, fde.id);
- continue;
- }
-
- CIE cie;
-
- // Parse this FDE's CIE header.
- if (!ReadEntryPrologue(buffer_ + fde.id, &cie))
- continue;
- // This had better be an actual CIE.
- if (cie.kind != kCIE) {
- reporter_->BadCIEId(fde.offset, fde.id);
- continue;
- }
- if (!ReadCIEFields(&cie))
- continue;
-
- // We now have the values that govern both the CIE and the FDE.
- cie.cie = &cie;
- fde.cie = &cie;
-
- // Parse the FDE's header.
- if (!ReadFDEFields(&fde))
- continue;
-
- // Call Entry to ask the consumer if they're interested.
- if (!handler_->Entry(fde.offset, fde.address, fde.size,
- cie.version, cie.augmentation,
- cie.return_address_register)) {
- // The handler isn't interested in this entry. That's not an error.
- ok = true;
- continue;
- }
-
- if (cie.has_z_augmentation) {
- // Report the personality routine address, if we have one.
- if (cie.has_z_personality) {
- if (!handler_
- ->PersonalityRoutine(cie.personality_address,
- IsIndirectEncoding(cie.personality_encoding)))
- continue;
- }
-
- // Report the language-specific data area address, if we have one.
- if (cie.has_z_lsda) {
- if (!handler_
- ->LanguageSpecificDataArea(fde.lsda_address,
- IsIndirectEncoding(cie.lsda_encoding)))
- continue;
- }
-
- // If this is a signal-handling frame, report that.
- if (cie.has_z_signal_frame) {
- if (!handler_->SignalHandler())
- continue;
- }
- }
-
- // Interpret the CIE's instructions, and then the FDE's instructions.
- State state(reader_, handler_, reporter_, fde.address);
- ok = state.InterpretCIE(cie) && state.InterpretFDE(fde);
-
- // Tell the ByteReader that the function start address from the
- // FDE header is no longer valid.
- reader_->ClearFunctionBase();
-
- // Report the end of the entry.
- handler_->End();
- }
-
- return all_ok;
-}
-
-const char *CallFrameInfo::KindName(EntryKind kind) {
- if (kind == CallFrameInfo::kUnknown)
- return "entry";
- else if (kind == CallFrameInfo::kCIE)
- return "common information entry";
- else if (kind == CallFrameInfo::kFDE)
- return "frame description entry";
- else {
- MOZ_ASSERT (kind == CallFrameInfo::kTerminator);
- return ".eh_frame sequence terminator";
- }
-}
-
-bool CallFrameInfo::ReportIncomplete(Entry *entry) {
- reporter_->Incomplete(entry->offset, entry->kind);
- return false;
-}
-
-void CallFrameInfo::Reporter::Incomplete(uint64 offset,
- CallFrameInfo::EntryKind kind) {
- char buf[300];
- SprintfLiteral(buf,
- "%s: CFI %s at offset 0x%llx in '%s': entry ends early\n",
- filename_.c_str(), CallFrameInfo::KindName(kind), offset,
- section_.c_str());
- log_(buf);
-}
-
-void CallFrameInfo::Reporter::EarlyEHTerminator(uint64 offset) {
- char buf[300];
- SprintfLiteral(buf,
- "%s: CFI at offset 0x%llx in '%s': saw end-of-data marker"
- " before end of section contents\n",
- filename_.c_str(), offset, section_.c_str());
- log_(buf);
-}
-
-void CallFrameInfo::Reporter::CIEPointerOutOfRange(uint64 offset,
- uint64 cie_offset) {
- char buf[300];
- SprintfLiteral(buf,
- "%s: CFI frame description entry at offset 0x%llx in '%s':"
- " CIE pointer is out of range: 0x%llx\n",
- filename_.c_str(), offset, section_.c_str(), cie_offset);
- log_(buf);
-}
-
-void CallFrameInfo::Reporter::BadCIEId(uint64 offset, uint64 cie_offset) {
- char buf[300];
- SprintfLiteral(buf,
- "%s: CFI frame description entry at offset 0x%llx in '%s':"
- " CIE pointer does not point to a CIE: 0x%llx\n",
- filename_.c_str(), offset, section_.c_str(), cie_offset);
- log_(buf);
-}
-
-void CallFrameInfo::Reporter::UnrecognizedVersion(uint64 offset, int version) {
- char buf[300];
- SprintfLiteral(buf,
- "%s: CFI frame description entry at offset 0x%llx in '%s':"
- " CIE specifies unrecognized version: %d\n",
- filename_.c_str(), offset, section_.c_str(), version);
- log_(buf);
-}
-
-void CallFrameInfo::Reporter::UnrecognizedAugmentation(uint64 offset,
- const string &aug) {
- char buf[300];
- SprintfLiteral(buf,
- "%s: CFI frame description entry at offset 0x%llx in '%s':"
- " CIE specifies unrecognized augmentation: '%s'\n",
- filename_.c_str(), offset, section_.c_str(), aug.c_str());
- log_(buf);
-}
-
-void CallFrameInfo::Reporter::InvalidPointerEncoding(uint64 offset,
- uint8 encoding) {
- char buf[300];
- SprintfLiteral(buf,
- "%s: CFI common information entry at offset 0x%llx in '%s':"
- " 'z' augmentation specifies invalid pointer encoding: "
- "0x%02x\n",
- filename_.c_str(), offset, section_.c_str(), encoding);
- log_(buf);
-}
-
-void CallFrameInfo::Reporter::UnusablePointerEncoding(uint64 offset,
- uint8 encoding) {
- char buf[300];
- SprintfLiteral(buf,
- "%s: CFI common information entry at offset 0x%llx in '%s':"
- " 'z' augmentation specifies a pointer encoding for which"
- " we have no base address: 0x%02x\n",
- filename_.c_str(), offset, section_.c_str(), encoding);
- log_(buf);
-}
-
-void CallFrameInfo::Reporter::RestoreInCIE(uint64 offset, uint64 insn_offset) {
- char buf[300];
- SprintfLiteral(buf,
- "%s: CFI common information entry at offset 0x%llx in '%s':"
- " the DW_CFA_restore instruction at offset 0x%llx"
- " cannot be used in a common information entry\n",
- filename_.c_str(), offset, section_.c_str(), insn_offset);
- log_(buf);
-}
-
-void CallFrameInfo::Reporter::BadInstruction(uint64 offset,
- CallFrameInfo::EntryKind kind,
- uint64 insn_offset) {
- char buf[300];
- SprintfLiteral(buf,
- "%s: CFI %s at offset 0x%llx in section '%s':"
- " the instruction at offset 0x%llx is unrecognized\n",
- filename_.c_str(), CallFrameInfo::KindName(kind),
- offset, section_.c_str(), insn_offset);
- log_(buf);
-}
-
-void CallFrameInfo::Reporter::NoCFARule(uint64 offset,
- CallFrameInfo::EntryKind kind,
- uint64 insn_offset) {
- char buf[300];
- SprintfLiteral(buf,
- "%s: CFI %s at offset 0x%llx in section '%s':"
- " the instruction at offset 0x%llx assumes that a CFA rule "
- "has been set, but none has been set\n",
- filename_.c_str(), CallFrameInfo::KindName(kind), offset,
- section_.c_str(), insn_offset);
- log_(buf);
-}
-
-void CallFrameInfo::Reporter::EmptyStateStack(uint64 offset,
- CallFrameInfo::EntryKind kind,
- uint64 insn_offset) {
- char buf[300];
- SprintfLiteral(buf,
- "%s: CFI %s at offset 0x%llx in section '%s':"
- " the DW_CFA_restore_state instruction at offset 0x%llx"
- " should pop a saved state from the stack, but the stack "
- "is empty\n",
- filename_.c_str(), CallFrameInfo::KindName(kind), offset,
- section_.c_str(), insn_offset);
- log_(buf);
-}
-
-void CallFrameInfo::Reporter::ClearingCFARule(uint64 offset,
- CallFrameInfo::EntryKind kind,
- uint64 insn_offset) {
- char buf[300];
- SprintfLiteral(buf,
- "%s: CFI %s at offset 0x%llx in section '%s':"
- " the DW_CFA_restore_state instruction at offset 0x%llx"
- " would clear the CFA rule in effect\n",
- filename_.c_str(), CallFrameInfo::KindName(kind), offset,
- section_.c_str(), insn_offset);
- log_(buf);
-}
-
-
-unsigned int DwarfCFIToModule::RegisterNames::I386() {
- /*
- 8 "$eax", "$ecx", "$edx", "$ebx", "$esp", "$ebp", "$esi", "$edi",
- 3 "$eip", "$eflags", "$unused1",
- 8 "$st0", "$st1", "$st2", "$st3", "$st4", "$st5", "$st6", "$st7",
- 2 "$unused2", "$unused3",
- 8 "$xmm0", "$xmm1", "$xmm2", "$xmm3", "$xmm4", "$xmm5", "$xmm6", "$xmm7",
- 8 "$mm0", "$mm1", "$mm2", "$mm3", "$mm4", "$mm5", "$mm6", "$mm7",
- 3 "$fcw", "$fsw", "$mxcsr",
- 8 "$es", "$cs", "$ss", "$ds", "$fs", "$gs", "$unused4", "$unused5",
- 2 "$tr", "$ldtr"
- */
- return 8 + 3 + 8 + 2 + 8 + 8 + 3 + 8 + 2;
-}
-
-unsigned int DwarfCFIToModule::RegisterNames::X86_64() {
- /*
- 8 "$rax", "$rdx", "$rcx", "$rbx", "$rsi", "$rdi", "$rbp", "$rsp",
- 8 "$r8", "$r9", "$r10", "$r11", "$r12", "$r13", "$r14", "$r15",
- 1 "$rip",
- 8 "$xmm0","$xmm1","$xmm2", "$xmm3", "$xmm4", "$xmm5", "$xmm6", "$xmm7",
- 8 "$xmm8","$xmm9","$xmm10","$xmm11","$xmm12","$xmm13","$xmm14","$xmm15",
- 8 "$st0", "$st1", "$st2", "$st3", "$st4", "$st5", "$st6", "$st7",
- 8 "$mm0", "$mm1", "$mm2", "$mm3", "$mm4", "$mm5", "$mm6", "$mm7",
- 1 "$rflags",
- 8 "$es", "$cs", "$ss", "$ds", "$fs", "$gs", "$unused1", "$unused2",
- 4 "$fs.base", "$gs.base", "$unused3", "$unused4",
- 2 "$tr", "$ldtr",
- 3 "$mxcsr", "$fcw", "$fsw"
- */
- return 8 + 8 + 1 + 8 + 8 + 8 + 8 + 1 + 8 + 4 + 2 + 3;
-}
-
-// Per ARM IHI 0040A, section 3.1
-unsigned int DwarfCFIToModule::RegisterNames::ARM() {
- /*
- 8 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
- 8 "r8", "r9", "r10", "r11", "r12", "sp", "lr", "pc",
- 8 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
- 8 "fps", "cpsr", "", "", "", "", "", "",
- 8 "", "", "", "", "", "", "", "",
- 8 "", "", "", "", "", "", "", "",
- 8 "", "", "", "", "", "", "", "",
- 8 "", "", "", "", "", "", "", "",
- 8 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
- 8 "s8", "s9", "s10", "s11", "s12", "s13", "s14", "s15",
- 8 "s16", "s17", "s18", "s19", "s20", "s21", "s22", "s23",
- 8 "s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31",
- 8 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7"
- */
- return 13 * 8;
-}
-
-// See prototype for comments.
-int32_t parseDwarfExpr(Summariser* summ, const ByteReader* reader,
- string expr, bool debug,
- bool pushCfaAtStart, bool derefAtEnd)
-{
- const char* cursor = expr.c_str();
- const char* end1 = cursor + expr.length();
-
- char buf[100];
- if (debug) {
- SprintfLiteral(buf, "LUL.DW << DwarfExpr, len is %d\n",
- (int)(end1 - cursor));
- summ->Log(buf);
- }
-
- // Add a marker for the start of this expression. In it, indicate
- // whether or not the CFA should be pushed onto the stack prior to
- // evaluation.
- int32_t start_ix
- = summ->AddPfxInstr(PfxInstr(PX_Start, pushCfaAtStart ? 1 : 0));
- MOZ_ASSERT(start_ix >= 0);
-
- while (cursor < end1) {
-
- uint8 opc = reader->ReadOneByte(cursor);
- cursor++;
-
- const char* nm = nullptr;
- PfxExprOp pxop = PX_End;
-
- switch (opc) {
-
- case DW_OP_lit0 ... DW_OP_lit31: {
- int32_t simm32 = (int32_t)(opc - DW_OP_lit0);
- if (debug) {
- SprintfLiteral(buf, "LUL.DW DW_OP_lit%d\n", (int)simm32);
- summ->Log(buf);
- }
- (void) summ->AddPfxInstr(PfxInstr(PX_SImm32, simm32));
- break;
- }
-
- case DW_OP_breg0 ... DW_OP_breg31: {
- size_t len;
- int64_t n = reader->ReadSignedLEB128(cursor, &len);
- cursor += len;
- DW_REG_NUMBER reg = (DW_REG_NUMBER)(opc - DW_OP_breg0);
- if (debug) {
- SprintfLiteral(buf, "LUL.DW DW_OP_breg%d %lld\n",
- (int)reg, (long long int)n);
- summ->Log(buf);
- }
- // PfxInstr only allows a 32 bit signed offset. So we
- // must fail if the immediate is out of range.
- if (n < INT32_MIN || INT32_MAX < n)
- goto fail;
- (void) summ->AddPfxInstr(PfxInstr(PX_DwReg, reg));
- (void) summ->AddPfxInstr(PfxInstr(PX_SImm32, (int32_t)n));
- (void) summ->AddPfxInstr(PfxInstr(PX_Add));
- break;
- }
-
- case DW_OP_const4s: {
- uint64_t u64 = reader->ReadFourBytes(cursor);
- cursor += 4;
- // u64 is guaranteed by |ReadFourBytes| to be in the
- // range 0 .. FFFFFFFF inclusive. But to be safe:
- uint32_t u32 = (uint32_t)(u64 & 0xFFFFFFFF);
- int32_t s32 = (int32_t)u32;
- if (debug) {
- SprintfLiteral(buf, "LUL.DW DW_OP_const4s %d\n", (int)s32);
- summ->Log(buf);
- }
- (void) summ->AddPfxInstr(PfxInstr(PX_SImm32, s32));
- break;
- }
-
- case DW_OP_deref: nm = "deref"; pxop = PX_Deref; goto no_operands;
- case DW_OP_and: nm = "and"; pxop = PX_And; goto no_operands;
- case DW_OP_plus: nm = "plus"; pxop = PX_Add; goto no_operands;
- case DW_OP_minus: nm = "minus"; pxop = PX_Sub; goto no_operands;
- case DW_OP_shl: nm = "shl"; pxop = PX_Shl; goto no_operands;
- case DW_OP_ge: nm = "ge"; pxop = PX_CmpGES; goto no_operands;
- no_operands:
- MOZ_ASSERT(nm && pxop != PX_End);
- if (debug) {
- SprintfLiteral(buf, "LUL.DW DW_OP_%s\n", nm);
- summ->Log(buf);
- }
- (void) summ->AddPfxInstr(PfxInstr(pxop));
- break;
-
- default:
- if (debug) {
- SprintfLiteral(buf, "LUL.DW unknown opc %d\n", (int)opc);
- summ->Log(buf);
- }
- goto fail;
-
- } // switch (opc)
-
- } // while (cursor < end1)
-
- MOZ_ASSERT(cursor >= end1);
-
- if (cursor > end1) {
- // We overran the Dwarf expression. Give up.
- goto fail;
- }
-
- // For DW_CFA_expression, what the expression denotes is the address
- // of where the previous value is located. The caller of this routine
- // may therefore request one last dereference before the end marker is
- // inserted.
- if (derefAtEnd) {
- (void) summ->AddPfxInstr(PfxInstr(PX_Deref));
- }
-
- // Insert an end marker, and declare success.
- (void) summ->AddPfxInstr(PfxInstr(PX_End));
- if (debug) {
- SprintfLiteral(buf, "LUL.DW conversion of dwarf expression succeeded, "
- "ix = %d\n", (int)start_ix);
- summ->Log(buf);
- summ->Log("LUL.DW >>\n");
- }
- return start_ix;
-
- fail:
- if (debug) {
- summ->Log("LUL.DW conversion of dwarf expression failed\n");
- summ->Log("LUL.DW >>\n");
- }
- return -1;
-}
-
-
-bool DwarfCFIToModule::Entry(size_t offset, uint64 address, uint64 length,
- uint8 version, const string &augmentation,
- unsigned return_address) {
- if (DEBUG_DWARF) {
- char buf[100];
- SprintfLiteral(buf, "LUL.DW DwarfCFIToModule::Entry 0x%llx,+%lld\n",
- address, length);
- summ_->Log(buf);
- }
-
- summ_->Entry(address, length);
-
- // If dwarf2reader::CallFrameInfo can handle this version and
- // augmentation, then we should be okay with that, so there's no
- // need to check them here.
-
- // Get ready to collect entries.
- return_address_ = return_address;
-
- // Breakpad STACK CFI records must provide a .ra rule, but DWARF CFI
- // may not establish any rule for .ra if the return address column
- // is an ordinary register, and that register holds the return
- // address on entry to the function. So establish an initial .ra
- // rule citing the return address register.
- if (return_address_ < num_dw_regs_) {
- summ_->Rule(address, return_address_, NODEREF, return_address, 0);
- }
-
- return true;
-}
-
-const UniqueString* DwarfCFIToModule::RegisterName(int i) {
- if (i < 0) {
- MOZ_ASSERT(i == kCFARegister);
- return usu_->ToUniqueString(".cfa");
- }
- unsigned reg = i;
- if (reg == return_address_)
- return usu_->ToUniqueString(".ra");
-
- char buf[30];
- SprintfLiteral(buf, "dwarf_reg_%u", reg);
- return usu_->ToUniqueString(buf);
-}
-
-bool DwarfCFIToModule::UndefinedRule(uint64 address, int reg) {
- reporter_->UndefinedNotSupported(entry_offset_, RegisterName(reg));
- // Treat this as a non-fatal error.
- return true;
-}
-
-bool DwarfCFIToModule::SameValueRule(uint64 address, int reg) {
- if (DEBUG_DWARF) {
- char buf[100];
- SprintfLiteral(buf, "LUL.DW 0x%llx: old r%d = Same\n", address, reg);
- summ_->Log(buf);
- }
- // reg + 0
- summ_->Rule(address, reg, NODEREF, reg, 0);
- return true;
-}
-
-bool DwarfCFIToModule::OffsetRule(uint64 address, int reg,
- int base_register, long offset) {
- if (DEBUG_DWARF) {
- char buf[100];
- SprintfLiteral(buf, "LUL.DW 0x%llx: old r%d = *(r%d + %ld)\n",
- address, reg, base_register, offset);
- summ_->Log(buf);
- }
- // *(base_register + offset)
- summ_->Rule(address, reg, DEREF, base_register, offset);
- return true;
-}
-
-bool DwarfCFIToModule::ValOffsetRule(uint64 address, int reg,
- int base_register, long offset) {
- if (DEBUG_DWARF) {
- char buf[100];
- SprintfLiteral(buf, "LUL.DW 0x%llx: old r%d = r%d + %ld\n",
- address, reg, base_register, offset);
- summ_->Log(buf);
- }
- // base_register + offset
- summ_->Rule(address, reg, NODEREF, base_register, offset);
- return true;
-}
-
-bool DwarfCFIToModule::RegisterRule(uint64 address, int reg,
- int base_register) {
- if (DEBUG_DWARF) {
- char buf[100];
- SprintfLiteral(buf, "LUL.DW 0x%llx: old r%d = r%d\n",
- address, reg, base_register);
- summ_->Log(buf);
- }
- // base_register + 0
- summ_->Rule(address, reg, NODEREF, base_register, 0);
- return true;
-}
-
-bool DwarfCFIToModule::ExpressionRule(uint64 address, int reg,
- const string &expression)
-{
- bool debug = !!DEBUG_DWARF;
- int32_t start_ix = parseDwarfExpr(summ_, reader_, expression, debug,
- true/*pushCfaAtStart*/,
- true/*derefAtEnd*/);
- if (start_ix >= 0) {
- summ_->Rule(address, reg, PFXEXPR, 0, start_ix);
- } else {
- // Parsing of the Dwarf expression failed. Treat this as a
- // non-fatal error, hence return |true| even on this path.
- reporter_->ExpressionCouldNotBeSummarised(entry_offset_, RegisterName(reg));
- }
- return true;
-}
-
-bool DwarfCFIToModule::ValExpressionRule(uint64 address, int reg,
- const string &expression)
-{
- bool debug = !!DEBUG_DWARF;
- int32_t start_ix = parseDwarfExpr(summ_, reader_, expression, debug,
- true/*pushCfaAtStart*/,
- false/*!derefAtEnd*/);
- if (start_ix >= 0) {
- summ_->Rule(address, reg, PFXEXPR, 0, start_ix);
- } else {
- // Parsing of the Dwarf expression failed. Treat this as a
- // non-fatal error, hence return |true| even on this path.
- reporter_->ExpressionCouldNotBeSummarised(entry_offset_, RegisterName(reg));
- }
- return true;
-}
-
-bool DwarfCFIToModule::End() {
- //module_->AddStackFrameEntry(entry_);
- if (DEBUG_DWARF) {
- summ_->Log("LUL.DW DwarfCFIToModule::End()\n");
- }
- summ_->End();
- return true;
-}
-
-void DwarfCFIToModule::Reporter::UndefinedNotSupported(
- size_t offset,
- const UniqueString* reg) {
- char buf[300];
- SprintfLiteral(buf, "DwarfCFIToModule::Reporter::UndefinedNotSupported()\n");
- log_(buf);
- //BPLOG(INFO) << file_ << ", section '" << section_
- // << "': the call frame entry at offset 0x"
- // << std::setbase(16) << offset << std::setbase(10)
- // << " sets the rule for register '" << FromUniqueString(reg)
- // << "' to 'undefined', but the Breakpad symbol file format cannot "
- // << " express this";
-}
-
-// FIXME: move this somewhere sensible
-static bool is_power_of_2(uint64_t n)
-{
- int i, nSetBits = 0;
- for (i = 0; i < 8*(int)sizeof(n); i++) {
- if ((n & ((uint64_t)1) << i) != 0)
- nSetBits++;
- }
- return nSetBits <= 1;
-}
-
-void DwarfCFIToModule::Reporter::ExpressionCouldNotBeSummarised(
- size_t offset,
- const UniqueString* reg) {
- static uint64_t n_complaints = 0; // This isn't threadsafe
- n_complaints++;
- if (!is_power_of_2(n_complaints))
- return;
- char buf[300];
- SprintfLiteral(buf,
- "DwarfCFIToModule::Reporter::"
- "ExpressionCouldNotBeSummarised(shown %llu times)\n",
- (unsigned long long int)n_complaints);
- log_(buf);
-}
-
-} // namespace lul