diff options
Diffstat (limited to 'third_party/aom/test/dct32x32_test.cc')
-rw-r--r-- | third_party/aom/test/dct32x32_test.cc | 438 |
1 files changed, 438 insertions, 0 deletions
diff --git a/third_party/aom/test/dct32x32_test.cc b/third_party/aom/test/dct32x32_test.cc new file mode 100644 index 000000000..7c1db6501 --- /dev/null +++ b/third_party/aom/test/dct32x32_test.cc @@ -0,0 +1,438 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. +*/ + +#include <math.h> +#include <stdlib.h> +#include <string.h> + +#include "third_party/googletest/src/googletest/include/gtest/gtest.h" + +#include "./av1_rtcd.h" +#include "./aom_config.h" +#include "./aom_dsp_rtcd.h" +#include "test/acm_random.h" +#include "test/clear_system_state.h" +#include "test/register_state_check.h" +#include "test/util.h" +#include "av1/common/entropy.h" +#include "aom/aom_codec.h" +#include "aom/aom_integer.h" +#include "aom_ports/mem.h" +#include "aom_ports/msvc.h" // for round() + +using libaom_test::ACMRandom; + +namespace { + +const int kNumCoeffs = 1024; +const double kPi = 3.141592653589793238462643383279502884; +void reference_32x32_dct_1d(const double in[32], double out[32]) { + const double kInvSqrt2 = 0.707106781186547524400844362104; + for (int k = 0; k < 32; k++) { + out[k] = 0.0; + for (int n = 0; n < 32; n++) + out[k] += in[n] * cos(kPi * (2 * n + 1) * k / 64.0); + if (k == 0) out[k] = out[k] * kInvSqrt2; + } +} + +void reference_32x32_dct_2d(const int16_t input[kNumCoeffs], + double output[kNumCoeffs]) { + // First transform columns + for (int i = 0; i < 32; ++i) { + double temp_in[32], temp_out[32]; + for (int j = 0; j < 32; ++j) temp_in[j] = input[j * 32 + i]; + reference_32x32_dct_1d(temp_in, temp_out); + for (int j = 0; j < 32; ++j) output[j * 32 + i] = temp_out[j]; + } + // Then transform rows + for (int i = 0; i < 32; ++i) { + double temp_in[32], temp_out[32]; + for (int j = 0; j < 32; ++j) temp_in[j] = output[j + i * 32]; + reference_32x32_dct_1d(temp_in, temp_out); + // Scale by some magic number + for (int j = 0; j < 32; ++j) output[j + i * 32] = temp_out[j] / 4; + } +} + +typedef void (*FwdTxfmFunc)(const int16_t *in, tran_low_t *out, int stride); +typedef void (*InvTxfmFunc)(const tran_low_t *in, uint8_t *out, int stride); + +typedef std::tr1::tuple<FwdTxfmFunc, InvTxfmFunc, int, aom_bit_depth_t> + Trans32x32Param; + +class Trans32x32Test : public ::testing::TestWithParam<Trans32x32Param> { + public: + virtual ~Trans32x32Test() {} + virtual void SetUp() { + fwd_txfm_ = GET_PARAM(0); + inv_txfm_ = GET_PARAM(1); + version_ = GET_PARAM(2); // 0: high precision forward transform + // 1: low precision version for rd loop + bit_depth_ = GET_PARAM(3); + mask_ = (1 << bit_depth_) - 1; + } + + virtual void TearDown() { libaom_test::ClearSystemState(); } + + protected: + int version_; + aom_bit_depth_t bit_depth_; + int mask_; + FwdTxfmFunc fwd_txfm_; + InvTxfmFunc inv_txfm_; +}; + +TEST_P(Trans32x32Test, AccuracyCheck) { + ACMRandom rnd(ACMRandom::DeterministicSeed()); + uint32_t max_error = 0; + int64_t total_error = 0; + const int count_test_block = 10000; + DECLARE_ALIGNED(16, int16_t, test_input_block[kNumCoeffs]); + DECLARE_ALIGNED(16, tran_low_t, test_temp_block[kNumCoeffs]); + DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]); + DECLARE_ALIGNED(16, uint8_t, src[kNumCoeffs]); +#if CONFIG_HIGHBITDEPTH + DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]); + DECLARE_ALIGNED(16, uint16_t, src16[kNumCoeffs]); +#endif + + for (int i = 0; i < count_test_block; ++i) { + // Initialize a test block with input range [-mask_, mask_]. + for (int j = 0; j < kNumCoeffs; ++j) { + if (bit_depth_ == AOM_BITS_8) { + src[j] = rnd.Rand8(); + dst[j] = rnd.Rand8(); + test_input_block[j] = src[j] - dst[j]; +#if CONFIG_HIGHBITDEPTH + } else { + src16[j] = rnd.Rand16() & mask_; + dst16[j] = rnd.Rand16() & mask_; + test_input_block[j] = src16[j] - dst16[j]; +#endif + } + } + + ASM_REGISTER_STATE_CHECK(fwd_txfm_(test_input_block, test_temp_block, 32)); + if (bit_depth_ == AOM_BITS_8) { + ASM_REGISTER_STATE_CHECK(inv_txfm_(test_temp_block, dst, 32)); +#if CONFIG_HIGHBITDEPTH + } else { + ASM_REGISTER_STATE_CHECK( + inv_txfm_(test_temp_block, CONVERT_TO_BYTEPTR(dst16), 32)); +#endif + } + + for (int j = 0; j < kNumCoeffs; ++j) { +#if CONFIG_HIGHBITDEPTH + const int32_t diff = + bit_depth_ == AOM_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j]; +#else + const int32_t diff = dst[j] - src[j]; +#endif + const uint32_t error = diff * diff; + if (max_error < error) max_error = error; + total_error += error; + } + } + + if (version_ == 1) { + max_error /= 2; + total_error /= 45; + } + + EXPECT_GE(1u << 2 * (bit_depth_ - 8), max_error) + << "Error: 32x32 FDCT/IDCT has an individual round-trip error > 1"; + + EXPECT_GE(count_test_block << 2 * (bit_depth_ - 8), total_error) + << "Error: 32x32 FDCT/IDCT has average round-trip error > 1 per block"; +} + +TEST_P(Trans32x32Test, CoeffCheck) { + ACMRandom rnd(ACMRandom::DeterministicSeed()); + const int count_test_block = 1000; + + DECLARE_ALIGNED(16, int16_t, input_block[kNumCoeffs]); + DECLARE_ALIGNED(16, tran_low_t, output_ref_block[kNumCoeffs]); + DECLARE_ALIGNED(16, tran_low_t, output_block[kNumCoeffs]); + + for (int i = 0; i < count_test_block; ++i) { + for (int j = 0; j < kNumCoeffs; ++j) + input_block[j] = (rnd.Rand16() & mask_) - (rnd.Rand16() & mask_); + + const int stride = 32; + aom_fdct32x32_c(input_block, output_ref_block, stride); + ASM_REGISTER_STATE_CHECK(fwd_txfm_(input_block, output_block, stride)); + + if (version_ == 0) { + for (int j = 0; j < kNumCoeffs; ++j) + EXPECT_EQ(output_block[j], output_ref_block[j]) + << "Error: 32x32 FDCT versions have mismatched coefficients"; + } else { + for (int j = 0; j < kNumCoeffs; ++j) + EXPECT_GE(6, abs(output_block[j] - output_ref_block[j])) + << "Error: 32x32 FDCT rd has mismatched coefficients"; + } + } +} + +TEST_P(Trans32x32Test, MemCheck) { + ACMRandom rnd(ACMRandom::DeterministicSeed()); + const int count_test_block = 2000; + + DECLARE_ALIGNED(16, int16_t, input_extreme_block[kNumCoeffs]); + DECLARE_ALIGNED(16, tran_low_t, output_ref_block[kNumCoeffs]); + DECLARE_ALIGNED(16, tran_low_t, output_block[kNumCoeffs]); + + for (int i = 0; i < count_test_block; ++i) { + // Initialize a test block with input range [-mask_, mask_]. + for (int j = 0; j < kNumCoeffs; ++j) { + input_extreme_block[j] = rnd.Rand8() & 1 ? mask_ : -mask_; + } + if (i == 0) { + for (int j = 0; j < kNumCoeffs; ++j) input_extreme_block[j] = mask_; + } else if (i == 1) { + for (int j = 0; j < kNumCoeffs; ++j) input_extreme_block[j] = -mask_; + } + + const int stride = 32; + aom_fdct32x32_c(input_extreme_block, output_ref_block, stride); + ASM_REGISTER_STATE_CHECK( + fwd_txfm_(input_extreme_block, output_block, stride)); + + // The minimum quant value is 4. + for (int j = 0; j < kNumCoeffs; ++j) { + if (version_ == 0) { + EXPECT_EQ(output_block[j], output_ref_block[j]) + << "Error: 32x32 FDCT versions have mismatched coefficients"; + } else { + EXPECT_GE(6, abs(output_block[j] - output_ref_block[j])) + << "Error: 32x32 FDCT rd has mismatched coefficients"; + } + EXPECT_GE(4 * DCT_MAX_VALUE << (bit_depth_ - 8), abs(output_ref_block[j])) + << "Error: 32x32 FDCT C has coefficient larger than 4*DCT_MAX_VALUE"; + EXPECT_GE(4 * DCT_MAX_VALUE << (bit_depth_ - 8), abs(output_block[j])) + << "Error: 32x32 FDCT has coefficient larger than " + << "4*DCT_MAX_VALUE"; + } + } +} + +TEST_P(Trans32x32Test, InverseAccuracy) { + ACMRandom rnd(ACMRandom::DeterministicSeed()); + const int count_test_block = 1000; + DECLARE_ALIGNED(16, int16_t, in[kNumCoeffs]); + DECLARE_ALIGNED(16, tran_low_t, coeff[kNumCoeffs]); + DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]); + DECLARE_ALIGNED(16, uint8_t, src[kNumCoeffs]); +#if CONFIG_HIGHBITDEPTH + DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]); + DECLARE_ALIGNED(16, uint16_t, src16[kNumCoeffs]); +#endif + + for (int i = 0; i < count_test_block; ++i) { + double out_r[kNumCoeffs]; + + // Initialize a test block with input range [-255, 255] + for (int j = 0; j < kNumCoeffs; ++j) { + if (bit_depth_ == AOM_BITS_8) { + src[j] = rnd.Rand8(); + dst[j] = rnd.Rand8(); + in[j] = src[j] - dst[j]; +#if CONFIG_HIGHBITDEPTH + } else { + src16[j] = rnd.Rand16() & mask_; + dst16[j] = rnd.Rand16() & mask_; + in[j] = src16[j] - dst16[j]; +#endif + } + } + + reference_32x32_dct_2d(in, out_r); + for (int j = 0; j < kNumCoeffs; ++j) + coeff[j] = static_cast<tran_low_t>(round(out_r[j])); + if (bit_depth_ == AOM_BITS_8) { + ASM_REGISTER_STATE_CHECK(inv_txfm_(coeff, dst, 32)); +#if CONFIG_HIGHBITDEPTH + } else { + ASM_REGISTER_STATE_CHECK(inv_txfm_(coeff, CONVERT_TO_BYTEPTR(dst16), 32)); +#endif + } + for (int j = 0; j < kNumCoeffs; ++j) { +#if CONFIG_HIGHBITDEPTH + const int diff = + bit_depth_ == AOM_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j]; +#else + const int diff = dst[j] - src[j]; +#endif + const int error = diff * diff; + EXPECT_GE(1, error) << "Error: 32x32 IDCT has error " << error + << " at index " << j; + } + } +} + +class PartialTrans32x32Test + : public ::testing::TestWithParam< + std::tr1::tuple<FwdTxfmFunc, aom_bit_depth_t> > { + public: + virtual ~PartialTrans32x32Test() {} + virtual void SetUp() { + fwd_txfm_ = GET_PARAM(0); + bit_depth_ = GET_PARAM(1); + } + + virtual void TearDown() { libaom_test::ClearSystemState(); } + + protected: + aom_bit_depth_t bit_depth_; + FwdTxfmFunc fwd_txfm_; +}; + +TEST_P(PartialTrans32x32Test, Extremes) { +#if CONFIG_HIGHBITDEPTH + const int16_t maxval = + static_cast<int16_t>(clip_pixel_highbd(1 << 30, bit_depth_)); +#else + const int16_t maxval = 255; +#endif + const int minval = -maxval; + DECLARE_ALIGNED(16, int16_t, input[kNumCoeffs]); + DECLARE_ALIGNED(16, tran_low_t, output[kNumCoeffs]); + + for (int i = 0; i < kNumCoeffs; ++i) input[i] = maxval; + output[0] = 0; + ASM_REGISTER_STATE_CHECK(fwd_txfm_(input, output, 32)); + EXPECT_EQ((maxval * kNumCoeffs) >> 3, output[0]); + + for (int i = 0; i < kNumCoeffs; ++i) input[i] = minval; + output[0] = 0; + ASM_REGISTER_STATE_CHECK(fwd_txfm_(input, output, 32)); + EXPECT_EQ((minval * kNumCoeffs) >> 3, output[0]); +} + +TEST_P(PartialTrans32x32Test, Random) { +#if CONFIG_HIGHBITDEPTH + const int16_t maxval = + static_cast<int16_t>(clip_pixel_highbd(1 << 30, bit_depth_)); +#else + const int16_t maxval = 255; +#endif + DECLARE_ALIGNED(16, int16_t, input[kNumCoeffs]); + DECLARE_ALIGNED(16, tran_low_t, output[kNumCoeffs]); + ACMRandom rnd(ACMRandom::DeterministicSeed()); + + int sum = 0; + for (int i = 0; i < kNumCoeffs; ++i) { + const int val = (i & 1) ? -rnd(maxval + 1) : rnd(maxval + 1); + input[i] = val; + sum += val; + } + output[0] = 0; + ASM_REGISTER_STATE_CHECK(fwd_txfm_(input, output, 32)); + EXPECT_EQ(sum >> 3, output[0]); +} + +using std::tr1::make_tuple; + +#if CONFIG_HIGHBITDEPTH +INSTANTIATE_TEST_CASE_P( + C, Trans32x32Test, + ::testing::Values(make_tuple(&aom_fdct32x32_c, &aom_idct32x32_1024_add_c, 0, + AOM_BITS_8), + make_tuple(&aom_fdct32x32_rd_c, &aom_idct32x32_1024_add_c, + 1, AOM_BITS_8))); +INSTANTIATE_TEST_CASE_P( + C, PartialTrans32x32Test, + ::testing::Values(make_tuple(&aom_highbd_fdct32x32_1_c, AOM_BITS_8), + make_tuple(&aom_highbd_fdct32x32_1_c, AOM_BITS_10), + make_tuple(&aom_highbd_fdct32x32_1_c, AOM_BITS_12))); +#else +INSTANTIATE_TEST_CASE_P( + C, Trans32x32Test, + ::testing::Values(make_tuple(&aom_fdct32x32_c, &aom_idct32x32_1024_add_c, 0, + AOM_BITS_8), + make_tuple(&aom_fdct32x32_rd_c, &aom_idct32x32_1024_add_c, + 1, AOM_BITS_8))); +INSTANTIATE_TEST_CASE_P(C, PartialTrans32x32Test, + ::testing::Values(make_tuple(&aom_fdct32x32_1_c, + AOM_BITS_8))); +#endif // CONFIG_HIGHBITDEPTH + +#if HAVE_NEON && !CONFIG_HIGHBITDEPTH +INSTANTIATE_TEST_CASE_P( + NEON, Trans32x32Test, + ::testing::Values(make_tuple(&aom_fdct32x32_c, &aom_idct32x32_1024_add_neon, + 0, AOM_BITS_8), + make_tuple(&aom_fdct32x32_rd_c, + &aom_idct32x32_1024_add_neon, 1, AOM_BITS_8))); +#endif // HAVE_NEON && !CONFIG_HIGHBITDEPTH + +#if HAVE_SSE2 && !CONFIG_HIGHBITDEPTH +INSTANTIATE_TEST_CASE_P( + SSE2, Trans32x32Test, + ::testing::Values(make_tuple(&aom_fdct32x32_sse2, + &aom_idct32x32_1024_add_sse2, 0, AOM_BITS_8), + make_tuple(&aom_fdct32x32_rd_sse2, + &aom_idct32x32_1024_add_sse2, 1, AOM_BITS_8))); +INSTANTIATE_TEST_CASE_P(SSE2, PartialTrans32x32Test, + ::testing::Values(make_tuple(&aom_fdct32x32_1_sse2, + AOM_BITS_8))); +#endif // HAVE_SSE2 && !CONFIG_HIGHBITDEPTH + +#if HAVE_AVX2 && !CONFIG_HIGHBITDEPTH +INSTANTIATE_TEST_CASE_P(AVX2, PartialTrans32x32Test, + ::testing::Values(make_tuple(&aom_fdct32x32_1_avx2, + AOM_BITS_8))); +#endif // HAVE_AVX2 && !CONFIG_HIGHBITDEPTH + +#if HAVE_SSE2 && CONFIG_HIGHBITDEPTH +INSTANTIATE_TEST_CASE_P( + SSE2, Trans32x32Test, + ::testing::Values(make_tuple(&aom_fdct32x32_sse2, &aom_idct32x32_1024_add_c, + 0, AOM_BITS_8), + make_tuple(&aom_fdct32x32_rd_sse2, + &aom_idct32x32_1024_add_c, 1, AOM_BITS_8))); +INSTANTIATE_TEST_CASE_P(SSE2, PartialTrans32x32Test, + ::testing::Values(make_tuple(&aom_fdct32x32_1_sse2, + AOM_BITS_8))); +#endif // HAVE_SSE2 && CONFIG_HIGHBITDEPTH + +#if HAVE_AVX2 && !CONFIG_HIGHBITDEPTH +INSTANTIATE_TEST_CASE_P( + AVX2, Trans32x32Test, + ::testing::Values(make_tuple(&aom_fdct32x32_avx2, + &aom_idct32x32_1024_add_sse2, 0, AOM_BITS_8), + make_tuple(&aom_fdct32x32_rd_avx2, + &aom_idct32x32_1024_add_sse2, 1, AOM_BITS_8))); +#endif // HAVE_AVX2 && !CONFIG_HIGHBITDEPTH + +#if HAVE_AVX2 && CONFIG_HIGHBITDEPTH +INSTANTIATE_TEST_CASE_P( + AVX2, Trans32x32Test, + ::testing::Values(make_tuple(&aom_fdct32x32_avx2, + &aom_idct32x32_1024_add_sse2, 0, AOM_BITS_8), + make_tuple(&aom_fdct32x32_rd_avx2, + &aom_idct32x32_1024_add_sse2, 1, AOM_BITS_8))); +#endif // HAVE_AVX2 && CONFIG_HIGHBITDEPTH + +#if HAVE_MSA && !CONFIG_HIGHBITDEPTH +INSTANTIATE_TEST_CASE_P( + MSA, Trans32x32Test, + ::testing::Values(make_tuple(&aom_fdct32x32_msa, + &aom_idct32x32_1024_add_msa, 0, AOM_BITS_8), + make_tuple(&aom_fdct32x32_rd_msa, + &aom_idct32x32_1024_add_msa, 1, AOM_BITS_8))); +INSTANTIATE_TEST_CASE_P(MSA, PartialTrans32x32Test, + ::testing::Values(make_tuple(&aom_fdct32x32_1_msa, + AOM_BITS_8))); +#endif // HAVE_MSA && !CONFIG_HIGHBITDEPTH +} // namespace |