summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/encoder/ratectrl.c
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/aom/av1/encoder/ratectrl.c')
-rw-r--r--third_party/aom/av1/encoder/ratectrl.c1759
1 files changed, 1759 insertions, 0 deletions
diff --git a/third_party/aom/av1/encoder/ratectrl.c b/third_party/aom/av1/encoder/ratectrl.c
new file mode 100644
index 000000000..1f2ea3606
--- /dev/null
+++ b/third_party/aom/av1/encoder/ratectrl.c
@@ -0,0 +1,1759 @@
+/*
+ * Copyright (c) 2016, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#include <assert.h>
+#include <limits.h>
+#include <math.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+
+#include "aom_dsp/aom_dsp_common.h"
+#include "aom_mem/aom_mem.h"
+#include "aom_ports/mem.h"
+#include "aom_ports/system_state.h"
+
+#include "av1/common/alloccommon.h"
+#include "av1/encoder/aq_cyclicrefresh.h"
+#include "av1/common/common.h"
+#include "av1/common/entropymode.h"
+#include "av1/common/quant_common.h"
+#include "av1/common/seg_common.h"
+
+#include "av1/encoder/encodemv.h"
+#include "av1/encoder/ratectrl.h"
+
+// Max rate target for 1080P and below encodes under normal circumstances
+// (1920 * 1080 / (16 * 16)) * MAX_MB_RATE bits per MB
+#define MAX_MB_RATE 250
+#define MAXRATE_1080P 2025000
+
+#define DEFAULT_KF_BOOST 2000
+#define DEFAULT_GF_BOOST 2000
+
+#define MIN_BPB_FACTOR 0.005
+#define MAX_BPB_FACTOR 50
+
+#define FRAME_OVERHEAD_BITS 200
+#if CONFIG_HIGHBITDEPTH
+#define ASSIGN_MINQ_TABLE(bit_depth, name) \
+ do { \
+ switch (bit_depth) { \
+ case AOM_BITS_8: name = name##_8; break; \
+ case AOM_BITS_10: name = name##_10; break; \
+ case AOM_BITS_12: name = name##_12; break; \
+ default: \
+ assert(0 && \
+ "bit_depth should be AOM_BITS_8, AOM_BITS_10" \
+ " or AOM_BITS_12"); \
+ name = NULL; \
+ } \
+ } while (0)
+#else
+#define ASSIGN_MINQ_TABLE(bit_depth, name) \
+ do { \
+ (void)bit_depth; \
+ name = name##_8; \
+ } while (0)
+#endif
+
+// Tables relating active max Q to active min Q
+static int kf_low_motion_minq_8[QINDEX_RANGE];
+static int kf_high_motion_minq_8[QINDEX_RANGE];
+static int arfgf_low_motion_minq_8[QINDEX_RANGE];
+static int arfgf_high_motion_minq_8[QINDEX_RANGE];
+static int inter_minq_8[QINDEX_RANGE];
+static int rtc_minq_8[QINDEX_RANGE];
+
+#if CONFIG_HIGHBITDEPTH
+static int kf_low_motion_minq_10[QINDEX_RANGE];
+static int kf_high_motion_minq_10[QINDEX_RANGE];
+static int arfgf_low_motion_minq_10[QINDEX_RANGE];
+static int arfgf_high_motion_minq_10[QINDEX_RANGE];
+static int inter_minq_10[QINDEX_RANGE];
+static int rtc_minq_10[QINDEX_RANGE];
+static int kf_low_motion_minq_12[QINDEX_RANGE];
+static int kf_high_motion_minq_12[QINDEX_RANGE];
+static int arfgf_low_motion_minq_12[QINDEX_RANGE];
+static int arfgf_high_motion_minq_12[QINDEX_RANGE];
+static int inter_minq_12[QINDEX_RANGE];
+static int rtc_minq_12[QINDEX_RANGE];
+#endif
+
+static int gf_high = 2000;
+static int gf_low = 400;
+static int kf_high = 5000;
+static int kf_low = 400;
+
+// Functions to compute the active minq lookup table entries based on a
+// formulaic approach to facilitate easier adjustment of the Q tables.
+// The formulae were derived from computing a 3rd order polynomial best
+// fit to the original data (after plotting real maxq vs minq (not q index))
+static int get_minq_index(double maxq, double x3, double x2, double x1,
+ aom_bit_depth_t bit_depth) {
+ int i;
+ const double minqtarget = AOMMIN(((x3 * maxq + x2) * maxq + x1) * maxq, maxq);
+
+ // Special case handling to deal with the step from q2.0
+ // down to lossless mode represented by q 1.0.
+ if (minqtarget <= 2.0) return 0;
+
+ for (i = 0; i < QINDEX_RANGE; i++) {
+ if (minqtarget <= av1_convert_qindex_to_q(i, bit_depth)) return i;
+ }
+
+ return QINDEX_RANGE - 1;
+}
+
+static void init_minq_luts(int *kf_low_m, int *kf_high_m, int *arfgf_low,
+ int *arfgf_high, int *inter, int *rtc,
+ aom_bit_depth_t bit_depth) {
+ int i;
+ for (i = 0; i < QINDEX_RANGE; i++) {
+ const double maxq = av1_convert_qindex_to_q(i, bit_depth);
+ kf_low_m[i] = get_minq_index(maxq, 0.000001, -0.0004, 0.150, bit_depth);
+ kf_high_m[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.55, bit_depth);
+ arfgf_low[i] = get_minq_index(maxq, 0.0000015, -0.0009, 0.30, bit_depth);
+ arfgf_high[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.55, bit_depth);
+ inter[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.90, bit_depth);
+ rtc[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.70, bit_depth);
+ }
+}
+
+void av1_rc_init_minq_luts(void) {
+ init_minq_luts(kf_low_motion_minq_8, kf_high_motion_minq_8,
+ arfgf_low_motion_minq_8, arfgf_high_motion_minq_8,
+ inter_minq_8, rtc_minq_8, AOM_BITS_8);
+#if CONFIG_HIGHBITDEPTH
+ init_minq_luts(kf_low_motion_minq_10, kf_high_motion_minq_10,
+ arfgf_low_motion_minq_10, arfgf_high_motion_minq_10,
+ inter_minq_10, rtc_minq_10, AOM_BITS_10);
+ init_minq_luts(kf_low_motion_minq_12, kf_high_motion_minq_12,
+ arfgf_low_motion_minq_12, arfgf_high_motion_minq_12,
+ inter_minq_12, rtc_minq_12, AOM_BITS_12);
+#endif
+}
+
+// These functions use formulaic calculations to make playing with the
+// quantizer tables easier. If necessary they can be replaced by lookup
+// tables if and when things settle down in the experimental bitstream
+double av1_convert_qindex_to_q(int qindex, aom_bit_depth_t bit_depth) {
+// Convert the index to a real Q value (scaled down to match old Q values)
+#if CONFIG_HIGHBITDEPTH
+ switch (bit_depth) {
+ case AOM_BITS_8: return av1_ac_quant(qindex, 0, bit_depth) / 4.0;
+ case AOM_BITS_10: return av1_ac_quant(qindex, 0, bit_depth) / 16.0;
+ case AOM_BITS_12: return av1_ac_quant(qindex, 0, bit_depth) / 64.0;
+ default:
+ assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12");
+ return -1.0;
+ }
+#else
+ return av1_ac_quant(qindex, 0, bit_depth) / 4.0;
+#endif
+}
+
+int av1_rc_bits_per_mb(FRAME_TYPE frame_type, int qindex,
+ double correction_factor, aom_bit_depth_t bit_depth) {
+ const double q = av1_convert_qindex_to_q(qindex, bit_depth);
+ int enumerator = frame_type == KEY_FRAME ? 2700000 : 1800000;
+
+ assert(correction_factor <= MAX_BPB_FACTOR &&
+ correction_factor >= MIN_BPB_FACTOR);
+
+ // q based adjustment to baseline enumerator
+ enumerator += (int)(enumerator * q) >> 12;
+ return (int)(enumerator * correction_factor / q);
+}
+
+int av1_estimate_bits_at_q(FRAME_TYPE frame_type, int q, int mbs,
+ double correction_factor,
+ aom_bit_depth_t bit_depth) {
+ const int bpm =
+ (int)(av1_rc_bits_per_mb(frame_type, q, correction_factor, bit_depth));
+ return AOMMAX(FRAME_OVERHEAD_BITS,
+ (int)((uint64_t)bpm * mbs) >> BPER_MB_NORMBITS);
+}
+
+int av1_rc_clamp_pframe_target_size(const AV1_COMP *const cpi, int target) {
+ const RATE_CONTROL *rc = &cpi->rc;
+ const AV1EncoderConfig *oxcf = &cpi->oxcf;
+ const int min_frame_target =
+ AOMMAX(rc->min_frame_bandwidth, rc->avg_frame_bandwidth >> 5);
+// Clip the frame target to the minimum setup value.
+#if CONFIG_EXT_REFS
+ if (cpi->rc.is_src_frame_alt_ref) {
+#else
+ if (cpi->refresh_golden_frame && rc->is_src_frame_alt_ref) {
+#endif // CONFIG_EXT_REFS
+ // If there is an active ARF at this location use the minimum
+ // bits on this frame even if it is a constructed arf.
+ // The active maximum quantizer insures that an appropriate
+ // number of bits will be spent if needed for constructed ARFs.
+ target = min_frame_target;
+ } else if (target < min_frame_target) {
+ target = min_frame_target;
+ }
+
+ // Clip the frame target to the maximum allowed value.
+ if (target > rc->max_frame_bandwidth) target = rc->max_frame_bandwidth;
+ if (oxcf->rc_max_inter_bitrate_pct) {
+ const int max_rate =
+ rc->avg_frame_bandwidth * oxcf->rc_max_inter_bitrate_pct / 100;
+ target = AOMMIN(target, max_rate);
+ }
+
+ return target;
+}
+
+int av1_rc_clamp_iframe_target_size(const AV1_COMP *const cpi, int target) {
+ const RATE_CONTROL *rc = &cpi->rc;
+ const AV1EncoderConfig *oxcf = &cpi->oxcf;
+ if (oxcf->rc_max_intra_bitrate_pct) {
+ const int max_rate =
+ rc->avg_frame_bandwidth * oxcf->rc_max_intra_bitrate_pct / 100;
+ target = AOMMIN(target, max_rate);
+ }
+ if (target > rc->max_frame_bandwidth) target = rc->max_frame_bandwidth;
+ return target;
+}
+
+// Update the buffer level: leaky bucket model.
+static void update_buffer_level(AV1_COMP *cpi, int encoded_frame_size) {
+ const AV1_COMMON *const cm = &cpi->common;
+ RATE_CONTROL *const rc = &cpi->rc;
+
+// Non-viewable frames are a special case and are treated as pure overhead.
+#if CONFIG_EXT_REFS
+ // TODO(zoeliu): To further explore whether we should treat BWDREF_FRAME
+ // differently, since it is a no-show frame.
+ if (!cm->show_frame && !rc->is_bwd_ref_frame)
+#else
+ if (!cm->show_frame)
+#endif // CONFIG_EXT_REFS
+ rc->bits_off_target -= encoded_frame_size;
+ else
+ rc->bits_off_target += rc->avg_frame_bandwidth - encoded_frame_size;
+
+ // Clip the buffer level to the maximum specified buffer size.
+ rc->bits_off_target = AOMMIN(rc->bits_off_target, rc->maximum_buffer_size);
+ rc->buffer_level = rc->bits_off_target;
+}
+
+int av1_rc_get_default_min_gf_interval(int width, int height,
+ double framerate) {
+ // Assume we do not need any constraint lower than 4K 20 fps
+ static const double factor_safe = 3840 * 2160 * 20.0;
+ const double factor = width * height * framerate;
+ const int default_interval =
+ clamp((int)(framerate * 0.125), MIN_GF_INTERVAL, MAX_GF_INTERVAL);
+
+ if (factor <= factor_safe)
+ return default_interval;
+ else
+ return AOMMAX(default_interval,
+ (int)(MIN_GF_INTERVAL * factor / factor_safe + 0.5));
+ // Note this logic makes:
+ // 4K24: 5
+ // 4K30: 6
+ // 4K60: 12
+}
+
+int av1_rc_get_default_max_gf_interval(double framerate, int min_gf_interval) {
+ int interval = AOMMIN(MAX_GF_INTERVAL, (int)(framerate * 0.75));
+ interval += (interval & 0x01); // Round to even value
+ return AOMMAX(interval, min_gf_interval);
+}
+
+void av1_rc_init(const AV1EncoderConfig *oxcf, int pass, RATE_CONTROL *rc) {
+ int i;
+
+ if (pass == 0 && oxcf->rc_mode == AOM_CBR) {
+ rc->avg_frame_qindex[KEY_FRAME] = oxcf->worst_allowed_q;
+ rc->avg_frame_qindex[INTER_FRAME] = oxcf->worst_allowed_q;
+ } else {
+ rc->avg_frame_qindex[KEY_FRAME] =
+ (oxcf->worst_allowed_q + oxcf->best_allowed_q) / 2;
+ rc->avg_frame_qindex[INTER_FRAME] =
+ (oxcf->worst_allowed_q + oxcf->best_allowed_q) / 2;
+ }
+
+ rc->last_q[KEY_FRAME] = oxcf->best_allowed_q;
+ rc->last_q[INTER_FRAME] = oxcf->worst_allowed_q;
+
+ rc->buffer_level = rc->starting_buffer_level;
+ rc->bits_off_target = rc->starting_buffer_level;
+
+ rc->rolling_target_bits = rc->avg_frame_bandwidth;
+ rc->rolling_actual_bits = rc->avg_frame_bandwidth;
+ rc->long_rolling_target_bits = rc->avg_frame_bandwidth;
+ rc->long_rolling_actual_bits = rc->avg_frame_bandwidth;
+
+ rc->total_actual_bits = 0;
+ rc->total_target_bits = 0;
+ rc->total_target_vs_actual = 0;
+
+ rc->frames_since_key = 8; // Sensible default for first frame.
+ rc->this_key_frame_forced = 0;
+ rc->next_key_frame_forced = 0;
+ rc->source_alt_ref_pending = 0;
+ rc->source_alt_ref_active = 0;
+
+ rc->frames_till_gf_update_due = 0;
+ rc->ni_av_qi = oxcf->worst_allowed_q;
+ rc->ni_tot_qi = 0;
+ rc->ni_frames = 0;
+
+ rc->tot_q = 0.0;
+ rc->avg_q = av1_convert_qindex_to_q(oxcf->worst_allowed_q, oxcf->bit_depth);
+
+ for (i = 0; i < RATE_FACTOR_LEVELS; ++i) {
+ rc->rate_correction_factors[i] = 1.0;
+ }
+
+ rc->min_gf_interval = oxcf->min_gf_interval;
+ rc->max_gf_interval = oxcf->max_gf_interval;
+ if (rc->min_gf_interval == 0)
+ rc->min_gf_interval = av1_rc_get_default_min_gf_interval(
+ oxcf->width, oxcf->height, oxcf->init_framerate);
+ if (rc->max_gf_interval == 0)
+ rc->max_gf_interval = av1_rc_get_default_max_gf_interval(
+ oxcf->init_framerate, rc->min_gf_interval);
+ rc->baseline_gf_interval = (rc->min_gf_interval + rc->max_gf_interval) / 2;
+}
+
+int av1_rc_drop_frame(AV1_COMP *cpi) {
+ const AV1EncoderConfig *oxcf = &cpi->oxcf;
+ RATE_CONTROL *const rc = &cpi->rc;
+
+ if (!oxcf->drop_frames_water_mark) {
+ return 0;
+ } else {
+ if (rc->buffer_level < 0) {
+ // Always drop if buffer is below 0.
+ return 1;
+ } else {
+ // If buffer is below drop_mark, for now just drop every other frame
+ // (starting with the next frame) until it increases back over drop_mark.
+ int drop_mark =
+ (int)(oxcf->drop_frames_water_mark * rc->optimal_buffer_level / 100);
+ if ((rc->buffer_level > drop_mark) && (rc->decimation_factor > 0)) {
+ --rc->decimation_factor;
+ } else if (rc->buffer_level <= drop_mark && rc->decimation_factor == 0) {
+ rc->decimation_factor = 1;
+ }
+ if (rc->decimation_factor > 0) {
+ if (rc->decimation_count > 0) {
+ --rc->decimation_count;
+ return 1;
+ } else {
+ rc->decimation_count = rc->decimation_factor;
+ return 0;
+ }
+ } else {
+ rc->decimation_count = 0;
+ return 0;
+ }
+ }
+ }
+}
+
+static double get_rate_correction_factor(const AV1_COMP *cpi) {
+ const RATE_CONTROL *const rc = &cpi->rc;
+ double rcf;
+
+ if (cpi->common.frame_type == KEY_FRAME) {
+ rcf = rc->rate_correction_factors[KF_STD];
+ } else if (cpi->oxcf.pass == 2) {
+ RATE_FACTOR_LEVEL rf_lvl =
+ cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index];
+ rcf = rc->rate_correction_factors[rf_lvl];
+ } else {
+ if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) &&
+ !rc->is_src_frame_alt_ref &&
+ (cpi->oxcf.rc_mode != AOM_CBR || cpi->oxcf.gf_cbr_boost_pct > 20))
+ rcf = rc->rate_correction_factors[GF_ARF_STD];
+ else
+ rcf = rc->rate_correction_factors[INTER_NORMAL];
+ }
+ rcf *= rcf_mult[rc->frame_size_selector];
+ return fclamp(rcf, MIN_BPB_FACTOR, MAX_BPB_FACTOR);
+}
+
+static void set_rate_correction_factor(AV1_COMP *cpi, double factor) {
+ RATE_CONTROL *const rc = &cpi->rc;
+
+ // Normalize RCF to account for the size-dependent scaling factor.
+ factor /= rcf_mult[cpi->rc.frame_size_selector];
+
+ factor = fclamp(factor, MIN_BPB_FACTOR, MAX_BPB_FACTOR);
+
+ if (cpi->common.frame_type == KEY_FRAME) {
+ rc->rate_correction_factors[KF_STD] = factor;
+ } else if (cpi->oxcf.pass == 2) {
+ RATE_FACTOR_LEVEL rf_lvl =
+ cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index];
+ rc->rate_correction_factors[rf_lvl] = factor;
+ } else {
+ if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) &&
+ !rc->is_src_frame_alt_ref &&
+ (cpi->oxcf.rc_mode != AOM_CBR || cpi->oxcf.gf_cbr_boost_pct > 20))
+ rc->rate_correction_factors[GF_ARF_STD] = factor;
+ else
+ rc->rate_correction_factors[INTER_NORMAL] = factor;
+ }
+}
+
+void av1_rc_update_rate_correction_factors(AV1_COMP *cpi) {
+ const AV1_COMMON *const cm = &cpi->common;
+ int correction_factor = 100;
+ double rate_correction_factor = get_rate_correction_factor(cpi);
+ double adjustment_limit;
+
+ int projected_size_based_on_q = 0;
+
+ // Do not update the rate factors for arf overlay frames.
+ if (cpi->rc.is_src_frame_alt_ref) return;
+
+ // Clear down mmx registers to allow floating point in what follows
+ aom_clear_system_state();
+
+ // Work out how big we would have expected the frame to be at this Q given
+ // the current correction factor.
+ // Stay in double to avoid int overflow when values are large
+ if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cpi->common.seg.enabled) {
+ projected_size_based_on_q =
+ av1_cyclic_refresh_estimate_bits_at_q(cpi, rate_correction_factor);
+ } else {
+ projected_size_based_on_q =
+ av1_estimate_bits_at_q(cpi->common.frame_type, cm->base_qindex, cm->MBs,
+ rate_correction_factor, cm->bit_depth);
+ }
+ // Work out a size correction factor.
+ if (projected_size_based_on_q > FRAME_OVERHEAD_BITS)
+ correction_factor = (int)((100 * (int64_t)cpi->rc.projected_frame_size) /
+ projected_size_based_on_q);
+
+ // More heavily damped adjustment used if we have been oscillating either side
+ // of target.
+ if (correction_factor > 0) {
+ adjustment_limit =
+ 0.25 + 0.5 * AOMMIN(1, fabs(log10(0.01 * correction_factor)));
+ } else {
+ adjustment_limit = 0.75;
+ }
+
+ cpi->rc.q_2_frame = cpi->rc.q_1_frame;
+ cpi->rc.q_1_frame = cm->base_qindex;
+ cpi->rc.rc_2_frame = cpi->rc.rc_1_frame;
+ if (correction_factor > 110)
+ cpi->rc.rc_1_frame = -1;
+ else if (correction_factor < 90)
+ cpi->rc.rc_1_frame = 1;
+ else
+ cpi->rc.rc_1_frame = 0;
+
+ if (correction_factor > 102) {
+ // We are not already at the worst allowable quality
+ correction_factor =
+ (int)(100 + ((correction_factor - 100) * adjustment_limit));
+ rate_correction_factor = (rate_correction_factor * correction_factor) / 100;
+ // Keep rate_correction_factor within limits
+ if (rate_correction_factor > MAX_BPB_FACTOR)
+ rate_correction_factor = MAX_BPB_FACTOR;
+ } else if (correction_factor < 99) {
+ // We are not already at the best allowable quality
+ correction_factor =
+ (int)(100 - ((100 - correction_factor) * adjustment_limit));
+ rate_correction_factor = (rate_correction_factor * correction_factor) / 100;
+
+ // Keep rate_correction_factor within limits
+ if (rate_correction_factor < MIN_BPB_FACTOR)
+ rate_correction_factor = MIN_BPB_FACTOR;
+ }
+
+ set_rate_correction_factor(cpi, rate_correction_factor);
+}
+
+int av1_rc_regulate_q(const AV1_COMP *cpi, int target_bits_per_frame,
+ int active_best_quality, int active_worst_quality) {
+ const AV1_COMMON *const cm = &cpi->common;
+ int q = active_worst_quality;
+ int last_error = INT_MAX;
+ int i, target_bits_per_mb, bits_per_mb_at_this_q;
+ const double correction_factor = get_rate_correction_factor(cpi);
+
+ // Calculate required scaling factor based on target frame size and size of
+ // frame produced using previous Q.
+ target_bits_per_mb =
+ (int)((uint64_t)target_bits_per_frame << BPER_MB_NORMBITS) / cm->MBs;
+
+ i = active_best_quality;
+
+ do {
+ if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled) {
+ bits_per_mb_at_this_q =
+ (int)av1_cyclic_refresh_rc_bits_per_mb(cpi, i, correction_factor);
+ } else {
+ bits_per_mb_at_this_q = (int)av1_rc_bits_per_mb(
+ cm->frame_type, i, correction_factor, cm->bit_depth);
+ }
+
+ if (bits_per_mb_at_this_q <= target_bits_per_mb) {
+ if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error)
+ q = i;
+ else
+ q = i - 1;
+
+ break;
+ } else {
+ last_error = bits_per_mb_at_this_q - target_bits_per_mb;
+ }
+ } while (++i <= active_worst_quality);
+
+ // In CBR mode, this makes sure q is between oscillating Qs to prevent
+ // resonance.
+ if (cpi->oxcf.rc_mode == AOM_CBR &&
+ (cpi->rc.rc_1_frame * cpi->rc.rc_2_frame == -1) &&
+ cpi->rc.q_1_frame != cpi->rc.q_2_frame) {
+ q = clamp(q, AOMMIN(cpi->rc.q_1_frame, cpi->rc.q_2_frame),
+ AOMMAX(cpi->rc.q_1_frame, cpi->rc.q_2_frame));
+ }
+ return q;
+}
+
+static int get_active_quality(int q, int gfu_boost, int low, int high,
+ int *low_motion_minq, int *high_motion_minq) {
+ if (gfu_boost > high) {
+ return low_motion_minq[q];
+ } else if (gfu_boost < low) {
+ return high_motion_minq[q];
+ } else {
+ const int gap = high - low;
+ const int offset = high - gfu_boost;
+ const int qdiff = high_motion_minq[q] - low_motion_minq[q];
+ const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap;
+ return low_motion_minq[q] + adjustment;
+ }
+}
+
+static int get_kf_active_quality(const RATE_CONTROL *const rc, int q,
+ aom_bit_depth_t bit_depth) {
+ int *kf_low_motion_minq;
+ int *kf_high_motion_minq;
+ ASSIGN_MINQ_TABLE(bit_depth, kf_low_motion_minq);
+ ASSIGN_MINQ_TABLE(bit_depth, kf_high_motion_minq);
+ return get_active_quality(q, rc->kf_boost, kf_low, kf_high,
+ kf_low_motion_minq, kf_high_motion_minq);
+}
+
+static int get_gf_active_quality(const RATE_CONTROL *const rc, int q,
+ aom_bit_depth_t bit_depth) {
+ int *arfgf_low_motion_minq;
+ int *arfgf_high_motion_minq;
+ ASSIGN_MINQ_TABLE(bit_depth, arfgf_low_motion_minq);
+ ASSIGN_MINQ_TABLE(bit_depth, arfgf_high_motion_minq);
+ return get_active_quality(q, rc->gfu_boost, gf_low, gf_high,
+ arfgf_low_motion_minq, arfgf_high_motion_minq);
+}
+
+static int calc_active_worst_quality_one_pass_vbr(const AV1_COMP *cpi) {
+ const RATE_CONTROL *const rc = &cpi->rc;
+ const unsigned int curr_frame = cpi->common.current_video_frame;
+ int active_worst_quality;
+
+ if (cpi->common.frame_type == KEY_FRAME) {
+ active_worst_quality =
+ curr_frame == 0 ? rc->worst_quality : rc->last_q[KEY_FRAME] * 2;
+ } else {
+ if (!rc->is_src_frame_alt_ref &&
+ (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
+ active_worst_quality = curr_frame == 1 ? rc->last_q[KEY_FRAME] * 5 / 4
+ : rc->last_q[INTER_FRAME];
+ } else {
+ active_worst_quality = curr_frame == 1 ? rc->last_q[KEY_FRAME] * 2
+ : rc->last_q[INTER_FRAME] * 2;
+ }
+ }
+ return AOMMIN(active_worst_quality, rc->worst_quality);
+}
+
+// Adjust active_worst_quality level based on buffer level.
+static int calc_active_worst_quality_one_pass_cbr(const AV1_COMP *cpi) {
+ // Adjust active_worst_quality: If buffer is above the optimal/target level,
+ // bring active_worst_quality down depending on fullness of buffer.
+ // If buffer is below the optimal level, let the active_worst_quality go from
+ // ambient Q (at buffer = optimal level) to worst_quality level
+ // (at buffer = critical level).
+ const AV1_COMMON *const cm = &cpi->common;
+ const RATE_CONTROL *rc = &cpi->rc;
+ // Buffer level below which we push active_worst to worst_quality.
+ int64_t critical_level = rc->optimal_buffer_level >> 3;
+ int64_t buff_lvl_step = 0;
+ int adjustment = 0;
+ int active_worst_quality;
+ int ambient_qp;
+ if (cm->frame_type == KEY_FRAME) return rc->worst_quality;
+ // For ambient_qp we use minimum of avg_frame_qindex[KEY_FRAME/INTER_FRAME]
+ // for the first few frames following key frame. These are both initialized
+ // to worst_quality and updated with (3/4, 1/4) average in postencode_update.
+ // So for first few frames following key, the qp of that key frame is weighted
+ // into the active_worst_quality setting.
+ ambient_qp = (cm->current_video_frame < 5)
+ ? AOMMIN(rc->avg_frame_qindex[INTER_FRAME],
+ rc->avg_frame_qindex[KEY_FRAME])
+ : rc->avg_frame_qindex[INTER_FRAME];
+ active_worst_quality = AOMMIN(rc->worst_quality, ambient_qp * 5 / 4);
+ if (rc->buffer_level > rc->optimal_buffer_level) {
+ // Adjust down.
+ // Maximum limit for down adjustment, ~30%.
+ int max_adjustment_down = active_worst_quality / 3;
+ if (max_adjustment_down) {
+ buff_lvl_step = ((rc->maximum_buffer_size - rc->optimal_buffer_level) /
+ max_adjustment_down);
+ if (buff_lvl_step)
+ adjustment = (int)((rc->buffer_level - rc->optimal_buffer_level) /
+ buff_lvl_step);
+ active_worst_quality -= adjustment;
+ }
+ } else if (rc->buffer_level > critical_level) {
+ // Adjust up from ambient Q.
+ if (critical_level) {
+ buff_lvl_step = (rc->optimal_buffer_level - critical_level);
+ if (buff_lvl_step) {
+ adjustment = (int)((rc->worst_quality - ambient_qp) *
+ (rc->optimal_buffer_level - rc->buffer_level) /
+ buff_lvl_step);
+ }
+ active_worst_quality = ambient_qp + adjustment;
+ }
+ } else {
+ // Set to worst_quality if buffer is below critical level.
+ active_worst_quality = rc->worst_quality;
+ }
+ return active_worst_quality;
+}
+
+static int rc_pick_q_and_bounds_one_pass_cbr(const AV1_COMP *cpi,
+ int *bottom_index,
+ int *top_index) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const RATE_CONTROL *const rc = &cpi->rc;
+ int active_best_quality;
+ int active_worst_quality = calc_active_worst_quality_one_pass_cbr(cpi);
+ int q;
+ int *rtc_minq;
+ ASSIGN_MINQ_TABLE(cm->bit_depth, rtc_minq);
+
+ if (frame_is_intra_only(cm)) {
+ active_best_quality = rc->best_quality;
+ // Handle the special case for key frames forced when we have reached
+ // the maximum key frame interval. Here force the Q to a range
+ // based on the ambient Q to reduce the risk of popping.
+ if (rc->this_key_frame_forced) {
+ int qindex = rc->last_boosted_qindex;
+ double last_boosted_q = av1_convert_qindex_to_q(qindex, cm->bit_depth);
+ int delta_qindex = av1_compute_qdelta(
+ rc, last_boosted_q, (last_boosted_q * 0.75), cm->bit_depth);
+ active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality);
+ } else if (cm->current_video_frame > 0) {
+ // not first frame of one pass and kf_boost is set
+ double q_adj_factor = 1.0;
+ double q_val;
+
+ active_best_quality = get_kf_active_quality(
+ rc, rc->avg_frame_qindex[KEY_FRAME], cm->bit_depth);
+
+ // Allow somewhat lower kf minq with small image formats.
+ if ((cm->width * cm->height) <= (352 * 288)) {
+ q_adj_factor -= 0.25;
+ }
+
+ // Convert the adjustment factor to a qindex delta
+ // on active_best_quality.
+ q_val = av1_convert_qindex_to_q(active_best_quality, cm->bit_depth);
+ active_best_quality +=
+ av1_compute_qdelta(rc, q_val, q_val * q_adj_factor, cm->bit_depth);
+ }
+ } else if (!rc->is_src_frame_alt_ref &&
+ (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
+ // Use the lower of active_worst_quality and recent
+ // average Q as basis for GF/ARF best Q limit unless last frame was
+ // a key frame.
+ if (rc->frames_since_key > 1 &&
+ rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
+ q = rc->avg_frame_qindex[INTER_FRAME];
+ } else {
+ q = active_worst_quality;
+ }
+ active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
+ } else {
+ // Use the lower of active_worst_quality and recent/average Q.
+ if (cm->current_video_frame > 1) {
+ if (rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality)
+ active_best_quality = rtc_minq[rc->avg_frame_qindex[INTER_FRAME]];
+ else
+ active_best_quality = rtc_minq[active_worst_quality];
+ } else {
+ if (rc->avg_frame_qindex[KEY_FRAME] < active_worst_quality)
+ active_best_quality = rtc_minq[rc->avg_frame_qindex[KEY_FRAME]];
+ else
+ active_best_quality = rtc_minq[active_worst_quality];
+ }
+ }
+
+ // Clip the active best and worst quality values to limits
+ active_best_quality =
+ clamp(active_best_quality, rc->best_quality, rc->worst_quality);
+ active_worst_quality =
+ clamp(active_worst_quality, active_best_quality, rc->worst_quality);
+
+ *top_index = active_worst_quality;
+ *bottom_index = active_best_quality;
+
+ // Limit Q range for the adaptive loop.
+ if (cm->frame_type == KEY_FRAME && !rc->this_key_frame_forced &&
+ !(cm->current_video_frame == 0)) {
+ int qdelta = 0;
+ aom_clear_system_state();
+ qdelta = av1_compute_qdelta_by_rate(
+ &cpi->rc, cm->frame_type, active_worst_quality, 2.0, cm->bit_depth);
+ *top_index = active_worst_quality + qdelta;
+ *top_index = AOMMAX(*top_index, *bottom_index);
+ }
+
+ // Special case code to try and match quality with forced key frames
+ if (cm->frame_type == KEY_FRAME && rc->this_key_frame_forced) {
+ q = rc->last_boosted_qindex;
+ } else {
+ q = av1_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality,
+ active_worst_quality);
+ if (q > *top_index) {
+ // Special case when we are targeting the max allowed rate
+ if (rc->this_frame_target >= rc->max_frame_bandwidth)
+ *top_index = q;
+ else
+ q = *top_index;
+ }
+ }
+
+ assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality);
+ assert(*bottom_index <= rc->worst_quality &&
+ *bottom_index >= rc->best_quality);
+ assert(q <= rc->worst_quality && q >= rc->best_quality);
+ return q;
+}
+
+static int get_active_cq_level(const RATE_CONTROL *rc,
+ const AV1EncoderConfig *const oxcf) {
+ static const double cq_adjust_threshold = 0.1;
+ int active_cq_level = oxcf->cq_level;
+ if (oxcf->rc_mode == AOM_CQ && rc->total_target_bits > 0) {
+ const double x = (double)rc->total_actual_bits / rc->total_target_bits;
+ if (x < cq_adjust_threshold) {
+ active_cq_level = (int)(active_cq_level * x / cq_adjust_threshold);
+ }
+ }
+ return active_cq_level;
+}
+
+static int rc_pick_q_and_bounds_one_pass_vbr(const AV1_COMP *cpi,
+ int *bottom_index,
+ int *top_index) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const RATE_CONTROL *const rc = &cpi->rc;
+ const AV1EncoderConfig *const oxcf = &cpi->oxcf;
+ const int cq_level = get_active_cq_level(rc, oxcf);
+ int active_best_quality;
+ int active_worst_quality = calc_active_worst_quality_one_pass_vbr(cpi);
+ int q;
+ int *inter_minq;
+ ASSIGN_MINQ_TABLE(cm->bit_depth, inter_minq);
+
+ if (frame_is_intra_only(cm)) {
+ if (oxcf->rc_mode == AOM_Q) {
+ const int qindex = cq_level;
+ const double q_val = av1_convert_qindex_to_q(qindex, cm->bit_depth);
+ const int delta_qindex =
+ av1_compute_qdelta(rc, q_val, q_val * 0.25, cm->bit_depth);
+ active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality);
+ } else if (rc->this_key_frame_forced) {
+ const int qindex = rc->last_boosted_qindex;
+ const double last_boosted_q =
+ av1_convert_qindex_to_q(qindex, cm->bit_depth);
+ const int delta_qindex = av1_compute_qdelta(
+ rc, last_boosted_q, last_boosted_q * 0.75, cm->bit_depth);
+ active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality);
+ } else { // not first frame of one pass and kf_boost is set
+ double q_adj_factor = 1.0;
+
+ active_best_quality = get_kf_active_quality(
+ rc, rc->avg_frame_qindex[KEY_FRAME], cm->bit_depth);
+
+ // Allow somewhat lower kf minq with small image formats.
+ if ((cm->width * cm->height) <= (352 * 288)) {
+ q_adj_factor -= 0.25;
+ }
+
+ // Convert the adjustment factor to a qindex delta on active_best_quality.
+ {
+ const double q_val =
+ av1_convert_qindex_to_q(active_best_quality, cm->bit_depth);
+ active_best_quality +=
+ av1_compute_qdelta(rc, q_val, q_val * q_adj_factor, cm->bit_depth);
+ }
+ }
+ } else if (!rc->is_src_frame_alt_ref &&
+ (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
+ // Use the lower of active_worst_quality and recent
+ // average Q as basis for GF/ARF best Q limit unless last frame was
+ // a key frame.
+ q = (rc->frames_since_key > 1 &&
+ rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality)
+ ? rc->avg_frame_qindex[INTER_FRAME]
+ : rc->avg_frame_qindex[KEY_FRAME];
+ // For constrained quality dont allow Q less than the cq level
+ if (oxcf->rc_mode == AOM_CQ) {
+ if (q < cq_level) q = cq_level;
+ active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
+ // Constrained quality use slightly lower active best.
+ active_best_quality = active_best_quality * 15 / 16;
+ } else if (oxcf->rc_mode == AOM_Q) {
+ const int qindex = cq_level;
+ const double q_val = av1_convert_qindex_to_q(qindex, cm->bit_depth);
+ const int delta_qindex =
+ (cpi->refresh_alt_ref_frame)
+ ? av1_compute_qdelta(rc, q_val, q_val * 0.40, cm->bit_depth)
+ : av1_compute_qdelta(rc, q_val, q_val * 0.50, cm->bit_depth);
+ active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality);
+ } else {
+ active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
+ }
+ } else {
+ if (oxcf->rc_mode == AOM_Q) {
+ const int qindex = cq_level;
+ const double q_val = av1_convert_qindex_to_q(qindex, cm->bit_depth);
+ const double delta_rate[FIXED_GF_INTERVAL] = { 0.50, 1.0, 0.85, 1.0,
+ 0.70, 1.0, 0.85, 1.0 };
+ const int delta_qindex = av1_compute_qdelta(
+ rc, q_val,
+ q_val * delta_rate[cm->current_video_frame % FIXED_GF_INTERVAL],
+ cm->bit_depth);
+ active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality);
+ } else {
+ // Use the lower of active_worst_quality and recent/average Q.
+ active_best_quality = (cm->current_video_frame > 1)
+ ? inter_minq[rc->avg_frame_qindex[INTER_FRAME]]
+ : inter_minq[rc->avg_frame_qindex[KEY_FRAME]];
+ // For the constrained quality mode we don't want
+ // q to fall below the cq level.
+ if ((oxcf->rc_mode == AOM_CQ) && (active_best_quality < cq_level)) {
+ active_best_quality = cq_level;
+ }
+ }
+ }
+
+ // Clip the active best and worst quality values to limits
+ active_best_quality =
+ clamp(active_best_quality, rc->best_quality, rc->worst_quality);
+ active_worst_quality =
+ clamp(active_worst_quality, active_best_quality, rc->worst_quality);
+
+ *top_index = active_worst_quality;
+ *bottom_index = active_best_quality;
+
+ // Limit Q range for the adaptive loop.
+ {
+ int qdelta = 0;
+ aom_clear_system_state();
+ if (cm->frame_type == KEY_FRAME && !rc->this_key_frame_forced &&
+ !(cm->current_video_frame == 0)) {
+ qdelta = av1_compute_qdelta_by_rate(
+ &cpi->rc, cm->frame_type, active_worst_quality, 2.0, cm->bit_depth);
+ } else if (!rc->is_src_frame_alt_ref &&
+ (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
+ qdelta = av1_compute_qdelta_by_rate(
+ &cpi->rc, cm->frame_type, active_worst_quality, 1.75, cm->bit_depth);
+ }
+ *top_index = active_worst_quality + qdelta;
+ *top_index = AOMMAX(*top_index, *bottom_index);
+ }
+
+ if (oxcf->rc_mode == AOM_Q) {
+ q = active_best_quality;
+ // Special case code to try and match quality with forced key frames
+ } else if ((cm->frame_type == KEY_FRAME) && rc->this_key_frame_forced) {
+ q = rc->last_boosted_qindex;
+ } else {
+ q = av1_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality,
+ active_worst_quality);
+ if (q > *top_index) {
+ // Special case when we are targeting the max allowed rate
+ if (rc->this_frame_target >= rc->max_frame_bandwidth)
+ *top_index = q;
+ else
+ q = *top_index;
+ }
+ }
+
+ assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality);
+ assert(*bottom_index <= rc->worst_quality &&
+ *bottom_index >= rc->best_quality);
+ assert(q <= rc->worst_quality && q >= rc->best_quality);
+ return q;
+}
+
+int av1_frame_type_qdelta(const AV1_COMP *cpi, int rf_level, int q) {
+ static const double rate_factor_deltas[RATE_FACTOR_LEVELS] = {
+ 1.00, // INTER_NORMAL
+#if CONFIG_EXT_REFS
+ 0.80, // INTER_LOW
+ 1.50, // INTER_HIGH
+ 1.25, // GF_ARF_LOW
+#else
+ 1.00, // INTER_HIGH
+ 1.50, // GF_ARF_LOW
+#endif // CONFIG_EXT_REFS
+ 2.00, // GF_ARF_STD
+ 2.00, // KF_STD
+ };
+ static const FRAME_TYPE frame_type[RATE_FACTOR_LEVELS] =
+#if CONFIG_EXT_REFS
+ { INTER_FRAME, INTER_FRAME, INTER_FRAME,
+ INTER_FRAME, INTER_FRAME, KEY_FRAME };
+#else
+ { INTER_FRAME, INTER_FRAME, INTER_FRAME, INTER_FRAME, KEY_FRAME };
+#endif // CONFIG_EXT_REFS
+ const AV1_COMMON *const cm = &cpi->common;
+ int qdelta =
+ av1_compute_qdelta_by_rate(&cpi->rc, frame_type[rf_level], q,
+ rate_factor_deltas[rf_level], cm->bit_depth);
+ return qdelta;
+}
+
+#define STATIC_MOTION_THRESH 95
+static int rc_pick_q_and_bounds_two_pass(const AV1_COMP *cpi, int *bottom_index,
+ int *top_index) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const RATE_CONTROL *const rc = &cpi->rc;
+ const AV1EncoderConfig *const oxcf = &cpi->oxcf;
+ const GF_GROUP *gf_group = &cpi->twopass.gf_group;
+ const int cq_level = get_active_cq_level(rc, oxcf);
+ int active_best_quality;
+ int active_worst_quality = cpi->twopass.active_worst_quality;
+ int q;
+ int *inter_minq;
+ ASSIGN_MINQ_TABLE(cm->bit_depth, inter_minq);
+
+ if (frame_is_intra_only(cm)) {
+ // Handle the special case for key frames forced when we have reached
+ // the maximum key frame interval. Here force the Q to a range
+ // based on the ambient Q to reduce the risk of popping.
+ if (rc->this_key_frame_forced) {
+ double last_boosted_q;
+ int delta_qindex;
+ int qindex;
+
+ if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) {
+ qindex = AOMMIN(rc->last_kf_qindex, rc->last_boosted_qindex);
+ active_best_quality = qindex;
+ last_boosted_q = av1_convert_qindex_to_q(qindex, cm->bit_depth);
+ delta_qindex = av1_compute_qdelta(rc, last_boosted_q,
+ last_boosted_q * 1.25, cm->bit_depth);
+ active_worst_quality =
+ AOMMIN(qindex + delta_qindex, active_worst_quality);
+ } else {
+ qindex = rc->last_boosted_qindex;
+ last_boosted_q = av1_convert_qindex_to_q(qindex, cm->bit_depth);
+ delta_qindex = av1_compute_qdelta(rc, last_boosted_q,
+ last_boosted_q * 0.75, cm->bit_depth);
+ active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality);
+ }
+ } else {
+ // Not forced keyframe.
+ double q_adj_factor = 1.0;
+ double q_val;
+
+ // Baseline value derived from cpi->active_worst_quality and kf boost.
+ active_best_quality =
+ get_kf_active_quality(rc, active_worst_quality, cm->bit_depth);
+
+ // Allow somewhat lower kf minq with small image formats.
+ if ((cm->width * cm->height) <= (352 * 288)) {
+ q_adj_factor -= 0.25;
+ }
+
+ // Make a further adjustment based on the kf zero motion measure.
+ q_adj_factor += 0.05 - (0.001 * (double)cpi->twopass.kf_zeromotion_pct);
+
+ // Convert the adjustment factor to a qindex delta
+ // on active_best_quality.
+ q_val = av1_convert_qindex_to_q(active_best_quality, cm->bit_depth);
+ active_best_quality +=
+ av1_compute_qdelta(rc, q_val, q_val * q_adj_factor, cm->bit_depth);
+ }
+ } else if (!rc->is_src_frame_alt_ref &&
+ (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
+ // Use the lower of active_worst_quality and recent
+ // average Q as basis for GF/ARF best Q limit unless last frame was
+ // a key frame.
+ if (rc->frames_since_key > 1 &&
+ rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
+ q = rc->avg_frame_qindex[INTER_FRAME];
+ } else {
+ q = active_worst_quality;
+ }
+ // For constrained quality dont allow Q less than the cq level
+ if (oxcf->rc_mode == AOM_CQ) {
+ if (q < cq_level) q = cq_level;
+
+ active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
+
+ // Constrained quality use slightly lower active best.
+ active_best_quality = active_best_quality * 15 / 16;
+
+ } else if (oxcf->rc_mode == AOM_Q) {
+ if (!cpi->refresh_alt_ref_frame) {
+ active_best_quality = cq_level;
+ } else {
+ active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
+
+ // Modify best quality for second level arfs. For mode AOM_Q this
+ // becomes the baseline frame q.
+ if (gf_group->rf_level[gf_group->index] == GF_ARF_LOW)
+ active_best_quality = (active_best_quality + cq_level + 1) / 2;
+ }
+ } else {
+ active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
+ }
+ } else {
+ if (oxcf->rc_mode == AOM_Q) {
+ active_best_quality = cq_level;
+ } else {
+ active_best_quality = inter_minq[active_worst_quality];
+
+ // For the constrained quality mode we don't want
+ // q to fall below the cq level.
+ if ((oxcf->rc_mode == AOM_CQ) && (active_best_quality < cq_level)) {
+ active_best_quality = cq_level;
+ }
+ }
+ }
+
+ // Extension to max or min Q if undershoot or overshoot is outside
+ // the permitted range.
+ if ((cpi->oxcf.rc_mode != AOM_Q) &&
+ (cpi->twopass.gf_zeromotion_pct < VLOW_MOTION_THRESHOLD)) {
+ if (frame_is_intra_only(cm) ||
+ (!rc->is_src_frame_alt_ref &&
+ (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame))) {
+ active_best_quality -=
+ (cpi->twopass.extend_minq + cpi->twopass.extend_minq_fast);
+ active_worst_quality += (cpi->twopass.extend_maxq / 2);
+ } else {
+ active_best_quality -=
+ (cpi->twopass.extend_minq + cpi->twopass.extend_minq_fast) / 2;
+ active_worst_quality += cpi->twopass.extend_maxq;
+ }
+ }
+
+ aom_clear_system_state();
+ // Static forced key frames Q restrictions dealt with elsewhere.
+ if (!(frame_is_intra_only(cm)) || !rc->this_key_frame_forced ||
+ (cpi->twopass.last_kfgroup_zeromotion_pct < STATIC_MOTION_THRESH)) {
+ int qdelta = av1_frame_type_qdelta(cpi, gf_group->rf_level[gf_group->index],
+ active_worst_quality);
+ active_worst_quality =
+ AOMMAX(active_worst_quality + qdelta, active_best_quality);
+ }
+
+ // Modify active_best_quality for downscaled normal frames.
+ if (rc->frame_size_selector != UNSCALED && !frame_is_kf_gf_arf(cpi)) {
+ int qdelta = av1_compute_qdelta_by_rate(
+ rc, cm->frame_type, active_best_quality, 2.0, cm->bit_depth);
+ active_best_quality =
+ AOMMAX(active_best_quality + qdelta, rc->best_quality);
+ }
+
+ active_best_quality =
+ clamp(active_best_quality, rc->best_quality, rc->worst_quality);
+ active_worst_quality =
+ clamp(active_worst_quality, active_best_quality, rc->worst_quality);
+
+ if (oxcf->rc_mode == AOM_Q) {
+ q = active_best_quality;
+ // Special case code to try and match quality with forced key frames.
+ } else if (frame_is_intra_only(cm) && rc->this_key_frame_forced) {
+ // If static since last kf use better of last boosted and last kf q.
+ if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) {
+ q = AOMMIN(rc->last_kf_qindex, rc->last_boosted_qindex);
+ } else {
+ q = rc->last_boosted_qindex;
+ }
+ } else {
+ q = av1_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality,
+ active_worst_quality);
+ if (q > active_worst_quality) {
+ // Special case when we are targeting the max allowed rate.
+ if (rc->this_frame_target >= rc->max_frame_bandwidth)
+ active_worst_quality = q;
+ else
+ q = active_worst_quality;
+ }
+ }
+ clamp(q, active_best_quality, active_worst_quality);
+
+ *top_index = active_worst_quality;
+ *bottom_index = active_best_quality;
+
+ assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality);
+ assert(*bottom_index <= rc->worst_quality &&
+ *bottom_index >= rc->best_quality);
+ assert(q <= rc->worst_quality && q >= rc->best_quality);
+ return q;
+}
+
+int av1_rc_pick_q_and_bounds(const AV1_COMP *cpi, int *bottom_index,
+ int *top_index) {
+ int q;
+ if (cpi->oxcf.pass == 0) {
+ if (cpi->oxcf.rc_mode == AOM_CBR)
+ q = rc_pick_q_and_bounds_one_pass_cbr(cpi, bottom_index, top_index);
+ else
+ q = rc_pick_q_and_bounds_one_pass_vbr(cpi, bottom_index, top_index);
+ } else {
+ q = rc_pick_q_and_bounds_two_pass(cpi, bottom_index, top_index);
+ }
+
+ return q;
+}
+
+void av1_rc_compute_frame_size_bounds(const AV1_COMP *cpi, int frame_target,
+ int *frame_under_shoot_limit,
+ int *frame_over_shoot_limit) {
+ if (cpi->oxcf.rc_mode == AOM_Q) {
+ *frame_under_shoot_limit = 0;
+ *frame_over_shoot_limit = INT_MAX;
+ } else {
+ // For very small rate targets where the fractional adjustment
+ // may be tiny make sure there is at least a minimum range.
+ const int tolerance = (cpi->sf.recode_tolerance * frame_target) / 100;
+ *frame_under_shoot_limit = AOMMAX(frame_target - tolerance - 200, 0);
+ *frame_over_shoot_limit =
+ AOMMIN(frame_target + tolerance + 200, cpi->rc.max_frame_bandwidth);
+ }
+}
+
+void av1_rc_set_frame_target(AV1_COMP *cpi, int target) {
+ const AV1_COMMON *const cm = &cpi->common;
+ RATE_CONTROL *const rc = &cpi->rc;
+
+ rc->this_frame_target = target;
+
+ // Modify frame size target when down-scaling.
+ if (cpi->oxcf.resize_mode == RESIZE_DYNAMIC &&
+ rc->frame_size_selector != UNSCALED)
+ rc->this_frame_target = (int)(rc->this_frame_target *
+ rate_thresh_mult[rc->frame_size_selector]);
+
+ // Target rate per SB64 (including partial SB64s.
+ rc->sb64_target_rate = (int)((int64_t)rc->this_frame_target * 64 * 64) /
+ (cm->width * cm->height);
+}
+
+static void update_alt_ref_frame_stats(AV1_COMP *cpi) {
+ // this frame refreshes means next frames don't unless specified by user
+ RATE_CONTROL *const rc = &cpi->rc;
+ rc->frames_since_golden = 0;
+
+ // Mark the alt ref as done (setting to 0 means no further alt refs pending).
+ rc->source_alt_ref_pending = 0;
+
+ // Set the alternate reference frame active flag
+ rc->source_alt_ref_active = 1;
+}
+
+static void update_golden_frame_stats(AV1_COMP *cpi) {
+ RATE_CONTROL *const rc = &cpi->rc;
+
+#if CONFIG_EXT_REFS
+ // Update the Golden frame usage counts.
+ // NOTE(weitinglin): If we use show_existing_frame for an OVERLAY frame,
+ // only the virtual indices for the reference frame will be
+ // updated and cpi->refresh_golden_frame will still be zero.
+ if (cpi->refresh_golden_frame || rc->is_src_frame_alt_ref) {
+#else
+ // Update the Golden frame usage counts.
+ if (cpi->refresh_golden_frame) {
+#endif // CONFIG_EXT_REFS
+
+#if CONFIG_EXT_REFS
+ // We will not use internal overlay frames to replace the golden frame
+ if (!rc->is_src_frame_ext_arf)
+#endif // CONFIG_EXT_REFS
+ // this frame refreshes means next frames don't unless specified by user
+ rc->frames_since_golden = 0;
+
+ // If we are not using alt ref in the up and coming group clear the arf
+ // active flag. In multi arf group case, if the index is not 0 then
+ // we are overlaying a mid group arf so should not reset the flag.
+ if (cpi->oxcf.pass == 2) {
+ if (!rc->source_alt_ref_pending && (cpi->twopass.gf_group.index == 0))
+ rc->source_alt_ref_active = 0;
+ } else if (!rc->source_alt_ref_pending) {
+ rc->source_alt_ref_active = 0;
+ }
+
+ // Decrement count down till next gf
+ if (rc->frames_till_gf_update_due > 0) rc->frames_till_gf_update_due--;
+
+ } else if (!cpi->refresh_alt_ref_frame) {
+ // Decrement count down till next gf
+ if (rc->frames_till_gf_update_due > 0) rc->frames_till_gf_update_due--;
+
+ rc->frames_since_golden++;
+ }
+}
+
+void av1_rc_postencode_update(AV1_COMP *cpi, uint64_t bytes_used) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const AV1EncoderConfig *const oxcf = &cpi->oxcf;
+ RATE_CONTROL *const rc = &cpi->rc;
+ const int qindex = cm->base_qindex;
+
+ if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled) {
+ av1_cyclic_refresh_postencode(cpi);
+ }
+
+ // Update rate control heuristics
+ rc->projected_frame_size = (int)(bytes_used << 3);
+
+ // Post encode loop adjustment of Q prediction.
+ av1_rc_update_rate_correction_factors(cpi);
+
+ // Keep a record of last Q and ambient average Q.
+ if (cm->frame_type == KEY_FRAME) {
+ rc->last_q[KEY_FRAME] = qindex;
+ rc->avg_frame_qindex[KEY_FRAME] =
+ ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[KEY_FRAME] + qindex, 2);
+ } else {
+ if (!rc->is_src_frame_alt_ref &&
+ !(cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
+ rc->last_q[INTER_FRAME] = qindex;
+ rc->avg_frame_qindex[INTER_FRAME] =
+ ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[INTER_FRAME] + qindex, 2);
+ rc->ni_frames++;
+ rc->tot_q += av1_convert_qindex_to_q(qindex, cm->bit_depth);
+ rc->avg_q = rc->tot_q / rc->ni_frames;
+ // Calculate the average Q for normal inter frames (not key or GFU
+ // frames).
+ rc->ni_tot_qi += qindex;
+ rc->ni_av_qi = rc->ni_tot_qi / rc->ni_frames;
+ }
+ }
+
+ // Keep record of last boosted (KF/GF/ARF) Q value.
+ // If the current frame is coded at a lower Q then we also update it.
+ // If all mbs in this group are skipped only update if the Q value is
+ // better than that already stored.
+ // This is used to help set quality in forced key frames to reduce popping
+ if ((qindex < rc->last_boosted_qindex) || (cm->frame_type == KEY_FRAME) ||
+ (!rc->constrained_gf_group &&
+ (cpi->refresh_alt_ref_frame ||
+ (cpi->refresh_golden_frame && !rc->is_src_frame_alt_ref)))) {
+ rc->last_boosted_qindex = qindex;
+ }
+ if (cm->frame_type == KEY_FRAME) rc->last_kf_qindex = qindex;
+
+ update_buffer_level(cpi, rc->projected_frame_size);
+
+ // Rolling monitors of whether we are over or underspending used to help
+ // regulate min and Max Q in two pass.
+ if (cm->frame_type != KEY_FRAME) {
+ rc->rolling_target_bits = ROUND_POWER_OF_TWO(
+ rc->rolling_target_bits * 3 + rc->this_frame_target, 2);
+ rc->rolling_actual_bits = ROUND_POWER_OF_TWO(
+ rc->rolling_actual_bits * 3 + rc->projected_frame_size, 2);
+ rc->long_rolling_target_bits = ROUND_POWER_OF_TWO(
+ rc->long_rolling_target_bits * 31 + rc->this_frame_target, 5);
+ rc->long_rolling_actual_bits = ROUND_POWER_OF_TWO(
+ rc->long_rolling_actual_bits * 31 + rc->projected_frame_size, 5);
+ }
+
+ // Actual bits spent
+ rc->total_actual_bits += rc->projected_frame_size;
+#if CONFIG_EXT_REFS
+ rc->total_target_bits +=
+ (cm->show_frame || rc->is_bwd_ref_frame) ? rc->avg_frame_bandwidth : 0;
+#else
+ rc->total_target_bits += cm->show_frame ? rc->avg_frame_bandwidth : 0;
+#endif // CONFIG_EXT_REFS
+
+ rc->total_target_vs_actual = rc->total_actual_bits - rc->total_target_bits;
+
+ if (is_altref_enabled(cpi) && cpi->refresh_alt_ref_frame &&
+ (cm->frame_type != KEY_FRAME))
+ // Update the alternate reference frame stats as appropriate.
+ update_alt_ref_frame_stats(cpi);
+ else
+ // Update the Golden frame stats as appropriate.
+ update_golden_frame_stats(cpi);
+
+ if (cm->frame_type == KEY_FRAME) rc->frames_since_key = 0;
+
+#if CONFIG_EXT_REFS
+ if (cm->show_frame || rc->is_bwd_ref_frame) {
+#else
+ if (cm->show_frame) {
+#endif // CONFIG_EXT_REFS
+ rc->frames_since_key++;
+ rc->frames_to_key--;
+ }
+
+ // Trigger the resizing of the next frame if it is scaled.
+ if (oxcf->pass != 0) {
+ cpi->resize_pending =
+ rc->next_frame_size_selector != rc->frame_size_selector;
+ rc->frame_size_selector = rc->next_frame_size_selector;
+ }
+}
+
+void av1_rc_postencode_update_drop_frame(AV1_COMP *cpi) {
+ // Update buffer level with zero size, update frame counters, and return.
+ update_buffer_level(cpi, 0);
+ cpi->rc.frames_since_key++;
+ cpi->rc.frames_to_key--;
+ cpi->rc.rc_2_frame = 0;
+ cpi->rc.rc_1_frame = 0;
+}
+
+// Use this macro to turn on/off use of alt-refs in one-pass mode.
+#define USE_ALTREF_FOR_ONE_PASS 1
+
+static int calc_pframe_target_size_one_pass_vbr(const AV1_COMP *const cpi) {
+ static const int af_ratio = 10;
+ const RATE_CONTROL *const rc = &cpi->rc;
+ int target;
+#if USE_ALTREF_FOR_ONE_PASS
+ target =
+ (!rc->is_src_frame_alt_ref &&
+ (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame))
+ ? (rc->avg_frame_bandwidth * rc->baseline_gf_interval * af_ratio) /
+ (rc->baseline_gf_interval + af_ratio - 1)
+ : (rc->avg_frame_bandwidth * rc->baseline_gf_interval) /
+ (rc->baseline_gf_interval + af_ratio - 1);
+#else
+ target = rc->avg_frame_bandwidth;
+#endif
+ return av1_rc_clamp_pframe_target_size(cpi, target);
+}
+
+static int calc_iframe_target_size_one_pass_vbr(const AV1_COMP *const cpi) {
+ static const int kf_ratio = 25;
+ const RATE_CONTROL *rc = &cpi->rc;
+ const int target = rc->avg_frame_bandwidth * kf_ratio;
+ return av1_rc_clamp_iframe_target_size(cpi, target);
+}
+
+void av1_rc_get_one_pass_vbr_params(AV1_COMP *cpi) {
+ AV1_COMMON *const cm = &cpi->common;
+ RATE_CONTROL *const rc = &cpi->rc;
+ int target;
+ // TODO(yaowu): replace the "auto_key && 0" below with proper decision logic.
+ if (!cpi->refresh_alt_ref_frame &&
+ (cm->current_video_frame == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY) ||
+ rc->frames_to_key == 0 || (cpi->oxcf.auto_key && 0))) {
+ cm->frame_type = KEY_FRAME;
+ rc->this_key_frame_forced =
+ cm->current_video_frame != 0 && rc->frames_to_key == 0;
+ rc->frames_to_key = cpi->oxcf.key_freq;
+ rc->kf_boost = DEFAULT_KF_BOOST;
+ rc->source_alt_ref_active = 0;
+ } else {
+ cm->frame_type = INTER_FRAME;
+ }
+ if (rc->frames_till_gf_update_due == 0) {
+ rc->baseline_gf_interval = (rc->min_gf_interval + rc->max_gf_interval) / 2;
+ rc->frames_till_gf_update_due = rc->baseline_gf_interval;
+ // NOTE: frames_till_gf_update_due must be <= frames_to_key.
+ if (rc->frames_till_gf_update_due > rc->frames_to_key) {
+ rc->frames_till_gf_update_due = rc->frames_to_key;
+ rc->constrained_gf_group = 1;
+ } else {
+ rc->constrained_gf_group = 0;
+ }
+ cpi->refresh_golden_frame = 1;
+ rc->source_alt_ref_pending = USE_ALTREF_FOR_ONE_PASS;
+ rc->gfu_boost = DEFAULT_GF_BOOST;
+ }
+ if (cm->frame_type == KEY_FRAME)
+ target = calc_iframe_target_size_one_pass_vbr(cpi);
+ else
+ target = calc_pframe_target_size_one_pass_vbr(cpi);
+ av1_rc_set_frame_target(cpi, target);
+}
+
+static int calc_pframe_target_size_one_pass_cbr(const AV1_COMP *cpi) {
+ const AV1EncoderConfig *oxcf = &cpi->oxcf;
+ const RATE_CONTROL *rc = &cpi->rc;
+ const int64_t diff = rc->optimal_buffer_level - rc->buffer_level;
+ const int64_t one_pct_bits = 1 + rc->optimal_buffer_level / 100;
+ int min_frame_target =
+ AOMMAX(rc->avg_frame_bandwidth >> 4, FRAME_OVERHEAD_BITS);
+ int target;
+
+ if (oxcf->gf_cbr_boost_pct) {
+ const int af_ratio_pct = oxcf->gf_cbr_boost_pct + 100;
+ target = cpi->refresh_golden_frame
+ ? (rc->avg_frame_bandwidth * rc->baseline_gf_interval *
+ af_ratio_pct) /
+ (rc->baseline_gf_interval * 100 + af_ratio_pct - 100)
+ : (rc->avg_frame_bandwidth * rc->baseline_gf_interval * 100) /
+ (rc->baseline_gf_interval * 100 + af_ratio_pct - 100);
+ } else {
+ target = rc->avg_frame_bandwidth;
+ }
+
+ if (diff > 0) {
+ // Lower the target bandwidth for this frame.
+ const int pct_low = (int)AOMMIN(diff / one_pct_bits, oxcf->under_shoot_pct);
+ target -= (target * pct_low) / 200;
+ } else if (diff < 0) {
+ // Increase the target bandwidth for this frame.
+ const int pct_high =
+ (int)AOMMIN(-diff / one_pct_bits, oxcf->over_shoot_pct);
+ target += (target * pct_high) / 200;
+ }
+ if (oxcf->rc_max_inter_bitrate_pct) {
+ const int max_rate =
+ rc->avg_frame_bandwidth * oxcf->rc_max_inter_bitrate_pct / 100;
+ target = AOMMIN(target, max_rate);
+ }
+ return AOMMAX(min_frame_target, target);
+}
+
+static int calc_iframe_target_size_one_pass_cbr(const AV1_COMP *cpi) {
+ const RATE_CONTROL *rc = &cpi->rc;
+ int target;
+ if (cpi->common.current_video_frame == 0) {
+ target = ((rc->starting_buffer_level / 2) > INT_MAX)
+ ? INT_MAX
+ : (int)(rc->starting_buffer_level / 2);
+ } else {
+ int kf_boost = 32;
+ double framerate = cpi->framerate;
+
+ kf_boost = AOMMAX(kf_boost, (int)(2 * framerate - 16));
+ if (rc->frames_since_key < framerate / 2) {
+ kf_boost = (int)(kf_boost * rc->frames_since_key / (framerate / 2));
+ }
+ target = ((16 + kf_boost) * rc->avg_frame_bandwidth) >> 4;
+ }
+ return av1_rc_clamp_iframe_target_size(cpi, target);
+}
+
+void av1_rc_get_one_pass_cbr_params(AV1_COMP *cpi) {
+ AV1_COMMON *const cm = &cpi->common;
+ RATE_CONTROL *const rc = &cpi->rc;
+ int target;
+ // TODO(yaowu): replace the "auto_key && 0" below with proper decision logic.
+ if ((cm->current_video_frame == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY) ||
+ rc->frames_to_key == 0 || (cpi->oxcf.auto_key && 0))) {
+ cm->frame_type = KEY_FRAME;
+ rc->this_key_frame_forced =
+ cm->current_video_frame != 0 && rc->frames_to_key == 0;
+ rc->frames_to_key = cpi->oxcf.key_freq;
+ rc->kf_boost = DEFAULT_KF_BOOST;
+ rc->source_alt_ref_active = 0;
+ } else {
+ cm->frame_type = INTER_FRAME;
+ }
+ if (rc->frames_till_gf_update_due == 0) {
+ if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
+ av1_cyclic_refresh_set_golden_update(cpi);
+ else
+ rc->baseline_gf_interval =
+ (rc->min_gf_interval + rc->max_gf_interval) / 2;
+ rc->frames_till_gf_update_due = rc->baseline_gf_interval;
+ // NOTE: frames_till_gf_update_due must be <= frames_to_key.
+ if (rc->frames_till_gf_update_due > rc->frames_to_key)
+ rc->frames_till_gf_update_due = rc->frames_to_key;
+ cpi->refresh_golden_frame = 1;
+ rc->gfu_boost = DEFAULT_GF_BOOST;
+ }
+
+ // Any update/change of global cyclic refresh parameters (amount/delta-qp)
+ // should be done here, before the frame qp is selected.
+ if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
+ av1_cyclic_refresh_update_parameters(cpi);
+
+ if (cm->frame_type == KEY_FRAME)
+ target = calc_iframe_target_size_one_pass_cbr(cpi);
+ else
+ target = calc_pframe_target_size_one_pass_cbr(cpi);
+
+ av1_rc_set_frame_target(cpi, target);
+ if (cpi->oxcf.resize_mode == RESIZE_DYNAMIC)
+ cpi->resize_pending = av1_resize_one_pass_cbr(cpi);
+ else
+ cpi->resize_pending = 0;
+}
+
+int av1_compute_qdelta(const RATE_CONTROL *rc, double qstart, double qtarget,
+ aom_bit_depth_t bit_depth) {
+ int start_index = rc->worst_quality;
+ int target_index = rc->worst_quality;
+ int i;
+
+ // Convert the average q value to an index.
+ for (i = rc->best_quality; i < rc->worst_quality; ++i) {
+ start_index = i;
+ if (av1_convert_qindex_to_q(i, bit_depth) >= qstart) break;
+ }
+
+ // Convert the q target to an index
+ for (i = rc->best_quality; i < rc->worst_quality; ++i) {
+ target_index = i;
+ if (av1_convert_qindex_to_q(i, bit_depth) >= qtarget) break;
+ }
+
+ return target_index - start_index;
+}
+
+int av1_compute_qdelta_by_rate(const RATE_CONTROL *rc, FRAME_TYPE frame_type,
+ int qindex, double rate_target_ratio,
+ aom_bit_depth_t bit_depth) {
+ int target_index = rc->worst_quality;
+ int i;
+
+ // Look up the current projected bits per block for the base index
+ const int base_bits_per_mb =
+ av1_rc_bits_per_mb(frame_type, qindex, 1.0, bit_depth);
+
+ // Find the target bits per mb based on the base value and given ratio.
+ const int target_bits_per_mb = (int)(rate_target_ratio * base_bits_per_mb);
+
+ // Convert the q target to an index
+ for (i = rc->best_quality; i < rc->worst_quality; ++i) {
+ if (av1_rc_bits_per_mb(frame_type, i, 1.0, bit_depth) <=
+ target_bits_per_mb) {
+ target_index = i;
+ break;
+ }
+ }
+ return target_index - qindex;
+}
+
+void av1_rc_set_gf_interval_range(const AV1_COMP *const cpi,
+ RATE_CONTROL *const rc) {
+ const AV1EncoderConfig *const oxcf = &cpi->oxcf;
+
+ // Special case code for 1 pass fixed Q mode tests
+ if ((oxcf->pass == 0) && (oxcf->rc_mode == AOM_Q)) {
+ rc->max_gf_interval = FIXED_GF_INTERVAL;
+ rc->min_gf_interval = FIXED_GF_INTERVAL;
+ rc->static_scene_max_gf_interval = FIXED_GF_INTERVAL;
+ } else {
+ // Set Maximum gf/arf interval
+ rc->max_gf_interval = oxcf->max_gf_interval;
+ rc->min_gf_interval = oxcf->min_gf_interval;
+ if (rc->min_gf_interval == 0)
+ rc->min_gf_interval = av1_rc_get_default_min_gf_interval(
+ oxcf->width, oxcf->height, cpi->framerate);
+ if (rc->max_gf_interval == 0)
+ rc->max_gf_interval = av1_rc_get_default_max_gf_interval(
+ cpi->framerate, rc->min_gf_interval);
+
+ // Extended interval for genuinely static scenes
+ rc->static_scene_max_gf_interval = MAX_LAG_BUFFERS * 2;
+
+ if (is_altref_enabled(cpi)) {
+ if (rc->static_scene_max_gf_interval > oxcf->lag_in_frames - 1)
+ rc->static_scene_max_gf_interval = oxcf->lag_in_frames - 1;
+ }
+
+ if (rc->max_gf_interval > rc->static_scene_max_gf_interval)
+ rc->max_gf_interval = rc->static_scene_max_gf_interval;
+
+ // Clamp min to max
+ rc->min_gf_interval = AOMMIN(rc->min_gf_interval, rc->max_gf_interval);
+ }
+}
+
+void av1_rc_update_framerate(AV1_COMP *cpi) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const AV1EncoderConfig *const oxcf = &cpi->oxcf;
+ RATE_CONTROL *const rc = &cpi->rc;
+ int vbr_max_bits;
+
+ rc->avg_frame_bandwidth = (int)(oxcf->target_bandwidth / cpi->framerate);
+ rc->min_frame_bandwidth =
+ (int)(rc->avg_frame_bandwidth * oxcf->two_pass_vbrmin_section / 100);
+
+ rc->min_frame_bandwidth =
+ AOMMAX(rc->min_frame_bandwidth, FRAME_OVERHEAD_BITS);
+
+ // A maximum bitrate for a frame is defined.
+ // The baseline for this aligns with HW implementations that
+ // can support decode of 1080P content up to a bitrate of MAX_MB_RATE bits
+ // per 16x16 MB (averaged over a frame). However this limit is extended if
+ // a very high rate is given on the command line or the the rate cannnot
+ // be acheived because of a user specificed max q (e.g. when the user
+ // specifies lossless encode.
+ vbr_max_bits =
+ (int)(((int64_t)rc->avg_frame_bandwidth * oxcf->two_pass_vbrmax_section) /
+ 100);
+ rc->max_frame_bandwidth =
+ AOMMAX(AOMMAX((cm->MBs * MAX_MB_RATE), MAXRATE_1080P), vbr_max_bits);
+
+ av1_rc_set_gf_interval_range(cpi, rc);
+}
+
+#define VBR_PCT_ADJUSTMENT_LIMIT 50
+// For VBR...adjustment to the frame target based on error from previous frames
+static void vbr_rate_correction(AV1_COMP *cpi, int *this_frame_target) {
+ RATE_CONTROL *const rc = &cpi->rc;
+ int64_t vbr_bits_off_target = rc->vbr_bits_off_target;
+ int max_delta;
+ double position_factor = 1.0;
+
+ // How far through the clip are we.
+ // This number is used to damp the per frame rate correction.
+ // Range 0 - 1.0
+ if (cpi->twopass.total_stats.count != 0.) {
+ position_factor = sqrt((double)cpi->common.current_video_frame /
+ cpi->twopass.total_stats.count);
+ }
+ max_delta = (int)(position_factor *
+ ((*this_frame_target * VBR_PCT_ADJUSTMENT_LIMIT) / 100));
+
+ // vbr_bits_off_target > 0 means we have extra bits to spend
+ if (vbr_bits_off_target > 0) {
+ *this_frame_target += (vbr_bits_off_target > max_delta)
+ ? max_delta
+ : (int)vbr_bits_off_target;
+ } else {
+ *this_frame_target -= (vbr_bits_off_target < -max_delta)
+ ? max_delta
+ : (int)-vbr_bits_off_target;
+ }
+
+ // Fast redistribution of bits arising from massive local undershoot.
+ // Dont do it for kf,arf,gf or overlay frames.
+ if (!frame_is_kf_gf_arf(cpi) && !rc->is_src_frame_alt_ref &&
+ rc->vbr_bits_off_target_fast) {
+ int one_frame_bits = AOMMAX(rc->avg_frame_bandwidth, *this_frame_target);
+ int fast_extra_bits;
+ fast_extra_bits = (int)AOMMIN(rc->vbr_bits_off_target_fast, one_frame_bits);
+ fast_extra_bits = (int)AOMMIN(
+ fast_extra_bits,
+ AOMMAX(one_frame_bits / 8, rc->vbr_bits_off_target_fast / 8));
+ *this_frame_target += (int)fast_extra_bits;
+ rc->vbr_bits_off_target_fast -= fast_extra_bits;
+ }
+}
+
+void av1_set_target_rate(AV1_COMP *cpi) {
+ RATE_CONTROL *const rc = &cpi->rc;
+ int target_rate = rc->base_frame_target;
+
+ // Correction to rate target based on prior over or under shoot.
+ if (cpi->oxcf.rc_mode == AOM_VBR || cpi->oxcf.rc_mode == AOM_CQ)
+ vbr_rate_correction(cpi, &target_rate);
+ av1_rc_set_frame_target(cpi, target_rate);
+}
+
+// Check if we should resize, based on average QP from past x frames.
+// Only allow for resize at most one scale down for now, scaling factor is 2.
+int av1_resize_one_pass_cbr(AV1_COMP *cpi) {
+ const AV1_COMMON *const cm = &cpi->common;
+ RATE_CONTROL *const rc = &cpi->rc;
+ int resize_now = 0;
+ cpi->resize_scale_num = 1;
+ cpi->resize_scale_den = 1;
+ // Don't resize on key frame; reset the counters on key frame.
+ if (cm->frame_type == KEY_FRAME) {
+ cpi->resize_avg_qp = 0;
+ cpi->resize_count = 0;
+ return 0;
+ }
+ // Resize based on average buffer underflow and QP over some window.
+ // Ignore samples close to key frame, since QP is usually high after key.
+ if (cpi->rc.frames_since_key > 2 * cpi->framerate) {
+ const int window = (int)(5 * cpi->framerate);
+ cpi->resize_avg_qp += cm->base_qindex;
+ if (cpi->rc.buffer_level < (int)(30 * rc->optimal_buffer_level / 100))
+ ++cpi->resize_buffer_underflow;
+ ++cpi->resize_count;
+ // Check for resize action every "window" frames.
+ if (cpi->resize_count >= window) {
+ int avg_qp = cpi->resize_avg_qp / cpi->resize_count;
+ // Resize down if buffer level has underflowed sufficent amount in past
+ // window, and we are at original resolution.
+ // Resize back up if average QP is low, and we are currently in a resized
+ // down state.
+ if (cpi->resize_state == 0 &&
+ cpi->resize_buffer_underflow > (cpi->resize_count >> 2)) {
+ resize_now = 1;
+ cpi->resize_state = 1;
+ } else if (cpi->resize_state == 1 &&
+ avg_qp < 40 * cpi->rc.worst_quality / 100) {
+ resize_now = -1;
+ cpi->resize_state = 0;
+ }
+ // Reset for next window measurement.
+ cpi->resize_avg_qp = 0;
+ cpi->resize_count = 0;
+ cpi->resize_buffer_underflow = 0;
+ }
+ }
+ // If decision is to resize, reset some quantities, and check is we should
+ // reduce rate correction factor,
+ if (resize_now != 0) {
+ int target_bits_per_frame;
+ int active_worst_quality;
+ int qindex;
+ int tot_scale_change;
+ // For now, resize is by 1/2 x 1/2.
+ cpi->resize_scale_num = 1;
+ cpi->resize_scale_den = 2;
+ tot_scale_change = (cpi->resize_scale_den * cpi->resize_scale_den) /
+ (cpi->resize_scale_num * cpi->resize_scale_num);
+ // Reset buffer level to optimal, update target size.
+ rc->buffer_level = rc->optimal_buffer_level;
+ rc->bits_off_target = rc->optimal_buffer_level;
+ rc->this_frame_target = calc_pframe_target_size_one_pass_cbr(cpi);
+ // Reset cyclic refresh parameters.
+ if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled)
+ av1_cyclic_refresh_reset_resize(cpi);
+ // Get the projected qindex, based on the scaled target frame size (scaled
+ // so target_bits_per_mb in av1_rc_regulate_q will be correct target).
+ target_bits_per_frame = (resize_now == 1)
+ ? rc->this_frame_target * tot_scale_change
+ : rc->this_frame_target / tot_scale_change;
+ active_worst_quality = calc_active_worst_quality_one_pass_cbr(cpi);
+ qindex = av1_rc_regulate_q(cpi, target_bits_per_frame, rc->best_quality,
+ active_worst_quality);
+ // If resize is down, check if projected q index is close to worst_quality,
+ // and if so, reduce the rate correction factor (since likely can afford
+ // lower q for resized frame).
+ if (resize_now == 1 && qindex > 90 * cpi->rc.worst_quality / 100) {
+ rc->rate_correction_factors[INTER_NORMAL] *= 0.85;
+ }
+ // If resize is back up, check if projected q index is too much above the
+ // current base_qindex, and if so, reduce the rate correction factor
+ // (since prefer to keep q for resized frame at least close to previous q).
+ if (resize_now == -1 && qindex > 130 * cm->base_qindex / 100) {
+ rc->rate_correction_factors[INTER_NORMAL] *= 0.9;
+ }
+ }
+ return resize_now;
+}