diff options
Diffstat (limited to 'third_party/aom/test/noise_model_test.cc')
-rw-r--r-- | third_party/aom/test/noise_model_test.cc | 1343 |
1 files changed, 0 insertions, 1343 deletions
diff --git a/third_party/aom/test/noise_model_test.cc b/third_party/aom/test/noise_model_test.cc deleted file mode 100644 index b5b387e31..000000000 --- a/third_party/aom/test/noise_model_test.cc +++ /dev/null @@ -1,1343 +0,0 @@ -/* - * Copyright (c) 2018, Alliance for Open Media. All rights reserved - * - * This source code is subject to the terms of the BSD 2 Clause License and - * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License - * was not distributed with this source code in the LICENSE file, you can - * obtain it at www.aomedia.org/license/software. If the Alliance for Open - * Media Patent License 1.0 was not distributed with this source code in the - * PATENTS file, you can obtain it at www.aomedia.org/license/patent. - */ - -#include <math.h> -#include <algorithm> -#include <vector> - -#include "aom_dsp/noise_model.h" -#include "aom_dsp/noise_util.h" -#include "config/aom_dsp_rtcd.h" -#include "test/acm_random.h" -#include "third_party/googletest/src/googletest/include/gtest/gtest.h" - -namespace { - -// Return normally distrbuted values with standard deviation of sigma. -double randn(libaom_test::ACMRandom *random, double sigma) { - while (1) { - const double u = 2.0 * ((double)random->Rand31() / - testing::internal::Random::kMaxRange) - - 1.0; - const double v = 2.0 * ((double)random->Rand31() / - testing::internal::Random::kMaxRange) - - 1.0; - const double s = u * u + v * v; - if (s > 0 && s < 1) { - return sigma * (u * sqrt(-2.0 * log(s) / s)); - } - } - return 0; -} - -// Synthesizes noise using the auto-regressive filter of the given lag, -// with the provided n coefficients sampled at the given coords. -void noise_synth(libaom_test::ACMRandom *random, int lag, int n, - const int (*coords)[2], const double *coeffs, double *data, - int w, int h) { - const int pad_size = 3 * lag; - const int padded_w = w + pad_size; - const int padded_h = h + pad_size; - int x = 0, y = 0; - std::vector<double> padded(padded_w * padded_h); - - for (y = 0; y < padded_h; ++y) { - for (x = 0; x < padded_w; ++x) { - padded[y * padded_w + x] = randn(random, 1.0); - } - } - for (y = lag; y < padded_h; ++y) { - for (x = lag; x < padded_w; ++x) { - double sum = 0; - int i = 0; - for (i = 0; i < n; ++i) { - const int dx = coords[i][0]; - const int dy = coords[i][1]; - sum += padded[(y + dy) * padded_w + (x + dx)] * coeffs[i]; - } - padded[y * padded_w + x] += sum; - } - } - // Copy over the padded rows to the output - for (y = 0; y < h; ++y) { - memcpy(data + y * w, &padded[0] + y * padded_w, sizeof(*data) * w); - } -} - -std::vector<float> get_noise_psd(double *noise, int width, int height, - int block_size) { - float *block = - (float *)aom_memalign(32, block_size * block_size * sizeof(block)); - std::vector<float> psd(block_size * block_size); - int num_blocks = 0; - struct aom_noise_tx_t *tx = aom_noise_tx_malloc(block_size); - for (int y = 0; y <= height - block_size; y += block_size / 2) { - for (int x = 0; x <= width - block_size; x += block_size / 2) { - for (int yy = 0; yy < block_size; ++yy) { - for (int xx = 0; xx < block_size; ++xx) { - block[yy * block_size + xx] = (float)noise[(y + yy) * width + x + xx]; - } - } - aom_noise_tx_forward(tx, &block[0]); - aom_noise_tx_add_energy(tx, &psd[0]); - num_blocks++; - } - } - for (int yy = 0; yy < block_size; ++yy) { - for (int xx = 0; xx <= block_size / 2; ++xx) { - psd[yy * block_size + xx] /= num_blocks; - } - } - // Fill in the data that is missing due to symmetries - for (int xx = 1; xx < block_size / 2; ++xx) { - psd[(block_size - xx)] = psd[xx]; - } - for (int yy = 1; yy < block_size; ++yy) { - for (int xx = 1; xx < block_size / 2; ++xx) { - psd[(block_size - yy) * block_size + (block_size - xx)] = - psd[yy * block_size + xx]; - } - } - aom_noise_tx_free(tx); - aom_free(block); - return psd; -} - -} // namespace - -TEST(NoiseStrengthSolver, GetCentersTwoBins) { - aom_noise_strength_solver_t solver; - aom_noise_strength_solver_init(&solver, 2, 8); - EXPECT_NEAR(0, aom_noise_strength_solver_get_center(&solver, 0), 1e-5); - EXPECT_NEAR(255, aom_noise_strength_solver_get_center(&solver, 1), 1e-5); - aom_noise_strength_solver_free(&solver); -} - -TEST(NoiseStrengthSolver, GetCentersTwoBins10bit) { - aom_noise_strength_solver_t solver; - aom_noise_strength_solver_init(&solver, 2, 10); - EXPECT_NEAR(0, aom_noise_strength_solver_get_center(&solver, 0), 1e-5); - EXPECT_NEAR(1023, aom_noise_strength_solver_get_center(&solver, 1), 1e-5); - aom_noise_strength_solver_free(&solver); -} - -TEST(NoiseStrengthSolver, GetCenters256Bins) { - const int num_bins = 256; - aom_noise_strength_solver_t solver; - aom_noise_strength_solver_init(&solver, num_bins, 8); - - for (int i = 0; i < 256; ++i) { - EXPECT_NEAR(i, aom_noise_strength_solver_get_center(&solver, i), 1e-5); - } - aom_noise_strength_solver_free(&solver); -} - -// Tests that the noise strength solver returns the identity transform when -// given identity-like constraints. -TEST(NoiseStrengthSolver, ObserveIdentity) { - const int num_bins = 256; - aom_noise_strength_solver_t solver; - EXPECT_EQ(1, aom_noise_strength_solver_init(&solver, num_bins, 8)); - - // We have to add a big more strength to constraints at the boundary to - // overcome any regularization. - for (int j = 0; j < 5; ++j) { - aom_noise_strength_solver_add_measurement(&solver, 0, 0); - aom_noise_strength_solver_add_measurement(&solver, 255, 255); - } - for (int i = 0; i < 256; ++i) { - aom_noise_strength_solver_add_measurement(&solver, i, i); - } - EXPECT_EQ(1, aom_noise_strength_solver_solve(&solver)); - for (int i = 2; i < num_bins - 2; ++i) { - EXPECT_NEAR(i, solver.eqns.x[i], 0.1); - } - - aom_noise_strength_lut_t lut; - EXPECT_EQ(1, aom_noise_strength_solver_fit_piecewise(&solver, 2, &lut)); - - ASSERT_EQ(2, lut.num_points); - EXPECT_NEAR(0.0, lut.points[0][0], 1e-5); - EXPECT_NEAR(0.0, lut.points[0][1], 0.5); - EXPECT_NEAR(255.0, lut.points[1][0], 1e-5); - EXPECT_NEAR(255.0, lut.points[1][1], 0.5); - - aom_noise_strength_lut_free(&lut); - aom_noise_strength_solver_free(&solver); -} - -TEST(NoiseStrengthSolver, SimplifiesCurve) { - const int num_bins = 256; - aom_noise_strength_solver_t solver; - EXPECT_EQ(1, aom_noise_strength_solver_init(&solver, num_bins, 8)); - - // Create a parabolic input - for (int i = 0; i < 256; ++i) { - const double x = (i - 127.5) / 63.5; - aom_noise_strength_solver_add_measurement(&solver, i, x * x); - } - EXPECT_EQ(1, aom_noise_strength_solver_solve(&solver)); - - // First try to fit an unconstrained lut - aom_noise_strength_lut_t lut; - EXPECT_EQ(1, aom_noise_strength_solver_fit_piecewise(&solver, -1, &lut)); - ASSERT_LE(20, lut.num_points); - aom_noise_strength_lut_free(&lut); - - // Now constrain the maximum number of points - const int kMaxPoints = 9; - EXPECT_EQ(1, - aom_noise_strength_solver_fit_piecewise(&solver, kMaxPoints, &lut)); - ASSERT_EQ(kMaxPoints, lut.num_points); - - // Check that the input parabola is still well represented - EXPECT_NEAR(0.0, lut.points[0][0], 1e-5); - EXPECT_NEAR(4.0, lut.points[0][1], 0.1); - for (int i = 1; i < lut.num_points - 1; ++i) { - const double x = (lut.points[i][0] - 128.) / 64.; - EXPECT_NEAR(x * x, lut.points[i][1], 0.1); - } - EXPECT_NEAR(255.0, lut.points[kMaxPoints - 1][0], 1e-5); - - EXPECT_NEAR(4.0, lut.points[kMaxPoints - 1][1], 0.1); - aom_noise_strength_lut_free(&lut); - aom_noise_strength_solver_free(&solver); -} - -TEST(NoiseStrengthLut, LutEvalSinglePoint) { - aom_noise_strength_lut_t lut; - ASSERT_TRUE(aom_noise_strength_lut_init(&lut, 1)); - ASSERT_EQ(1, lut.num_points); - lut.points[0][0] = 0; - lut.points[0][1] = 1; - EXPECT_EQ(1, aom_noise_strength_lut_eval(&lut, -1)); - EXPECT_EQ(1, aom_noise_strength_lut_eval(&lut, 0)); - EXPECT_EQ(1, aom_noise_strength_lut_eval(&lut, 1)); - aom_noise_strength_lut_free(&lut); -} - -TEST(NoiseStrengthLut, LutEvalMultiPointInterp) { - const double kEps = 1e-5; - aom_noise_strength_lut_t lut; - ASSERT_TRUE(aom_noise_strength_lut_init(&lut, 4)); - ASSERT_EQ(4, lut.num_points); - - lut.points[0][0] = 0; - lut.points[0][1] = 0; - - lut.points[1][0] = 1; - lut.points[1][1] = 1; - - lut.points[2][0] = 2; - lut.points[2][1] = 1; - - lut.points[3][0] = 100; - lut.points[3][1] = 1001; - - // Test lower boundary - EXPECT_EQ(0, aom_noise_strength_lut_eval(&lut, -1)); - EXPECT_EQ(0, aom_noise_strength_lut_eval(&lut, 0)); - - // Test first part that should be identity - EXPECT_NEAR(0.25, aom_noise_strength_lut_eval(&lut, 0.25), kEps); - EXPECT_NEAR(0.75, aom_noise_strength_lut_eval(&lut, 0.75), kEps); - - // This is a constant section (should evaluate to 1) - EXPECT_NEAR(1.0, aom_noise_strength_lut_eval(&lut, 1.25), kEps); - EXPECT_NEAR(1.0, aom_noise_strength_lut_eval(&lut, 1.75), kEps); - - // Test interpolation between to non-zero y coords. - EXPECT_NEAR(1, aom_noise_strength_lut_eval(&lut, 2), kEps); - EXPECT_NEAR(251, aom_noise_strength_lut_eval(&lut, 26.5), kEps); - EXPECT_NEAR(751, aom_noise_strength_lut_eval(&lut, 75.5), kEps); - - // Test upper boundary - EXPECT_EQ(1001, aom_noise_strength_lut_eval(&lut, 100)); - EXPECT_EQ(1001, aom_noise_strength_lut_eval(&lut, 101)); - - aom_noise_strength_lut_free(&lut); -} - -TEST(NoiseModel, InitSuccessWithValidSquareShape) { - aom_noise_model_params_t params = { AOM_NOISE_SHAPE_SQUARE, 2, 8, 0 }; - aom_noise_model_t model; - - EXPECT_TRUE(aom_noise_model_init(&model, params)); - - const int kNumCoords = 12; - const int kCoords[][2] = { { -2, -2 }, { -1, -2 }, { 0, -2 }, { 1, -2 }, - { 2, -2 }, { -2, -1 }, { -1, -1 }, { 0, -1 }, - { 1, -1 }, { 2, -1 }, { -2, 0 }, { -1, 0 } }; - EXPECT_EQ(kNumCoords, model.n); - for (int i = 0; i < kNumCoords; ++i) { - const int *coord = kCoords[i]; - EXPECT_EQ(coord[0], model.coords[i][0]); - EXPECT_EQ(coord[1], model.coords[i][1]); - } - aom_noise_model_free(&model); -} - -TEST(NoiseModel, InitSuccessWithValidDiamondShape) { - aom_noise_model_t model; - aom_noise_model_params_t params = { AOM_NOISE_SHAPE_DIAMOND, 2, 8, 0 }; - EXPECT_TRUE(aom_noise_model_init(&model, params)); - EXPECT_EQ(6, model.n); - const int kNumCoords = 6; - const int kCoords[][2] = { { 0, -2 }, { -1, -1 }, { 0, -1 }, - { 1, -1 }, { -2, 0 }, { -1, 0 } }; - EXPECT_EQ(kNumCoords, model.n); - for (int i = 0; i < kNumCoords; ++i) { - const int *coord = kCoords[i]; - EXPECT_EQ(coord[0], model.coords[i][0]); - EXPECT_EQ(coord[1], model.coords[i][1]); - } - aom_noise_model_free(&model); -} - -TEST(NoiseModel, InitFailsWithTooLargeLag) { - aom_noise_model_t model; - aom_noise_model_params_t params = { AOM_NOISE_SHAPE_SQUARE, 10, 8, 0 }; - EXPECT_FALSE(aom_noise_model_init(&model, params)); - aom_noise_model_free(&model); -} - -TEST(NoiseModel, InitFailsWithTooSmallLag) { - aom_noise_model_t model; - aom_noise_model_params_t params = { AOM_NOISE_SHAPE_SQUARE, 0, 8, 0 }; - EXPECT_FALSE(aom_noise_model_init(&model, params)); - aom_noise_model_free(&model); -} - -TEST(NoiseModel, InitFailsWithInvalidShape) { - aom_noise_model_t model; - aom_noise_model_params_t params = { aom_noise_shape(100), 3, 8, 0 }; - EXPECT_FALSE(aom_noise_model_init(&model, params)); - aom_noise_model_free(&model); -} - -// A container template class to hold a data type and extra arguments. -// All of these args are bundled into one struct so that we can use -// parameterized tests on combinations of supported data types -// (uint8_t and uint16_t) and bit depths (8, 10, 12). -template <typename T, int bit_depth, bool use_highbd> -struct BitDepthParams { - typedef T data_type_t; - static const int kBitDepth = bit_depth; - static const bool kUseHighBD = use_highbd; -}; - -template <typename T> -class FlatBlockEstimatorTest : public ::testing::Test, public T { - public: - virtual void SetUp() { random_.Reset(171); } - typedef std::vector<typename T::data_type_t> VecType; - VecType data_; - libaom_test::ACMRandom random_; -}; - -TYPED_TEST_CASE_P(FlatBlockEstimatorTest); - -TYPED_TEST_P(FlatBlockEstimatorTest, ExtractBlock) { - const int kBlockSize = 16; - aom_flat_block_finder_t flat_block_finder; - ASSERT_EQ(1, aom_flat_block_finder_init(&flat_block_finder, kBlockSize, - this->kBitDepth, this->kUseHighBD)); - const double normalization = flat_block_finder.normalization; - - // Test with an image of more than one block. - const int h = 2 * kBlockSize; - const int w = 2 * kBlockSize; - const int stride = 2 * kBlockSize; - this->data_.resize(h * stride, 128); - - // Set up the (0,0) block to be a plane and the (0,1) block to be a - // checkerboard - const int shift = this->kBitDepth - 8; - for (int y = 0; y < kBlockSize; ++y) { - for (int x = 0; x < kBlockSize; ++x) { - this->data_[y * stride + x] = (-y + x + 128) << shift; - this->data_[y * stride + x + kBlockSize] = - ((x % 2 + y % 2) % 2 ? 128 - 20 : 128 + 20) << shift; - } - } - std::vector<double> block(kBlockSize * kBlockSize, 1); - std::vector<double> plane(kBlockSize * kBlockSize, 1); - - // The block data should be a constant (zero) and the rest of the plane - // trend is covered in the plane data. - aom_flat_block_finder_extract_block(&flat_block_finder, - (uint8_t *)&this->data_[0], w, h, stride, - 0, 0, &plane[0], &block[0]); - for (int y = 0; y < kBlockSize; ++y) { - for (int x = 0; x < kBlockSize; ++x) { - EXPECT_NEAR(0, block[y * kBlockSize + x], 1e-5); - EXPECT_NEAR((double)(this->data_[y * stride + x]) / normalization, - plane[y * kBlockSize + x], 1e-5); - } - } - - // The plane trend is a constant, and the block is a zero mean checkerboard. - aom_flat_block_finder_extract_block(&flat_block_finder, - (uint8_t *)&this->data_[0], w, h, stride, - kBlockSize, 0, &plane[0], &block[0]); - const int mid = 128 << shift; - for (int y = 0; y < kBlockSize; ++y) { - for (int x = 0; x < kBlockSize; ++x) { - EXPECT_NEAR(((double)this->data_[y * stride + x + kBlockSize] - mid) / - normalization, - block[y * kBlockSize + x], 1e-5); - EXPECT_NEAR(mid / normalization, plane[y * kBlockSize + x], 1e-5); - } - } - aom_flat_block_finder_free(&flat_block_finder); -} - -TYPED_TEST_P(FlatBlockEstimatorTest, FindFlatBlocks) { - const int kBlockSize = 32; - aom_flat_block_finder_t flat_block_finder; - ASSERT_EQ(1, aom_flat_block_finder_init(&flat_block_finder, kBlockSize, - this->kBitDepth, this->kUseHighBD)); - - const int num_blocks_w = 8; - const int h = kBlockSize; - const int w = kBlockSize * num_blocks_w; - const int stride = w; - this->data_.resize(h * stride, 128); - std::vector<uint8_t> flat_blocks(num_blocks_w, 0); - - const int shift = this->kBitDepth - 8; - for (int y = 0; y < kBlockSize; ++y) { - for (int x = 0; x < kBlockSize; ++x) { - // Block 0 (not flat): constant doesn't have enough variance to qualify - this->data_[y * stride + x + 0 * kBlockSize] = 128 << shift; - - // Block 1 (not flat): too high of variance is hard to validate as flat - this->data_[y * stride + x + 1 * kBlockSize] = - ((uint8_t)(128 + randn(&this->random_, 5))) << shift; - - // Block 2 (flat): slight checkerboard added to constant - const int check = (x % 2 + y % 2) % 2 ? -2 : 2; - this->data_[y * stride + x + 2 * kBlockSize] = (128 + check) << shift; - - // Block 3 (flat): planar block with checkerboard pattern is also flat - this->data_[y * stride + x + 3 * kBlockSize] = - (y * 2 - x / 2 + 128 + check) << shift; - - // Block 4 (flat): gaussian random with standard deviation 1. - this->data_[y * stride + x + 4 * kBlockSize] = - ((uint8_t)(randn(&this->random_, 1) + x + 128.0)) << shift; - - // Block 5 (flat): gaussian random with standard deviation 2. - this->data_[y * stride + x + 5 * kBlockSize] = - ((uint8_t)(randn(&this->random_, 2) + y + 128.0)) << shift; - - // Block 6 (not flat): too high of directional gradient. - const int strong_edge = x > kBlockSize / 2 ? 64 : 0; - this->data_[y * stride + x + 6 * kBlockSize] = - ((uint8_t)(randn(&this->random_, 1) + strong_edge + 128.0)) << shift; - - // Block 7 (not flat): too high gradient. - const int big_check = ((x >> 2) % 2 + (y >> 2) % 2) % 2 ? -16 : 16; - this->data_[y * stride + x + 7 * kBlockSize] = - ((uint8_t)(randn(&this->random_, 1) + big_check + 128.0)) << shift; - } - } - - EXPECT_EQ(4, aom_flat_block_finder_run(&flat_block_finder, - (uint8_t *)&this->data_[0], w, h, - stride, &flat_blocks[0])); - - // First two blocks are not flat - EXPECT_EQ(0, flat_blocks[0]); - EXPECT_EQ(0, flat_blocks[1]); - - // Next 4 blocks are flat. - EXPECT_EQ(255, flat_blocks[2]); - EXPECT_EQ(255, flat_blocks[3]); - EXPECT_EQ(255, flat_blocks[4]); - EXPECT_EQ(255, flat_blocks[5]); - - // Last 2 are not flat by threshold - EXPECT_EQ(0, flat_blocks[6]); - EXPECT_EQ(0, flat_blocks[7]); - - // Add the noise from non-flat block 1 to every block. - for (int y = 0; y < kBlockSize; ++y) { - for (int x = 0; x < kBlockSize * num_blocks_w; ++x) { - this->data_[y * stride + x] += - (this->data_[y * stride + x % kBlockSize + kBlockSize] - - (128 << shift)); - } - } - // Now the scored selection will pick the one that is most likely flat (block - // 0) - EXPECT_EQ(1, aom_flat_block_finder_run(&flat_block_finder, - (uint8_t *)&this->data_[0], w, h, - stride, &flat_blocks[0])); - EXPECT_EQ(1, flat_blocks[0]); - EXPECT_EQ(0, flat_blocks[1]); - EXPECT_EQ(0, flat_blocks[2]); - EXPECT_EQ(0, flat_blocks[3]); - EXPECT_EQ(0, flat_blocks[4]); - EXPECT_EQ(0, flat_blocks[5]); - EXPECT_EQ(0, flat_blocks[6]); - EXPECT_EQ(0, flat_blocks[7]); - - aom_flat_block_finder_free(&flat_block_finder); -} - -REGISTER_TYPED_TEST_CASE_P(FlatBlockEstimatorTest, ExtractBlock, - FindFlatBlocks); - -typedef ::testing::Types<BitDepthParams<uint8_t, 8, false>, // lowbd - BitDepthParams<uint16_t, 8, true>, // lowbd in 16-bit - BitDepthParams<uint16_t, 10, true>, // highbd data - BitDepthParams<uint16_t, 12, true> > - AllBitDepthParams; -INSTANTIATE_TYPED_TEST_CASE_P(FlatBlockInstatiation, FlatBlockEstimatorTest, - AllBitDepthParams); - -template <typename T> -class NoiseModelUpdateTest : public ::testing::Test, public T { - public: - static const int kWidth = 128; - static const int kHeight = 128; - static const int kBlockSize = 16; - static const int kNumBlocksX = kWidth / kBlockSize; - static const int kNumBlocksY = kHeight / kBlockSize; - - virtual void SetUp() { - const aom_noise_model_params_t params = { AOM_NOISE_SHAPE_SQUARE, 3, - T::kBitDepth, T::kUseHighBD }; - ASSERT_TRUE(aom_noise_model_init(&model_, params)); - - random_.Reset(100171); - - data_.resize(kWidth * kHeight * 3); - denoised_.resize(kWidth * kHeight * 3); - noise_.resize(kWidth * kHeight * 3); - renoise_.resize(kWidth * kHeight); - flat_blocks_.resize(kNumBlocksX * kNumBlocksY); - - for (int c = 0, offset = 0; c < 3; ++c, offset += kWidth * kHeight) { - data_ptr_[c] = &data_[offset]; - noise_ptr_[c] = &noise_[offset]; - denoised_ptr_[c] = &denoised_[offset]; - strides_[c] = kWidth; - - data_ptr_raw_[c] = (uint8_t *)&data_[offset]; - denoised_ptr_raw_[c] = (uint8_t *)&denoised_[offset]; - } - chroma_sub_[0] = 0; - chroma_sub_[1] = 0; - } - - int NoiseModelUpdate(int block_size = kBlockSize) { - return aom_noise_model_update(&model_, data_ptr_raw_, denoised_ptr_raw_, - kWidth, kHeight, strides_, chroma_sub_, - &flat_blocks_[0], block_size); - } - - void TearDown() { aom_noise_model_free(&model_); } - - protected: - aom_noise_model_t model_; - std::vector<typename T::data_type_t> data_; - std::vector<typename T::data_type_t> denoised_; - - std::vector<double> noise_; - std::vector<double> renoise_; - std::vector<uint8_t> flat_blocks_; - - typename T::data_type_t *data_ptr_[3]; - typename T::data_type_t *denoised_ptr_[3]; - - double *noise_ptr_[3]; - int strides_[3]; - int chroma_sub_[2]; - libaom_test::ACMRandom random_; - - private: - uint8_t *data_ptr_raw_[3]; - uint8_t *denoised_ptr_raw_[3]; -}; - -TYPED_TEST_CASE_P(NoiseModelUpdateTest); - -TYPED_TEST_P(NoiseModelUpdateTest, UpdateFailsNoFlatBlocks) { - EXPECT_EQ(AOM_NOISE_STATUS_INSUFFICIENT_FLAT_BLOCKS, - this->NoiseModelUpdate()); -} - -TYPED_TEST_P(NoiseModelUpdateTest, UpdateSuccessForZeroNoiseAllFlat) { - this->flat_blocks_.assign(this->flat_blocks_.size(), 1); - this->denoised_.assign(this->denoised_.size(), 128); - this->data_.assign(this->denoised_.size(), 128); - EXPECT_EQ(AOM_NOISE_STATUS_INTERNAL_ERROR, this->NoiseModelUpdate()); -} - -TYPED_TEST_P(NoiseModelUpdateTest, UpdateFailsBlockSizeTooSmall) { - this->flat_blocks_.assign(this->flat_blocks_.size(), 1); - this->denoised_.assign(this->denoised_.size(), 128); - this->data_.assign(this->denoised_.size(), 128); - EXPECT_EQ(AOM_NOISE_STATUS_INVALID_ARGUMENT, - this->NoiseModelUpdate(6 /* block_size=6 is too small*/)); -} - -TYPED_TEST_P(NoiseModelUpdateTest, UpdateSuccessForWhiteRandomNoise) { - aom_noise_model_t &model = this->model_; - const int kWidth = this->kWidth; - const int kHeight = this->kHeight; - - const int shift = this->kBitDepth - 8; - for (int y = 0; y < kHeight; ++y) { - for (int x = 0; x < kWidth; ++x) { - this->data_ptr_[0][y * kWidth + x] = - int(64 + y + randn(&this->random_, 1)) << shift; - this->denoised_ptr_[0][y * kWidth + x] = (64 + y) << shift; - // Make the chroma planes completely correlated with the Y plane - for (int c = 1; c < 3; ++c) { - this->data_ptr_[c][y * kWidth + x] = this->data_ptr_[0][y * kWidth + x]; - this->denoised_ptr_[c][y * kWidth + x] = - this->denoised_ptr_[0][y * kWidth + x]; - } - } - } - this->flat_blocks_.assign(this->flat_blocks_.size(), 1); - EXPECT_EQ(AOM_NOISE_STATUS_OK, this->NoiseModelUpdate()); - - const double kCoeffEps = 0.075; - const int n = model.n; - for (int c = 0; c < 3; ++c) { - for (int i = 0; i < n; ++i) { - EXPECT_NEAR(0, model.latest_state[c].eqns.x[i], kCoeffEps); - EXPECT_NEAR(0, model.combined_state[c].eqns.x[i], kCoeffEps); - } - // The second and third channels are highly correlated with the first. - if (c > 0) { - ASSERT_EQ(n + 1, model.latest_state[c].eqns.n); - ASSERT_EQ(n + 1, model.combined_state[c].eqns.n); - - EXPECT_NEAR(1, model.latest_state[c].eqns.x[n], kCoeffEps); - EXPECT_NEAR(1, model.combined_state[c].eqns.x[n], kCoeffEps); - } - } - - // The fitted noise strength should be close to the standard deviation - // for all intensity bins. - const double kStdEps = 0.1; - const double normalize = 1 << shift; - - for (int i = 0; i < model.latest_state[0].strength_solver.eqns.n; ++i) { - EXPECT_NEAR(1.0, - model.latest_state[0].strength_solver.eqns.x[i] / normalize, - kStdEps); - EXPECT_NEAR(1.0, - model.combined_state[0].strength_solver.eqns.x[i] / normalize, - kStdEps); - } - - aom_noise_strength_lut_t lut; - aom_noise_strength_solver_fit_piecewise( - &model.latest_state[0].strength_solver, -1, &lut); - ASSERT_EQ(2, lut.num_points); - EXPECT_NEAR(0.0, lut.points[0][0], 1e-5); - EXPECT_NEAR(1.0, lut.points[0][1] / normalize, kStdEps); - EXPECT_NEAR((1 << this->kBitDepth) - 1, lut.points[1][0], 1e-5); - EXPECT_NEAR(1.0, lut.points[1][1] / normalize, kStdEps); - aom_noise_strength_lut_free(&lut); -} - -TYPED_TEST_P(NoiseModelUpdateTest, UpdateSuccessForScaledWhiteNoise) { - aom_noise_model_t &model = this->model_; - const int kWidth = this->kWidth; - const int kHeight = this->kHeight; - - const double kCoeffEps = 0.055; - const double kLowStd = 1; - const double kHighStd = 4; - const int shift = this->kBitDepth - 8; - for (int y = 0; y < kHeight; ++y) { - for (int x = 0; x < kWidth; ++x) { - for (int c = 0; c < 3; ++c) { - // The image data is bimodal: - // Bottom half has low intensity and low noise strength - // Top half has high intensity and high noise strength - const int avg = (y < kHeight / 2) ? 4 : 245; - const double std = (y < kHeight / 2) ? kLowStd : kHighStd; - this->data_ptr_[c][y * kWidth + x] = - ((uint8_t)std::min((int)255, - (int)(2 + avg + randn(&this->random_, std)))) - << shift; - this->denoised_ptr_[c][y * kWidth + x] = (2 + avg) << shift; - } - } - } - // Label all blocks as flat for the update - this->flat_blocks_.assign(this->flat_blocks_.size(), 1); - EXPECT_EQ(AOM_NOISE_STATUS_OK, this->NoiseModelUpdate()); - - const int n = model.n; - // The noise is uncorrelated spatially and with the y channel. - // All coefficients should be reasonably close to zero. - for (int c = 0; c < 3; ++c) { - for (int i = 0; i < n; ++i) { - EXPECT_NEAR(0, model.latest_state[c].eqns.x[i], kCoeffEps); - EXPECT_NEAR(0, model.combined_state[c].eqns.x[i], kCoeffEps); - } - if (c > 0) { - ASSERT_EQ(n + 1, model.latest_state[c].eqns.n); - ASSERT_EQ(n + 1, model.combined_state[c].eqns.n); - - // The correlation to the y channel should be low (near zero) - EXPECT_NEAR(0, model.latest_state[c].eqns.x[n], kCoeffEps); - EXPECT_NEAR(0, model.combined_state[c].eqns.x[n], kCoeffEps); - } - } - - // Noise strength should vary between kLowStd and kHighStd. - const double kStdEps = 0.15; - // We have to normalize fitted standard deviation based on bit depth. - const double normalize = (1 << shift); - - ASSERT_EQ(20, model.latest_state[0].strength_solver.eqns.n); - for (int i = 0; i < model.latest_state[0].strength_solver.eqns.n; ++i) { - const double a = i / 19.0; - const double expected = (kLowStd * (1.0 - a) + kHighStd * a); - EXPECT_NEAR(expected, - model.latest_state[0].strength_solver.eqns.x[i] / normalize, - kStdEps); - EXPECT_NEAR(expected, - model.combined_state[0].strength_solver.eqns.x[i] / normalize, - kStdEps); - } - - // If we fit a piecewise linear model, there should be two points: - // one near kLowStd at 0, and the other near kHighStd and 255. - aom_noise_strength_lut_t lut; - aom_noise_strength_solver_fit_piecewise( - &model.latest_state[0].strength_solver, 2, &lut); - ASSERT_EQ(2, lut.num_points); - EXPECT_NEAR(0, lut.points[0][0], 1e-4); - EXPECT_NEAR(kLowStd, lut.points[0][1] / normalize, kStdEps); - EXPECT_NEAR((1 << this->kBitDepth) - 1, lut.points[1][0], 1e-5); - EXPECT_NEAR(kHighStd, lut.points[1][1] / normalize, kStdEps); - aom_noise_strength_lut_free(&lut); -} - -TYPED_TEST_P(NoiseModelUpdateTest, UpdateSuccessForCorrelatedNoise) { - aom_noise_model_t &model = this->model_; - const int kWidth = this->kWidth; - const int kHeight = this->kHeight; - const int kNumCoeffs = 24; - const double kStd = 4; - const double kStdEps = 0.3; - const double kCoeffEps = 0.065; - // Use different coefficients for each channel - const double kCoeffs[3][24] = { - { 0.02884, -0.03356, 0.00633, 0.01757, 0.02849, -0.04620, - 0.02833, -0.07178, 0.07076, -0.11603, -0.10413, -0.16571, - 0.05158, -0.07969, 0.02640, -0.07191, 0.02530, 0.41968, - 0.21450, -0.00702, -0.01401, -0.03676, -0.08713, 0.44196 }, - { 0.00269, -0.01291, -0.01513, 0.07234, 0.03208, 0.00477, - 0.00226, -0.00254, 0.03533, 0.12841, -0.25970, -0.06336, - 0.05238, -0.00845, -0.03118, 0.09043, -0.36558, 0.48903, - 0.00595, -0.11938, 0.02106, 0.095956, -0.350139, 0.59305 }, - { -0.00643, -0.01080, -0.01466, 0.06951, 0.03707, -0.00482, - 0.00817, -0.00909, 0.02949, 0.12181, -0.25210, -0.07886, - 0.06083, -0.01210, -0.03108, 0.08944, -0.35875, 0.49150, - 0.00415, -0.12905, 0.02870, 0.09740, -0.34610, 0.58824 }, - }; - - ASSERT_EQ(model.n, kNumCoeffs); - this->chroma_sub_[0] = this->chroma_sub_[1] = 1; - - this->flat_blocks_.assign(this->flat_blocks_.size(), 1); - - // Add different noise onto each plane - const int shift = this->kBitDepth - 8; - for (int c = 0; c < 3; ++c) { - noise_synth(&this->random_, model.params.lag, model.n, model.coords, - kCoeffs[c], this->noise_ptr_[c], kWidth, kHeight); - const int x_shift = c > 0 ? this->chroma_sub_[0] : 0; - const int y_shift = c > 0 ? this->chroma_sub_[1] : 0; - for (int y = 0; y < (kHeight >> y_shift); ++y) { - for (int x = 0; x < (kWidth >> x_shift); ++x) { - const uint8_t value = 64 + x / 2 + y / 4; - this->data_ptr_[c][y * kWidth + x] = - (uint8_t(value + this->noise_ptr_[c][y * kWidth + x] * kStd)) - << shift; - this->denoised_ptr_[c][y * kWidth + x] = value << shift; - } - } - } - EXPECT_EQ(AOM_NOISE_STATUS_OK, this->NoiseModelUpdate()); - - // For the Y plane, the solved coefficients should be close to the original - const int n = model.n; - for (int c = 0; c < 3; ++c) { - for (int i = 0; i < n; ++i) { - EXPECT_NEAR(kCoeffs[c][i], model.latest_state[c].eqns.x[i], kCoeffEps); - EXPECT_NEAR(kCoeffs[c][i], model.combined_state[c].eqns.x[i], kCoeffEps); - } - // The chroma planes should be uncorrelated with the luma plane - if (c > 0) { - EXPECT_NEAR(0, model.latest_state[c].eqns.x[n], kCoeffEps); - EXPECT_NEAR(0, model.combined_state[c].eqns.x[n], kCoeffEps); - } - // Correlation between the coefficient vector and the fitted coefficients - // should be close to 1. - EXPECT_LT(0.98, aom_normalized_cross_correlation( - model.latest_state[c].eqns.x, kCoeffs[c], kNumCoeffs)); - - noise_synth(&this->random_, model.params.lag, model.n, model.coords, - model.latest_state[c].eqns.x, &this->renoise_[0], kWidth, - kHeight); - - EXPECT_TRUE(aom_noise_data_validate(&this->renoise_[0], kWidth, kHeight)); - } - - // Check fitted noise strength - const double normalize = 1 << shift; - for (int c = 0; c < 3; ++c) { - for (int i = 0; i < model.latest_state[c].strength_solver.eqns.n; ++i) { - EXPECT_NEAR(kStd, - model.latest_state[c].strength_solver.eqns.x[i] / normalize, - kStdEps); - } - } -} - -TYPED_TEST_P(NoiseModelUpdateTest, - NoiseStrengthChangeSignalsDifferentNoiseType) { - aom_noise_model_t &model = this->model_; - const int kWidth = this->kWidth; - const int kHeight = this->kHeight; - const int kBlockSize = this->kBlockSize; - // Create a gradient image with std = 2 uncorrelated noise - const double kStd = 2; - const int shift = this->kBitDepth - 8; - - for (int i = 0; i < kWidth * kHeight; ++i) { - const uint8_t val = (i % kWidth) < kWidth / 2 ? 64 : 192; - for (int c = 0; c < 3; ++c) { - this->noise_ptr_[c][i] = randn(&this->random_, 1); - this->data_ptr_[c][i] = ((uint8_t)(this->noise_ptr_[c][i] * kStd + val)) - << shift; - this->denoised_ptr_[c][i] = val << shift; - } - } - this->flat_blocks_.assign(this->flat_blocks_.size(), 1); - EXPECT_EQ(AOM_NOISE_STATUS_OK, this->NoiseModelUpdate()); - - const int kNumBlocks = kWidth * kHeight / kBlockSize / kBlockSize; - EXPECT_EQ(kNumBlocks, model.latest_state[0].strength_solver.num_equations); - EXPECT_EQ(kNumBlocks, model.latest_state[1].strength_solver.num_equations); - EXPECT_EQ(kNumBlocks, model.latest_state[2].strength_solver.num_equations); - EXPECT_EQ(kNumBlocks, model.combined_state[0].strength_solver.num_equations); - EXPECT_EQ(kNumBlocks, model.combined_state[1].strength_solver.num_equations); - EXPECT_EQ(kNumBlocks, model.combined_state[2].strength_solver.num_equations); - - // Bump up noise by an insignificant amount - for (int i = 0; i < kWidth * kHeight; ++i) { - const uint8_t val = (i % kWidth) < kWidth / 2 ? 64 : 192; - this->data_ptr_[0][i] = - ((uint8_t)(this->noise_ptr_[0][i] * (kStd + 0.085) + val)) << shift; - } - EXPECT_EQ(AOM_NOISE_STATUS_OK, this->NoiseModelUpdate()); - - const double kARGainTolerance = 0.02; - for (int c = 0; c < 3; ++c) { - EXPECT_EQ(kNumBlocks, model.latest_state[c].strength_solver.num_equations); - EXPECT_EQ(15250, model.latest_state[c].num_observations); - EXPECT_NEAR(1, model.latest_state[c].ar_gain, kARGainTolerance); - - EXPECT_EQ(2 * kNumBlocks, - model.combined_state[c].strength_solver.num_equations); - EXPECT_EQ(2 * 15250, model.combined_state[c].num_observations); - EXPECT_NEAR(1, model.combined_state[c].ar_gain, kARGainTolerance); - } - - // Bump up the noise strength on half the image for one channel by a - // significant amount. - for (int i = 0; i < kWidth * kHeight; ++i) { - const uint8_t val = (i % kWidth) < kWidth / 2 ? 64 : 128; - if (i % kWidth < kWidth / 2) { - this->data_ptr_[0][i] = - ((uint8_t)(randn(&this->random_, kStd + 0.5) + val)) << shift; - } - } - EXPECT_EQ(AOM_NOISE_STATUS_DIFFERENT_NOISE_TYPE, this->NoiseModelUpdate()); - - // Since we didn't update the combined state, it should still be at 2 * - // num_blocks - EXPECT_EQ(kNumBlocks, model.latest_state[0].strength_solver.num_equations); - EXPECT_EQ(2 * kNumBlocks, - model.combined_state[0].strength_solver.num_equations); - - // In normal operation, the "latest" estimate can be saved to the "combined" - // state for continued updates. - aom_noise_model_save_latest(&model); - for (int c = 0; c < 3; ++c) { - EXPECT_EQ(kNumBlocks, model.latest_state[c].strength_solver.num_equations); - EXPECT_EQ(15250, model.latest_state[c].num_observations); - EXPECT_NEAR(1, model.latest_state[c].ar_gain, kARGainTolerance); - - EXPECT_EQ(kNumBlocks, - model.combined_state[c].strength_solver.num_equations); - EXPECT_EQ(15250, model.combined_state[c].num_observations); - EXPECT_NEAR(1, model.combined_state[c].ar_gain, kARGainTolerance); - } -} - -TYPED_TEST_P(NoiseModelUpdateTest, NoiseCoeffsSignalsDifferentNoiseType) { - aom_noise_model_t &model = this->model_; - const int kWidth = this->kWidth; - const int kHeight = this->kHeight; - const double kCoeffs[2][24] = { - { 0.02884, -0.03356, 0.00633, 0.01757, 0.02849, -0.04620, - 0.02833, -0.07178, 0.07076, -0.11603, -0.10413, -0.16571, - 0.05158, -0.07969, 0.02640, -0.07191, 0.02530, 0.41968, - 0.21450, -0.00702, -0.01401, -0.03676, -0.08713, 0.44196 }, - { 0.00269, -0.01291, -0.01513, 0.07234, 0.03208, 0.00477, - 0.00226, -0.00254, 0.03533, 0.12841, -0.25970, -0.06336, - 0.05238, -0.00845, -0.03118, 0.09043, -0.36558, 0.48903, - 0.00595, -0.11938, 0.02106, 0.095956, -0.350139, 0.59305 } - }; - - noise_synth(&this->random_, model.params.lag, model.n, model.coords, - kCoeffs[0], this->noise_ptr_[0], kWidth, kHeight); - for (int i = 0; i < kWidth * kHeight; ++i) { - this->data_ptr_[0][i] = (uint8_t)(128 + this->noise_ptr_[0][i]); - } - this->flat_blocks_.assign(this->flat_blocks_.size(), 1); - EXPECT_EQ(AOM_NOISE_STATUS_OK, this->NoiseModelUpdate()); - - // Now try with the second set of AR coefficients - noise_synth(&this->random_, model.params.lag, model.n, model.coords, - kCoeffs[1], this->noise_ptr_[0], kWidth, kHeight); - for (int i = 0; i < kWidth * kHeight; ++i) { - this->data_ptr_[0][i] = (uint8_t)(128 + this->noise_ptr_[0][i]); - } - EXPECT_EQ(AOM_NOISE_STATUS_DIFFERENT_NOISE_TYPE, this->NoiseModelUpdate()); -} -REGISTER_TYPED_TEST_CASE_P(NoiseModelUpdateTest, UpdateFailsNoFlatBlocks, - UpdateSuccessForZeroNoiseAllFlat, - UpdateFailsBlockSizeTooSmall, - UpdateSuccessForWhiteRandomNoise, - UpdateSuccessForScaledWhiteNoise, - UpdateSuccessForCorrelatedNoise, - NoiseStrengthChangeSignalsDifferentNoiseType, - NoiseCoeffsSignalsDifferentNoiseType); - -INSTANTIATE_TYPED_TEST_CASE_P(NoiseModelUpdateTestInstatiation, - NoiseModelUpdateTest, AllBitDepthParams); - -TEST(NoiseModelGetGrainParameters, TestLagSize) { - aom_film_grain_t film_grain; - for (int lag = 1; lag <= 3; ++lag) { - aom_noise_model_params_t params = { AOM_NOISE_SHAPE_SQUARE, lag, 8, 0 }; - aom_noise_model_t model; - EXPECT_TRUE(aom_noise_model_init(&model, params)); - EXPECT_TRUE(aom_noise_model_get_grain_parameters(&model, &film_grain)); - EXPECT_EQ(lag, film_grain.ar_coeff_lag); - aom_noise_model_free(&model); - } - - aom_noise_model_params_t params = { AOM_NOISE_SHAPE_SQUARE, 4, 8, 0 }; - aom_noise_model_t model; - EXPECT_TRUE(aom_noise_model_init(&model, params)); - EXPECT_FALSE(aom_noise_model_get_grain_parameters(&model, &film_grain)); - aom_noise_model_free(&model); -} - -TEST(NoiseModelGetGrainParameters, TestARCoeffShiftBounds) { - struct TestCase { - double max_input_value; - int expected_ar_coeff_shift; - int expected_value; - }; - const int lag = 1; - const int kNumTestCases = 19; - const TestCase test_cases[] = { - // Test cases for ar_coeff_shift = 9 - { 0, 9, 0 }, - { 0.125, 9, 64 }, - { -0.125, 9, -64 }, - { 0.2499, 9, 127 }, - { -0.25, 9, -128 }, - // Test cases for ar_coeff_shift = 8 - { 0.25, 8, 64 }, - { -0.2501, 8, -64 }, - { 0.499, 8, 127 }, - { -0.5, 8, -128 }, - // Test cases for ar_coeff_shift = 7 - { 0.5, 7, 64 }, - { -0.5001, 7, -64 }, - { 0.999, 7, 127 }, - { -1, 7, -128 }, - // Test cases for ar_coeff_shift = 6 - { 1.0, 6, 64 }, - { -1.0001, 6, -64 }, - { 2.0, 6, 127 }, - { -2.0, 6, -128 }, - { 4, 6, 127 }, - { -4, 6, -128 }, - }; - aom_noise_model_params_t params = { AOM_NOISE_SHAPE_SQUARE, lag, 8, 0 }; - aom_noise_model_t model; - EXPECT_TRUE(aom_noise_model_init(&model, params)); - - for (int i = 0; i < kNumTestCases; ++i) { - const TestCase &test_case = test_cases[i]; - model.combined_state[0].eqns.x[0] = test_case.max_input_value; - - aom_film_grain_t film_grain; - EXPECT_TRUE(aom_noise_model_get_grain_parameters(&model, &film_grain)); - EXPECT_EQ(1, film_grain.ar_coeff_lag); - EXPECT_EQ(test_case.expected_ar_coeff_shift, film_grain.ar_coeff_shift); - EXPECT_EQ(test_case.expected_value, film_grain.ar_coeffs_y[0]); - } - aom_noise_model_free(&model); -} - -TEST(NoiseModelGetGrainParameters, TestNoiseStrengthShiftBounds) { - struct TestCase { - double max_input_value; - int expected_scaling_shift; - int expected_value; - }; - const int kNumTestCases = 10; - const TestCase test_cases[] = { - { 0, 11, 0 }, { 1, 11, 64 }, { 2, 11, 128 }, { 3.99, 11, 255 }, - { 4, 10, 128 }, { 7.99, 10, 255 }, { 8, 9, 128 }, { 16, 8, 128 }, - { 31.99, 8, 255 }, { 64, 8, 255 }, // clipped - }; - const int lag = 1; - aom_noise_model_params_t params = { AOM_NOISE_SHAPE_SQUARE, lag, 8, 0 }; - aom_noise_model_t model; - EXPECT_TRUE(aom_noise_model_init(&model, params)); - - for (int i = 0; i < kNumTestCases; ++i) { - const TestCase &test_case = test_cases[i]; - aom_equation_system_t &eqns = model.combined_state[0].strength_solver.eqns; - // Set the fitted scale parameters to be a constant value. - for (int j = 0; j < eqns.n; ++j) { - eqns.x[j] = test_case.max_input_value; - } - aom_film_grain_t film_grain; - EXPECT_TRUE(aom_noise_model_get_grain_parameters(&model, &film_grain)); - // We expect a single constant segemnt - EXPECT_EQ(test_case.expected_scaling_shift, film_grain.scaling_shift); - EXPECT_EQ(test_case.expected_value, film_grain.scaling_points_y[0][1]); - EXPECT_EQ(test_case.expected_value, film_grain.scaling_points_y[1][1]); - } - aom_noise_model_free(&model); -} - -// The AR coefficients are the same inputs used to generate "Test 2" in the test -// vectors -TEST(NoiseModelGetGrainParameters, GetGrainParametersReal) { - const double kInputCoeffsY[] = { 0.0315, 0.0073, 0.0218, 0.00235, 0.00511, - -0.0222, 0.0627, -0.022, 0.05575, -0.1816, - 0.0107, -0.1966, 0.00065, -0.0809, 0.04934, - -0.1349, -0.0352, 0.41772, 0.27973, 0.04207, - -0.0429, -0.1372, 0.06193, 0.52032 }; - const double kInputCoeffsCB[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.5 }; - const double kInputCoeffsCR[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -0.5 }; - const int kExpectedARCoeffsY[] = { 4, 1, 3, 0, 1, -3, 8, -3, - 7, -23, 1, -25, 0, -10, 6, -17, - -5, 53, 36, 5, -5, -18, 8, 67 }; - const int kExpectedARCoeffsCB[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 84 }; - const int kExpectedARCoeffsCR[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -126 }; - // Scaling function is initialized analytically with a sqrt function. - const int kNumScalingPointsY = 12; - const int kExpectedScalingPointsY[][2] = { - { 0, 0 }, { 13, 44 }, { 27, 62 }, { 40, 76 }, - { 54, 88 }, { 67, 98 }, { 94, 117 }, { 121, 132 }, - { 148, 146 }, { 174, 159 }, { 201, 171 }, { 255, 192 }, - }; - - const int lag = 3; - aom_noise_model_params_t params = { AOM_NOISE_SHAPE_SQUARE, lag, 8, 0 }; - aom_noise_model_t model; - EXPECT_TRUE(aom_noise_model_init(&model, params)); - - // Setup the AR coeffs - memcpy(model.combined_state[0].eqns.x, kInputCoeffsY, sizeof(kInputCoeffsY)); - memcpy(model.combined_state[1].eqns.x, kInputCoeffsCB, - sizeof(kInputCoeffsCB)); - memcpy(model.combined_state[2].eqns.x, kInputCoeffsCR, - sizeof(kInputCoeffsCR)); - for (int i = 0; i < model.combined_state[0].strength_solver.num_bins; ++i) { - const double x = - ((double)i) / (model.combined_state[0].strength_solver.num_bins - 1.0); - model.combined_state[0].strength_solver.eqns.x[i] = 6 * sqrt(x); - model.combined_state[1].strength_solver.eqns.x[i] = 3; - model.combined_state[2].strength_solver.eqns.x[i] = 2; - - // Inject some observations into the strength solver, as during film grain - // parameter extraction an estimate of the average strength will be used to - // adjust correlation. - const int n = model.combined_state[0].strength_solver.num_bins; - for (int j = 0; j < model.combined_state[0].strength_solver.num_bins; ++j) { - model.combined_state[0].strength_solver.eqns.A[i * n + j] = 1; - model.combined_state[1].strength_solver.eqns.A[i * n + j] = 1; - model.combined_state[2].strength_solver.eqns.A[i * n + j] = 1; - } - } - - aom_film_grain_t film_grain; - EXPECT_TRUE(aom_noise_model_get_grain_parameters(&model, &film_grain)); - EXPECT_EQ(lag, film_grain.ar_coeff_lag); - EXPECT_EQ(3, film_grain.ar_coeff_lag); - EXPECT_EQ(7, film_grain.ar_coeff_shift); - EXPECT_EQ(10, film_grain.scaling_shift); - EXPECT_EQ(kNumScalingPointsY, film_grain.num_y_points); - EXPECT_EQ(1, film_grain.update_parameters); - EXPECT_EQ(1, film_grain.apply_grain); - - const int kNumARCoeffs = 24; - for (int i = 0; i < kNumARCoeffs; ++i) { - EXPECT_EQ(kExpectedARCoeffsY[i], film_grain.ar_coeffs_y[i]); - } - for (int i = 0; i < kNumARCoeffs + 1; ++i) { - EXPECT_EQ(kExpectedARCoeffsCB[i], film_grain.ar_coeffs_cb[i]); - } - for (int i = 0; i < kNumARCoeffs + 1; ++i) { - EXPECT_EQ(kExpectedARCoeffsCR[i], film_grain.ar_coeffs_cr[i]); - } - for (int i = 0; i < kNumScalingPointsY; ++i) { - EXPECT_EQ(kExpectedScalingPointsY[i][0], film_grain.scaling_points_y[i][0]); - EXPECT_EQ(kExpectedScalingPointsY[i][1], film_grain.scaling_points_y[i][1]); - } - - // CB strength should just be a piecewise segment - EXPECT_EQ(2, film_grain.num_cb_points); - EXPECT_EQ(0, film_grain.scaling_points_cb[0][0]); - EXPECT_EQ(255, film_grain.scaling_points_cb[1][0]); - EXPECT_EQ(96, film_grain.scaling_points_cb[0][1]); - EXPECT_EQ(96, film_grain.scaling_points_cb[1][1]); - - // CR strength should just be a piecewise segment - EXPECT_EQ(2, film_grain.num_cr_points); - EXPECT_EQ(0, film_grain.scaling_points_cr[0][0]); - EXPECT_EQ(255, film_grain.scaling_points_cr[1][0]); - EXPECT_EQ(64, film_grain.scaling_points_cr[0][1]); - EXPECT_EQ(64, film_grain.scaling_points_cr[1][1]); - - EXPECT_EQ(128, film_grain.cb_mult); - EXPECT_EQ(192, film_grain.cb_luma_mult); - EXPECT_EQ(256, film_grain.cb_offset); - EXPECT_EQ(128, film_grain.cr_mult); - EXPECT_EQ(192, film_grain.cr_luma_mult); - EXPECT_EQ(256, film_grain.cr_offset); - EXPECT_EQ(0, film_grain.chroma_scaling_from_luma); - EXPECT_EQ(0, film_grain.grain_scale_shift); - - aom_noise_model_free(&model); -} - -template <typename T> -class WienerDenoiseTest : public ::testing::Test, public T { - public: - static void SetUpTestCase() { aom_dsp_rtcd(); } - - protected: - void SetUp() { - static const float kNoiseLevel = 5.f; - static const float kStd = 4.0; - static const double kMaxValue = (1 << T::kBitDepth) - 1; - - chroma_sub_[0] = 1; - chroma_sub_[1] = 1; - stride_[0] = kWidth; - stride_[1] = kWidth / 2; - stride_[2] = kWidth / 2; - for (int k = 0; k < 3; ++k) { - data_[k].resize(kWidth * kHeight); - denoised_[k].resize(kWidth * kHeight); - noise_psd_[k].resize(kBlockSize * kBlockSize); - } - - const double kCoeffsY[] = { 0.0406, -0.116, -0.078, -0.152, 0.0033, -0.093, - 0.048, 0.404, 0.2353, -0.035, -0.093, 0.441 }; - const int kCoords[12][2] = { - { -2, -2 }, { -1, -2 }, { 0, -2 }, { 1, -2 }, { 2, -2 }, { -2, -1 }, - { -1, -1 }, { 0, -1 }, { 1, -1 }, { 2, -1 }, { -2, 0 }, { -1, 0 } - }; - const int kLag = 2; - const int kLength = 12; - libaom_test::ACMRandom random; - std::vector<double> noise(kWidth * kHeight); - noise_synth(&random, kLag, kLength, kCoords, kCoeffsY, &noise[0], kWidth, - kHeight); - noise_psd_[0] = get_noise_psd(&noise[0], kWidth, kHeight, kBlockSize); - for (int i = 0; i < kBlockSize * kBlockSize; ++i) { - noise_psd_[0][i] = (float)(noise_psd_[0][i] * kStd * kStd * kScaleNoise * - kScaleNoise / (kMaxValue * kMaxValue)); - } - - float psd_value = - aom_noise_psd_get_default_value(kBlockSizeChroma, kNoiseLevel); - for (int i = 0; i < kBlockSizeChroma * kBlockSizeChroma; ++i) { - noise_psd_[1][i] = psd_value; - noise_psd_[2][i] = psd_value; - } - for (int y = 0; y < kHeight; ++y) { - for (int x = 0; x < kWidth; ++x) { - data_[0][y * stride_[0] + x] = (typename T::data_type_t)fclamp( - (x + noise[y * stride_[0] + x] * kStd) * kScaleNoise, 0, kMaxValue); - } - } - - for (int c = 1; c < 3; ++c) { - for (int y = 0; y < (kHeight >> 1); ++y) { - for (int x = 0; x < (kWidth >> 1); ++x) { - data_[c][y * stride_[c] + x] = (typename T::data_type_t)fclamp( - (x + randn(&random, kStd)) * kScaleNoise, 0, kMaxValue); - } - } - } - for (int k = 0; k < 3; ++k) { - noise_psd_ptrs_[k] = &noise_psd_[k][0]; - } - } - static const int kBlockSize = 32; - static const int kBlockSizeChroma = 16; - static const int kWidth = 256; - static const int kHeight = 256; - static const int kScaleNoise = 1 << (T::kBitDepth - 8); - - std::vector<typename T::data_type_t> data_[3]; - std::vector<typename T::data_type_t> denoised_[3]; - std::vector<float> noise_psd_[3]; - int chroma_sub_[2]; - float *noise_psd_ptrs_[3]; - int stride_[3]; -}; - -TYPED_TEST_CASE_P(WienerDenoiseTest); - -TYPED_TEST_P(WienerDenoiseTest, InvalidBlockSize) { - const uint8_t *const data_ptrs[3] = { - reinterpret_cast<uint8_t *>(&this->data_[0][0]), - reinterpret_cast<uint8_t *>(&this->data_[1][0]), - reinterpret_cast<uint8_t *>(&this->data_[2][0]), - }; - uint8_t *denoised_ptrs[3] = { - reinterpret_cast<uint8_t *>(&this->denoised_[0][0]), - reinterpret_cast<uint8_t *>(&this->denoised_[1][0]), - reinterpret_cast<uint8_t *>(&this->denoised_[2][0]), - }; - EXPECT_EQ(0, aom_wiener_denoise_2d(data_ptrs, denoised_ptrs, this->kWidth, - this->kHeight, this->stride_, - this->chroma_sub_, this->noise_psd_ptrs_, - 18, this->kBitDepth, this->kUseHighBD)); - EXPECT_EQ(0, aom_wiener_denoise_2d(data_ptrs, denoised_ptrs, this->kWidth, - this->kHeight, this->stride_, - this->chroma_sub_, this->noise_psd_ptrs_, - 48, this->kBitDepth, this->kUseHighBD)); - EXPECT_EQ(0, aom_wiener_denoise_2d(data_ptrs, denoised_ptrs, this->kWidth, - this->kHeight, this->stride_, - this->chroma_sub_, this->noise_psd_ptrs_, - 64, this->kBitDepth, this->kUseHighBD)); -} - -TYPED_TEST_P(WienerDenoiseTest, InvalidChromaSubsampling) { - const uint8_t *const data_ptrs[3] = { - reinterpret_cast<uint8_t *>(&this->data_[0][0]), - reinterpret_cast<uint8_t *>(&this->data_[1][0]), - reinterpret_cast<uint8_t *>(&this->data_[2][0]), - }; - uint8_t *denoised_ptrs[3] = { - reinterpret_cast<uint8_t *>(&this->denoised_[0][0]), - reinterpret_cast<uint8_t *>(&this->denoised_[1][0]), - reinterpret_cast<uint8_t *>(&this->denoised_[2][0]), - }; - int chroma_sub[2] = { 1, 0 }; - EXPECT_EQ(0, aom_wiener_denoise_2d(data_ptrs, denoised_ptrs, this->kWidth, - this->kHeight, this->stride_, chroma_sub, - this->noise_psd_ptrs_, 32, this->kBitDepth, - this->kUseHighBD)); - - chroma_sub[0] = 0; - chroma_sub[1] = 1; - EXPECT_EQ(0, aom_wiener_denoise_2d(data_ptrs, denoised_ptrs, this->kWidth, - this->kHeight, this->stride_, chroma_sub, - this->noise_psd_ptrs_, 32, this->kBitDepth, - this->kUseHighBD)); -} - -TYPED_TEST_P(WienerDenoiseTest, GradientTest) { - const int kWidth = this->kWidth; - const int kHeight = this->kHeight; - const int kBlockSize = this->kBlockSize; - const uint8_t *const data_ptrs[3] = { - reinterpret_cast<uint8_t *>(&this->data_[0][0]), - reinterpret_cast<uint8_t *>(&this->data_[1][0]), - reinterpret_cast<uint8_t *>(&this->data_[2][0]), - }; - uint8_t *denoised_ptrs[3] = { - reinterpret_cast<uint8_t *>(&this->denoised_[0][0]), - reinterpret_cast<uint8_t *>(&this->denoised_[1][0]), - reinterpret_cast<uint8_t *>(&this->denoised_[2][0]), - }; - const int ret = aom_wiener_denoise_2d( - data_ptrs, denoised_ptrs, kWidth, kHeight, this->stride_, - this->chroma_sub_, this->noise_psd_ptrs_, this->kBlockSize, - this->kBitDepth, this->kUseHighBD); - EXPECT_EQ(1, ret); - - // Check the noise on the denoised image (from the analytical gradient) - // and make sure that it is less than what we added. - for (int c = 0; c < 3; ++c) { - std::vector<double> measured_noise(kWidth * kHeight); - - double var = 0; - const int shift = (c > 0); - for (int x = 0; x < (kWidth >> shift); ++x) { - for (int y = 0; y < (kHeight >> shift); ++y) { - const double diff = this->denoised_[c][y * this->stride_[c] + x] - - x * this->kScaleNoise; - var += diff * diff; - measured_noise[y * kWidth + x] = diff; - } - } - var /= (kWidth * kHeight); - const double std = sqrt(std::max(0.0, var)); - EXPECT_LE(std, 1.25f * this->kScaleNoise); - if (c == 0) { - std::vector<float> measured_psd = - get_noise_psd(&measured_noise[0], kWidth, kHeight, kBlockSize); - std::vector<double> measured_psd_d(kBlockSize * kBlockSize); - std::vector<double> noise_psd_d(kBlockSize * kBlockSize); - std::copy(measured_psd.begin(), measured_psd.end(), - measured_psd_d.begin()); - std::copy(this->noise_psd_[0].begin(), this->noise_psd_[0].end(), - noise_psd_d.begin()); - EXPECT_LT( - aom_normalized_cross_correlation(&measured_psd_d[0], &noise_psd_d[0], - (int)(noise_psd_d.size())), - 0.35); - } - } -} - -REGISTER_TYPED_TEST_CASE_P(WienerDenoiseTest, InvalidBlockSize, - InvalidChromaSubsampling, GradientTest); - -INSTANTIATE_TYPED_TEST_CASE_P(WienerDenoiseTestInstatiation, WienerDenoiseTest, - AllBitDepthParams); |