summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/encoder/pvq_encoder.c
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/aom/av1/encoder/pvq_encoder.c')
-rw-r--r--third_party/aom/av1/encoder/pvq_encoder.c988
1 files changed, 0 insertions, 988 deletions
diff --git a/third_party/aom/av1/encoder/pvq_encoder.c b/third_party/aom/av1/encoder/pvq_encoder.c
deleted file mode 100644
index 9d5133012..000000000
--- a/third_party/aom/av1/encoder/pvq_encoder.c
+++ /dev/null
@@ -1,988 +0,0 @@
-/*
- * Copyright (c) 2001-2016, Alliance for Open Media. All rights reserved
- *
- * This source code is subject to the terms of the BSD 2 Clause License and
- * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
- * was not distributed with this source code in the LICENSE file, you can
- * obtain it at www.aomedia.org/license/software. If the Alliance for Open
- * Media Patent License 1.0 was not distributed with this source code in the
- * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
- */
-
-/* clang-format off */
-
-#ifdef HAVE_CONFIG_H
-# include "config.h"
-#endif
-
-#include <math.h>
-#include <stdio.h>
-#include <stdlib.h>
-#include "aom_dsp/entcode.h"
-#include "aom_dsp/entenc.h"
-#include "av1/common/blockd.h"
-#include "av1/common/odintrin.h"
-#include "av1/common/partition.h"
-#include "av1/common/pvq_state.h"
-#include "av1/encoder/encodemb.h"
-#include "av1/encoder/pvq_encoder.h"
-#include "aom_ports/system_state.h"
-
-/*Shift to ensure that the upper bound (i.e. for the max blocksize) of the
- dot-product of the 1st band of chroma with the luma ref doesn't overflow.*/
-#define OD_CFL_FLIP_SHIFT (OD_LIMIT_BSIZE_MAX + 0)
-
-void aom_write_symbol_pvq(aom_writer *w, int symb, aom_cdf_prob *cdf,
- int nsymbs) {
- if (cdf[0] == 0)
- aom_cdf_init_q15_1D(cdf, nsymbs, CDF_SIZE(nsymbs));
- aom_write_symbol(w, symb, cdf, nsymbs);
-}
-
-static void aom_encode_pvq_codeword(aom_writer *w, od_pvq_codeword_ctx *adapt,
- const od_coeff *in, int n, int k) {
- int i;
- aom_encode_band_pvq_splits(w, adapt, in, n, k, 0);
- for (i = 0; i < n; i++) if (in[i]) aom_write_bit(w, in[i] < 0);
-}
-
-/* Computes 1/sqrt(i) using a table for small values. */
-static double od_rsqrt_table(int i) {
- static double table[16] = {
- 1.000000, 0.707107, 0.577350, 0.500000,
- 0.447214, 0.408248, 0.377964, 0.353553,
- 0.333333, 0.316228, 0.301511, 0.288675,
- 0.277350, 0.267261, 0.258199, 0.250000};
- if (i <= 16) return table[i-1];
- else return 1./sqrt(i);
-}
-
-/*Computes 1/sqrt(start+2*i+1) using a lookup table containing the results
- where 0 <= i < table_size.*/
-static double od_custom_rsqrt_dynamic_table(const double* table,
- const int table_size, const double start, const int i) {
- if (i < table_size) return table[i];
- else return od_rsqrt_table((int)(start + 2*i + 1));
-}
-
-/*Fills tables used in od_custom_rsqrt_dynamic_table for a given start.*/
-static void od_fill_dynamic_rsqrt_table(double *table, const int table_size,
- const double start) {
- int i;
- for (i = 0; i < table_size; i++)
- table[i] = od_rsqrt_table((int)(start + 2*i + 1));
-}
-
-/** Find the codepoint on the given PSphere closest to the desired
- * vector. Double-precision PVQ search just to make sure our tests
- * aren't limited by numerical accuracy.
- *
- * @param [in] xcoeff input vector to quantize (x in the math doc)
- * @param [in] n number of dimensions
- * @param [in] k number of pulses
- * @param [out] ypulse optimal codevector found (y in the math doc)
- * @param [out] g2 multiplier for the distortion (typically squared
- * gain units)
- * @param [in] pvq_norm_lambda enc->pvq_norm_lambda for quantized RDO
- * @param [in] prev_k number of pulses already in ypulse that we should
- * reuse for the search (or 0 for a new search)
- * @return cosine distance between x and y (between 0 and 1)
- */
-double pvq_search_rdo_double_c(const od_val16 *xcoeff, int n, int k,
- od_coeff *ypulse, double g2, double pvq_norm_lambda, int prev_k) {
- int i, j;
- double xy;
- double yy;
- /* TODO - This blows our 8kB stack space budget and should be fixed when
- converting PVQ to fixed point. */
- double x[MAXN];
- double xx;
- double lambda;
- double norm_1;
- int rdo_pulses;
- double delta_rate;
- xx = xy = yy = 0;
- for (j = 0; j < n; j++) {
- x[j] = fabs((float)xcoeff[j]);
- xx += x[j]*x[j];
- }
- norm_1 = 1./sqrt(1e-30 + xx);
- lambda = pvq_norm_lambda/(1e-30 + g2);
- i = 0;
- if (prev_k > 0 && prev_k <= k) {
- /* We reuse pulses from a previous search so we don't have to search them
- again. */
- for (j = 0; j < n; j++) {
- ypulse[j] = abs(ypulse[j]);
- xy += x[j]*ypulse[j];
- yy += ypulse[j]*ypulse[j];
- i += ypulse[j];
- }
- }
- else if (k > 2) {
- double l1_norm;
- double l1_inv;
- l1_norm = 0;
- for (j = 0; j < n; j++) l1_norm += x[j];
- l1_inv = 1./OD_MAXF(l1_norm, 1e-100);
- for (j = 0; j < n; j++) {
- double tmp;
- tmp = k*x[j]*l1_inv;
- ypulse[j] = OD_MAXI(0, (int)floor(tmp));
- xy += x[j]*ypulse[j];
- yy += ypulse[j]*ypulse[j];
- i += ypulse[j];
- }
- }
- else OD_CLEAR(ypulse, n);
-
- /* Only use RDO on the last few pulses. This not only saves CPU, but using
- RDO on all pulses actually makes the results worse for reasons I don't
- fully understand. */
- rdo_pulses = 1 + k/4;
- /* Rough assumption for now, the last position costs about 3 bits more than
- the first. */
- delta_rate = 3./n;
- /* Search one pulse at a time */
- for (; i < k - rdo_pulses; i++) {
- int pos;
- double best_xy;
- double best_yy;
- pos = 0;
- best_xy = -10;
- best_yy = 1;
- for (j = 0; j < n; j++) {
- double tmp_xy;
- double tmp_yy;
- tmp_xy = xy + x[j];
- tmp_yy = yy + 2*ypulse[j] + 1;
- tmp_xy *= tmp_xy;
- if (j == 0 || tmp_xy*best_yy > best_xy*tmp_yy) {
- best_xy = tmp_xy;
- best_yy = tmp_yy;
- pos = j;
- }
- }
- xy = xy + x[pos];
- yy = yy + 2*ypulse[pos] + 1;
- ypulse[pos]++;
- }
- /* Search last pulses with RDO. Distortion is D = (x-y)^2 = x^2 - 2*x*y + y^2
- and since x^2 and y^2 are constant, we just maximize x*y, plus a
- lambda*rate term. Note that since x and y aren't normalized here,
- we need to divide by sqrt(x^2)*sqrt(y^2). */
- for (; i < k; i++) {
- double rsqrt_table[4];
- int rsqrt_table_size = 4;
- int pos;
- double best_cost;
- pos = 0;
- best_cost = -1e5;
- /*Fill the small rsqrt lookup table with inputs relative to yy.
- Specifically, the table of n values is filled with
- rsqrt(yy + 1), rsqrt(yy + 2 + 1) .. rsqrt(yy + 2*(n-1) + 1).*/
- od_fill_dynamic_rsqrt_table(rsqrt_table, rsqrt_table_size, yy);
- for (j = 0; j < n; j++) {
- double tmp_xy;
- double tmp_yy;
- tmp_xy = xy + x[j];
- /*Calculate rsqrt(yy + 2*ypulse[j] + 1) using an optimized method.*/
- tmp_yy = od_custom_rsqrt_dynamic_table(rsqrt_table, rsqrt_table_size,
- yy, ypulse[j]);
- tmp_xy = 2*tmp_xy*norm_1*tmp_yy - lambda*j*delta_rate;
- if (j == 0 || tmp_xy > best_cost) {
- best_cost = tmp_xy;
- pos = j;
- }
- }
- xy = xy + x[pos];
- yy = yy + 2*ypulse[pos] + 1;
- ypulse[pos]++;
- }
- for (i = 0; i < n; i++) {
- if (xcoeff[i] < 0) ypulse[i] = -ypulse[i];
- }
- return xy/(1e-100 + sqrt(xx*yy));
-}
-
-/** Encodes the gain so that the return value increases with the
- * distance |x-ref|, so that we can encode a zero when x=ref. The
- * value x=0 is not covered because it is only allowed in the noref
- * case.
- *
- * @param [in] x quantized gain to encode
- * @param [in] ref quantized gain of the reference
- * @return interleave-encoded quantized gain value
- */
-static int neg_interleave(int x, int ref) {
- if (x < ref) return -2*(x - ref) - 1;
- else if (x < 2*ref) return 2*(x - ref);
- else return x-1;
-}
-
-int od_vector_is_null(const od_coeff *x, int len) {
- int i;
- for (i = 0; i < len; i++) if (x[i]) return 0;
- return 1;
-}
-
-static double od_pvq_rate(int qg, int icgr, int theta, int ts,
- const od_adapt_ctx *adapt, const od_coeff *y0, int k, int n, int speed) {
- double rate;
- if (k == 0) rate = 0;
- else if (speed > 0) {
- int i;
- int sum;
- double f;
- /* Compute "center of mass" of the pulse vector. */
- sum = 0;
- for (i = 0; i < n - (theta != -1); i++) sum += i*abs(y0[i]);
- f = sum/(double)(k*n);
- /* Estimates the number of bits it will cost to encode K pulses in
- N dimensions based on hand-tuned fit for bitrate vs K, N and
- "center of mass". */
- rate = (1 + .4*f)*n*OD_LOG2(1 + OD_MAXF(0, log(n*2*(1*f + .025))*k/n)) + 3;
- }
- else {
- aom_writer w;
- od_pvq_codeword_ctx cd;
- int tell;
-#if !CONFIG_ANS
- od_ec_enc_init(&w.ec, 1000);
-#else
-# error "CONFIG_PVQ currently requires !CONFIG_ANS."
-#endif
- OD_COPY(&cd, &adapt->pvq.pvq_codeword_ctx, 1);
-#if !CONFIG_ANS
- tell = od_ec_enc_tell_frac(&w.ec);
-#else
-# error "CONFIG_PVQ currently requires !CONFIG_ANS."
-#endif
- aom_encode_pvq_codeword(&w, &cd, y0, n - (theta != -1), k);
-#if !CONFIG_ANS
- rate = (od_ec_enc_tell_frac(&w.ec)-tell)/8.;
- od_ec_enc_clear(&w.ec);
-#else
-# error "CONFIG_PVQ currently requires !CONFIG_ANS."
-#endif
- }
- if (qg > 0 && theta >= 0) {
- /* Approximate cost of entropy-coding theta */
- rate += .9*OD_LOG2(ts);
- if (qg == icgr) rate -= .5;
- }
- return rate;
-}
-
-#define MAX_PVQ_ITEMS (20)
-/* This stores the information about a PVQ search candidate, so we can sort
- based on K. */
-typedef struct {
- int gain;
- int k;
- od_val32 qtheta;
- int theta;
- int ts;
- od_val32 qcg;
-} pvq_search_item;
-
-int items_compare(pvq_search_item *a, pvq_search_item *b) {
- /* Break ties in K with gain to ensure a stable sort.
- Otherwise, the order depends on qsort implementation. */
- return a->k == b->k ? a->gain - b->gain : a->k - b->k;
-}
-
-/** Perform PVQ quantization with prediction, trying several
- * possible gains and angles. See draft-valin-videocodec-pvq and
- * http://jmvalin.ca/slides/pvq.pdf for more details.
- *
- * @param [out] out coefficients after quantization
- * @param [in] x0 coefficients before quantization
- * @param [in] r0 reference, aka predicted coefficients
- * @param [in] n number of dimensions
- * @param [in] q0 quantization step size
- * @param [out] y pulse vector (i.e. selected PVQ codevector)
- * @param [out] itheta angle between input and reference (-1 if noref)
- * @param [out] vk total number of pulses
- * @param [in] beta per-band activity masking beta param
- * @param [out] skip_diff distortion cost of skipping this block
- * (accumulated)
- * @param [in] is_keyframe whether we're encoding a keyframe
- * @param [in] pli plane index
- * @param [in] adapt probability adaptation context
- * @param [in] qm QM with magnitude compensation
- * @param [in] qm_inv Inverse of QM with magnitude compensation
- * @param [in] pvq_norm_lambda enc->pvq_norm_lambda for quantized RDO
- * @param [in] speed Make search faster by making approximations
- * @return gain index of the quatized gain
-*/
-static int pvq_theta(od_coeff *out, const od_coeff *x0, const od_coeff *r0,
- int n, int q0, od_coeff *y, int *itheta, int *vk,
- od_val16 beta, double *skip_diff, int is_keyframe, int pli,
- const od_adapt_ctx *adapt, const int16_t *qm, const int16_t *qm_inv,
- double pvq_norm_lambda, int speed) {
- od_val32 g;
- od_val32 gr;
- od_coeff y_tmp[MAXN + 3];
- int i;
- /* Number of pulses. */
- int k;
- /* Companded gain of x and reference, normalized to q. */
- od_val32 cg;
- od_val32 cgr;
- int icgr;
- int qg;
- /* Best RDO cost (D + lamdba*R) so far. */
- double best_cost;
- double dist0;
- /* Distortion (D) that corresponds to the best RDO cost. */
- double best_dist;
- double dist;
- /* Sign of Householder reflection. */
- int s;
- /* Dimension on which Householder reflects. */
- int m;
- od_val32 theta;
- double corr;
- int best_k;
- od_val32 best_qtheta;
- od_val32 gain_offset;
- int noref;
- double skip_dist;
- int cfl_enabled;
- int skip;
- double gain_weight;
- od_val16 x16[MAXN];
- od_val16 r16[MAXN];
- int xshift;
- int rshift;
- /* Give more weight to gain error when calculating the total distortion. */
- gain_weight = 1.0;
- OD_ASSERT(n > 1);
- corr = 0;
-#if !defined(OD_FLOAT_PVQ)
- /* Shift needed to make x fit in 16 bits even after rotation.
- This shift value is not normative (it can be changed without breaking
- the bitstream) */
- xshift = OD_MAXI(0, od_vector_log_mag(x0, n) - 15);
- /* Shift needed to make the reference fit in 15 bits, so that the Householder
- vector can fit in 16 bits.
- This shift value *is* normative, and has to match the decoder. */
- rshift = OD_MAXI(0, od_vector_log_mag(r0, n) - 14);
-#else
- xshift = 0;
- rshift = 0;
-#endif
- for (i = 0; i < n; i++) {
-#if defined(OD_FLOAT_PVQ)
- /*This is slightly different from the original float PVQ code,
- where the qm was applied in the accumulation in od_pvq_compute_gain and
- the vectors were od_coeffs, not od_val16 (i.e. double).*/
- x16[i] = x0[i]*(double)qm[i]*OD_QM_SCALE_1;
- r16[i] = r0[i]*(double)qm[i]*OD_QM_SCALE_1;
-#else
- x16[i] = OD_SHR_ROUND(x0[i]*qm[i], OD_QM_SHIFT + xshift);
- r16[i] = OD_SHR_ROUND(r0[i]*qm[i], OD_QM_SHIFT + rshift);
-#endif
- corr += OD_MULT16_16(x16[i], r16[i]);
- }
- cfl_enabled = is_keyframe && pli != 0 && !OD_DISABLE_CFL;
- cg = od_pvq_compute_gain(x16, n, q0, &g, beta, xshift);
- cgr = od_pvq_compute_gain(r16, n, q0, &gr, beta, rshift);
- if (cfl_enabled) cgr = OD_CGAIN_SCALE;
- /* gain_offset is meant to make sure one of the quantized gains has
- exactly the same gain as the reference. */
-#if defined(OD_FLOAT_PVQ)
- icgr = (int)floor(.5 + cgr);
-#else
- icgr = OD_SHR_ROUND(cgr, OD_CGAIN_SHIFT);
-#endif
- gain_offset = cgr - OD_SHL(icgr, OD_CGAIN_SHIFT);
- /* Start search with null case: gain=0, no pulse. */
- qg = 0;
- dist = gain_weight*cg*cg*OD_CGAIN_SCALE_2;
- best_dist = dist;
- best_cost = dist + pvq_norm_lambda*od_pvq_rate(0, 0, -1, 0, adapt, NULL, 0,
- n, speed);
- noref = 1;
- best_k = 0;
- *itheta = -1;
- OD_CLEAR(y, n);
- best_qtheta = 0;
- m = 0;
- s = 1;
- corr = corr/(1e-100 + g*(double)gr/OD_SHL(1, xshift + rshift));
- corr = OD_MAXF(OD_MINF(corr, 1.), -1.);
- if (is_keyframe) skip_dist = gain_weight*cg*cg*OD_CGAIN_SCALE_2;
- else {
- skip_dist = gain_weight*(cg - cgr)*(cg - cgr)
- + cgr*(double)cg*(2 - 2*corr);
- skip_dist *= OD_CGAIN_SCALE_2;
- }
- if (!is_keyframe) {
- /* noref, gain=0 isn't allowed, but skip is allowed. */
- od_val32 scgr;
- scgr = OD_MAXF(0,gain_offset);
- if (icgr == 0) {
- best_dist = gain_weight*(cg - scgr)*(cg - scgr)
- + scgr*(double)cg*(2 - 2*corr);
- best_dist *= OD_CGAIN_SCALE_2;
- }
- best_cost = best_dist + pvq_norm_lambda*od_pvq_rate(0, icgr, 0, 0, adapt,
- NULL, 0, n, speed);
- best_qtheta = 0;
- *itheta = 0;
- noref = 0;
- }
- dist0 = best_dist;
- if (n <= OD_MAX_PVQ_SIZE && !od_vector_is_null(r0, n) && corr > 0) {
- od_val16 xr[MAXN];
- int gain_bound;
- int prev_k;
- pvq_search_item items[MAX_PVQ_ITEMS];
- int idx;
- int nitems;
- double cos_dist;
- idx = 0;
- gain_bound = OD_SHR(cg - gain_offset, OD_CGAIN_SHIFT);
- /* Perform theta search only if prediction is useful. */
- theta = OD_ROUND32(OD_THETA_SCALE*acos(corr));
- m = od_compute_householder(r16, n, gr, &s, rshift);
- od_apply_householder(xr, x16, r16, n);
- prev_k = 0;
- for (i = m; i < n - 1; i++) xr[i] = xr[i + 1];
- /* Compute all candidate PVQ searches within a reasonable range of gain
- and theta. */
- for (i = OD_MAXI(1, gain_bound - 1); i <= gain_bound + 1; i++) {
- int j;
- od_val32 qcg;
- int ts;
- int theta_lower;
- int theta_upper;
- /* Quantized companded gain */
- qcg = OD_SHL(i, OD_CGAIN_SHIFT) + gain_offset;
- /* Set angular resolution (in ra) to match the encoded gain */
- ts = od_pvq_compute_max_theta(qcg, beta);
- theta_lower = OD_MAXI(0, (int)floor(.5 +
- theta*OD_THETA_SCALE_1*2/M_PI*ts) - 2);
- theta_upper = OD_MINI(ts - 1, (int)ceil(theta*OD_THETA_SCALE_1*2/M_PI*ts));
- /* Include the angles within a reasonable range. */
- for (j = theta_lower; j <= theta_upper; j++) {
- od_val32 qtheta;
- qtheta = od_pvq_compute_theta(j, ts);
- k = od_pvq_compute_k(qcg, j, 0, n, beta);
- items[idx].gain = i;
- items[idx].theta = j;
- items[idx].k = k;
- items[idx].qcg = qcg;
- items[idx].qtheta = qtheta;
- items[idx].ts = ts;
- idx++;
- OD_ASSERT(idx < MAX_PVQ_ITEMS);
- }
- }
- nitems = idx;
- cos_dist = 0;
- /* Sort PVQ search candidates in ascending order of pulses K so that
- we can reuse all the previously searched pulses across searches. */
- qsort(items, nitems, sizeof(items[0]),
- (int (*)(const void *, const void *))items_compare);
- /* Search for the best gain/theta in order. */
- for (idx = 0; idx < nitems; idx++) {
- int j;
- od_val32 qcg;
- int ts;
- double cost;
- double dist_theta;
- double sin_prod;
- od_val32 qtheta;
- /* Quantized companded gain */
- qcg = items[idx].qcg;
- i = items[idx].gain;
- j = items[idx].theta;
- /* Set angular resolution (in ra) to match the encoded gain */
- ts = items[idx].ts;
- /* Search for the best angle within a reasonable range. */
- qtheta = items[idx].qtheta;
- k = items[idx].k;
- /* Compute the minimal possible distortion by not taking the PVQ
- cos_dist into account. */
- dist_theta = 2 - 2.*od_pvq_cos(theta - qtheta)*OD_TRIG_SCALE_1;
- dist = gain_weight*(qcg - cg)*(qcg - cg) + qcg*(double)cg*dist_theta;
- dist *= OD_CGAIN_SCALE_2;
- /* If we have no hope of beating skip (including a 1-bit worst-case
- penalty), stop now. */
- if (dist > dist0 + 1.0*pvq_norm_lambda && k != 0) continue;
- sin_prod = od_pvq_sin(theta)*OD_TRIG_SCALE_1*od_pvq_sin(qtheta)*
- OD_TRIG_SCALE_1;
- /* PVQ search, using a gain of qcg*cg*sin(theta)*sin(qtheta) since
- that's the factor by which cos_dist is multiplied to get the
- distortion metric. */
- if (k == 0) {
- cos_dist = 0;
- OD_CLEAR(y_tmp, n-1);
- }
- else if (k != prev_k) {
- cos_dist = pvq_search_rdo_double(xr, n - 1, k, y_tmp,
- qcg*(double)cg*sin_prod*OD_CGAIN_SCALE_2, pvq_norm_lambda, prev_k);
- }
- prev_k = k;
- /* See Jmspeex' Journal of Dubious Theoretical Results. */
- dist_theta = 2 - 2.*od_pvq_cos(theta - qtheta)*OD_TRIG_SCALE_1
- + sin_prod*(2 - 2*cos_dist);
- dist = gain_weight*(qcg - cg)*(qcg - cg) + qcg*(double)cg*dist_theta;
- dist *= OD_CGAIN_SCALE_2;
- /* Do approximate RDO. */
- cost = dist + pvq_norm_lambda*od_pvq_rate(i, icgr, j, ts, adapt, y_tmp,
- k, n, speed);
- if (cost < best_cost) {
- best_cost = cost;
- best_dist = dist;
- qg = i;
- best_k = k;
- best_qtheta = qtheta;
- *itheta = j;
- noref = 0;
- OD_COPY(y, y_tmp, n - 1);
- }
- }
- }
- /* Don't bother with no-reference version if there's a reasonable
- correlation. */
- if (n <= OD_MAX_PVQ_SIZE && (corr < .5
- || cg < (od_val32)(OD_SHL(2, OD_CGAIN_SHIFT)))) {
- int gain_bound;
- int prev_k;
- gain_bound = OD_SHR(cg, OD_CGAIN_SHIFT);
- prev_k = 0;
- /* Search for the best gain (haven't determined reasonable range yet). */
- for (i = OD_MAXI(1, gain_bound); i <= gain_bound + 1; i++) {
- double cos_dist;
- double cost;
- od_val32 qcg;
- qcg = OD_SHL(i, OD_CGAIN_SHIFT);
- k = od_pvq_compute_k(qcg, -1, 1, n, beta);
- /* Compute the minimal possible distortion by not taking the PVQ
- cos_dist into account. */
- dist = gain_weight*(qcg - cg)*(qcg - cg);
- dist *= OD_CGAIN_SCALE_2;
- if (dist > dist0 && k != 0) continue;
- cos_dist = pvq_search_rdo_double(x16, n, k, y_tmp,
- qcg*(double)cg*OD_CGAIN_SCALE_2, pvq_norm_lambda, prev_k);
- prev_k = k;
- /* See Jmspeex' Journal of Dubious Theoretical Results. */
- dist = gain_weight*(qcg - cg)*(qcg - cg)
- + qcg*(double)cg*(2 - 2*cos_dist);
- dist *= OD_CGAIN_SCALE_2;
- /* Do approximate RDO. */
- cost = dist + pvq_norm_lambda*od_pvq_rate(i, 0, -1, 0, adapt, y_tmp, k,
- n, speed);
- if (cost <= best_cost) {
- best_cost = cost;
- best_dist = dist;
- qg = i;
- noref = 1;
- best_k = k;
- *itheta = -1;
- OD_COPY(y, y_tmp, n);
- }
- }
- }
- k = best_k;
- theta = best_qtheta;
- skip = 0;
- if (noref) {
- if (qg == 0) skip = OD_PVQ_SKIP_ZERO;
- }
- else {
- if (!is_keyframe && qg == 0) {
- skip = (icgr ? OD_PVQ_SKIP_ZERO : OD_PVQ_SKIP_COPY);
- }
- if (qg == icgr && *itheta == 0 && !cfl_enabled) skip = OD_PVQ_SKIP_COPY;
- }
- /* Synthesize like the decoder would. */
- if (skip) {
- if (skip == OD_PVQ_SKIP_COPY) OD_COPY(out, r0, n);
- else OD_CLEAR(out, n);
- }
- else {
- if (noref) gain_offset = 0;
- g = od_gain_expand(OD_SHL(qg, OD_CGAIN_SHIFT) + gain_offset, q0, beta);
- od_pvq_synthesis_partial(out, y, r16, n, noref, g, theta, m, s,
- qm_inv);
- }
- *vk = k;
- *skip_diff += skip_dist - best_dist;
- /* Encode gain differently depending on whether we use prediction or not.
- Special encoding on inter frames where qg=0 is allowed for noref=0
- but not noref=1.*/
- if (is_keyframe) return noref ? qg : neg_interleave(qg, icgr);
- else return noref ? qg - 1 : neg_interleave(qg + 1, icgr + 1);
-}
-
-/** Encodes a single vector of integers (eg, a partition within a
- * coefficient block) using PVQ
- *
- * @param [in,out] w multi-symbol entropy encoder
- * @param [in] qg quantized gain
- * @param [in] theta quantized post-prediction theta
- * @param [in] in coefficient vector to code
- * @param [in] n number of coefficients in partition
- * @param [in] k number of pulses in partition
- * @param [in,out] model entropy encoder state
- * @param [in,out] adapt adaptation context
- * @param [in,out] exg ExQ16 expectation of gain value
- * @param [in,out] ext ExQ16 expectation of theta value
- * @param [in] cdf_ctx selects which cdf context to use
- * @param [in] is_keyframe whether we're encoding a keyframe
- * @param [in] code_skip whether the "skip rest" flag is allowed
- * @param [in] skip_rest when set, we skip all higher bands
- * @param [in] encode_flip whether we need to encode the CfL flip flag now
- * @param [in] flip value of the CfL flip flag
- */
-void pvq_encode_partition(aom_writer *w,
- int qg,
- int theta,
- const od_coeff *in,
- int n,
- int k,
- generic_encoder model[3],
- od_adapt_ctx *adapt,
- int *exg,
- int *ext,
- int cdf_ctx,
- int is_keyframe,
- int code_skip,
- int skip_rest,
- int encode_flip,
- int flip) {
- int noref;
- int id;
- noref = (theta == -1);
- id = (qg > 0) + 2*OD_MINI(theta + 1,3) + 8*code_skip*skip_rest;
- if (is_keyframe) {
- OD_ASSERT(id != 8);
- if (id >= 8) id--;
- }
- else {
- OD_ASSERT(id != 10);
- if (id >= 10) id--;
- }
- /* Jointly code gain, theta and noref for small values. Then we handle
- larger gain and theta values. For noref, theta = -1. */
- aom_write_symbol_pvq(w, id, &adapt->pvq.pvq_gaintheta_cdf[cdf_ctx][0],
- 8 + 7*code_skip);
- if (encode_flip) {
- /* We could eventually do some smarter entropy coding here, but it would
- have to be good enough to overcome the overhead of the entropy coder.
- An early attempt using a "toogle" flag with simple adaptation wasn't
- worth the trouble. */
- aom_write_bit(w, flip);
- }
- if (qg > 0) {
- int tmp;
- tmp = *exg;
- generic_encode(w, &model[!noref], qg - 1, &tmp, 2);
- OD_IIR_DIADIC(*exg, qg << 16, 2);
- }
- if (theta > 1) {
- int tmp;
- tmp = *ext;
- generic_encode(w, &model[2], theta - 2, &tmp, 2);
- OD_IIR_DIADIC(*ext, theta << 16, 2);
- }
- aom_encode_pvq_codeword(w, &adapt->pvq.pvq_codeword_ctx, in,
- n - (theta != -1), k);
-}
-
-/** Quantizes a scalar with rate-distortion optimization (RDO)
- * @param [in] x unquantized value
- * @param [in] q quantization step size
- * @param [in] delta0 rate increase for encoding a 1 instead of a 0
- * @param [in] pvq_norm_lambda enc->pvq_norm_lambda for quantized RDO
- * @retval quantized value
- */
-int od_rdo_quant(od_coeff x, int q, double delta0, double pvq_norm_lambda) {
- int n;
- /* Optimal quantization threshold is 1/2 + lambda*delta_rate/2. See
- Jmspeex' Journal of Dubious Theoretical Results for details. */
- n = OD_DIV_R0(abs(x), q);
- if ((double)abs(x)/q < (double)n/2 + pvq_norm_lambda*delta0/(2*n)) {
- return 0;
- }
- else {
- return OD_DIV_R0(x, q);
- }
-}
-
-/** Encode a coefficient block (excepting DC) using PVQ
- *
- * @param [in,out] enc daala encoder context
- * @param [in] ref 'reference' (prediction) vector
- * @param [in] in coefficient block to quantize and encode
- * @param [out] out quantized coefficient block
- * @param [in] q0 scale/quantizer
- * @param [in] pli plane index
- * @param [in] bs log of the block size minus two
- * @param [in] beta per-band activity masking beta param
- * @param [in] is_keyframe whether we're encoding a keyframe
- * @param [in] qm QM with magnitude compensation
- * @param [in] qm_inv Inverse of QM with magnitude compensation
- * @param [in] speed Make search faster by making approximations
- * @param [in] pvq_info If null, conisdered as RDO search mode
- * @return Returns block skip info indicating whether DC/AC are coded.
- * bit0: DC is coded, bit1: AC is coded (1 means coded)
- *
- */
-PVQ_SKIP_TYPE od_pvq_encode(daala_enc_ctx *enc,
- od_coeff *ref,
- const od_coeff *in,
- od_coeff *out,
- int q_dc,
- int q_ac,
- int pli,
- int bs,
- const od_val16 *beta,
- int is_keyframe,
- const int16_t *qm,
- const int16_t *qm_inv,
- int speed,
- PVQ_INFO *pvq_info){
- int theta[PVQ_MAX_PARTITIONS];
- int qg[PVQ_MAX_PARTITIONS];
- int k[PVQ_MAX_PARTITIONS];
- od_coeff y[OD_TXSIZE_MAX*OD_TXSIZE_MAX];
- int *exg;
- int *ext;
- int nb_bands;
- int i;
- const int *off;
- int size[PVQ_MAX_PARTITIONS];
- generic_encoder *model;
- double skip_diff;
- int tell;
- uint16_t *skip_cdf;
- od_rollback_buffer buf;
- int dc_quant;
- int flip;
- int cfl_encoded;
- int skip_rest;
- int skip_dir;
- int skip_theta_value;
- const unsigned char *pvq_qm;
- double dc_rate;
- int use_masking;
- PVQ_SKIP_TYPE ac_dc_coded;
-
- aom_clear_system_state();
-
- use_masking = enc->use_activity_masking;
-
- if (use_masking)
- pvq_qm = &enc->state.pvq_qm_q4[pli][0];
- else
- pvq_qm = 0;
-
- exg = &enc->state.adapt->pvq.pvq_exg[pli][bs][0];
- ext = enc->state.adapt->pvq.pvq_ext + bs*PVQ_MAX_PARTITIONS;
- skip_cdf = enc->state.adapt->skip_cdf[2*bs + (pli != 0)];
- model = enc->state.adapt->pvq.pvq_param_model;
- nb_bands = OD_BAND_OFFSETS[bs][0];
- off = &OD_BAND_OFFSETS[bs][1];
-
- if (use_masking)
- dc_quant = OD_MAXI(1, q_dc * pvq_qm[od_qm_get_index(bs, 0)] >> 4);
- else
- dc_quant = OD_MAXI(1, q_dc);
-
- tell = 0;
- for (i = 0; i < nb_bands; i++) size[i] = off[i+1] - off[i];
- skip_diff = 0;
- flip = 0;
- /*If we are coding a chroma block of a keyframe, we are doing CfL.*/
- if (pli != 0 && is_keyframe) {
- od_val32 xy;
- xy = 0;
- /*Compute the dot-product of the first band of chroma with the luma ref.*/
- for (i = off[0]; i < off[1]; i++) {
-#if defined(OD_FLOAT_PVQ)
- xy += ref[i]*(double)qm[i]*OD_QM_SCALE_1*
- (double)in[i]*(double)qm[i]*OD_QM_SCALE_1;
-#else
- od_val32 rq;
- od_val32 inq;
- rq = ref[i]*qm[i];
- inq = in[i]*qm[i];
- xy += OD_SHR(rq*(int64_t)inq, OD_SHL(OD_QM_SHIFT + OD_CFL_FLIP_SHIFT,
- 1));
-#endif
- }
- /*If cos(theta) < 0, then |theta| > pi/2 and we should negate the ref.*/
- if (xy < 0) {
- flip = 1;
- for(i = off[0]; i < off[nb_bands]; i++) ref[i] = -ref[i];
- }
- }
- for (i = 0; i < nb_bands; i++) {
- int q;
-
- if (use_masking)
- q = OD_MAXI(1, q_ac * pvq_qm[od_qm_get_index(bs, i + 1)] >> 4);
- else
- q = OD_MAXI(1, q_ac);
-
- qg[i] = pvq_theta(out + off[i], in + off[i], ref + off[i], size[i],
- q, y + off[i], &theta[i], &k[i], beta[i], &skip_diff, is_keyframe,
- pli, enc->state.adapt, qm + off[i], qm_inv + off[i],
- enc->pvq_norm_lambda, speed);
- }
- od_encode_checkpoint(enc, &buf);
- if (is_keyframe) out[0] = 0;
- else {
- int n;
- n = OD_DIV_R0(abs(in[0] - ref[0]), dc_quant);
- if (n == 0) {
- out[0] = 0;
- } else {
- int tell2;
- od_rollback_buffer dc_buf;
-
- dc_rate = -OD_LOG2((double)(OD_ICDF(skip_cdf[3]) - OD_ICDF(skip_cdf[2]))/
- (double)(OD_ICDF(skip_cdf[2]) - OD_ICDF(skip_cdf[1])));
- dc_rate += 1;
-
-#if !CONFIG_ANS
- tell2 = od_ec_enc_tell_frac(&enc->w.ec);
-#else
-#error "CONFIG_PVQ currently requires !CONFIG_ANS."
-#endif
- od_encode_checkpoint(enc, &dc_buf);
- generic_encode(&enc->w, &enc->state.adapt->model_dc[pli],
- n - 1, &enc->state.adapt->ex_dc[pli][bs][0], 2);
-#if !CONFIG_ANS
- tell2 = od_ec_enc_tell_frac(&enc->w.ec) - tell2;
-#else
-#error "CONFIG_PVQ currently requires !CONFIG_ANS."
-#endif
- dc_rate += tell2/8.0;
- od_encode_rollback(enc, &dc_buf);
-
- out[0] = od_rdo_quant(in[0] - ref[0], dc_quant, dc_rate,
- enc->pvq_norm_lambda);
- }
- }
-#if !CONFIG_ANS
- tell = od_ec_enc_tell_frac(&enc->w.ec);
-#else
-#error "CONFIG_PVQ currently requires !CONFIG_ANS."
-#endif
- /* Code as if we're not skipping. */
- aom_write_symbol(&enc->w, 2 + (out[0] != 0), skip_cdf, 4);
- ac_dc_coded = AC_CODED + (out[0] != 0);
- cfl_encoded = 0;
- skip_rest = 1;
- skip_theta_value = is_keyframe ? -1 : 0;
- for (i = 1; i < nb_bands; i++) {
- if (theta[i] != skip_theta_value || qg[i]) skip_rest = 0;
- }
- skip_dir = 0;
- if (nb_bands > 1) {
- for (i = 0; i < 3; i++) {
- int j;
- int tmp;
- tmp = 1;
- // ToDo(yaowu): figure out better stop condition without gcc warning.
- for (j = i + 1; j < nb_bands && j < PVQ_MAX_PARTITIONS; j += 3) {
- if (theta[j] != skip_theta_value || qg[j]) tmp = 0;
- }
- skip_dir |= tmp << i;
- }
- }
- if (theta[0] == skip_theta_value && qg[0] == 0 && skip_rest) nb_bands = 0;
-
- /* NOTE: There was no other better place to put this function. */
- if (pvq_info)
- av1_store_pvq_enc_info(pvq_info, qg, theta, k, y, nb_bands, off, size,
- skip_rest, skip_dir, bs);
-
- for (i = 0; i < nb_bands; i++) {
- int encode_flip;
- /* Encode CFL flip bit just after the first time it's used. */
- encode_flip = pli != 0 && is_keyframe && theta[i] != -1 && !cfl_encoded;
- if (i == 0 || (!skip_rest && !(skip_dir & (1 << ((i - 1)%3))))) {
- pvq_encode_partition(&enc->w, qg[i], theta[i], y + off[i],
- size[i], k[i], model, enc->state.adapt, exg + i, ext + i,
- (pli != 0)*OD_TXSIZES*PVQ_MAX_PARTITIONS + bs*PVQ_MAX_PARTITIONS + i,
- is_keyframe, i == 0 && (i < nb_bands - 1), skip_rest, encode_flip, flip);
- }
- if (i == 0 && !skip_rest && bs > 0) {
- aom_write_symbol(&enc->w, skip_dir,
- &enc->state.adapt->pvq.pvq_skip_dir_cdf[(pli != 0) + 2*(bs - 1)][0], 7);
- }
- if (encode_flip) cfl_encoded = 1;
- }
-#if !CONFIG_ANS
- tell = od_ec_enc_tell_frac(&enc->w.ec) - tell;
-#else
-#error "CONFIG_PVQ currently requires !CONFIG_ANS."
-#endif
- /* Account for the rate of skipping the AC, based on the same DC decision
- we made when trying to not skip AC. */
- {
- double skip_rate;
- if (out[0] != 0) {
- skip_rate = -OD_LOG2((OD_ICDF(skip_cdf[1]) - OD_ICDF(skip_cdf[0]))/
- (double)OD_ICDF(skip_cdf[3]));
- }
- else {
- skip_rate = -OD_LOG2(OD_ICDF(skip_cdf[0])/
- (double)OD_ICDF(skip_cdf[3]));
- }
- tell -= (int)floor(.5+8*skip_rate);
- }
- if (nb_bands == 0 || skip_diff <= enc->pvq_norm_lambda/8*tell) {
- if (is_keyframe) out[0] = 0;
- else {
- int n;
- n = OD_DIV_R0(abs(in[0] - ref[0]), dc_quant);
- if (n == 0) {
- out[0] = 0;
- } else {
- int tell2;
- od_rollback_buffer dc_buf;
-
- dc_rate = -OD_LOG2((double)(OD_ICDF(skip_cdf[1]) - OD_ICDF(skip_cdf[0]))/
- (double)OD_ICDF(skip_cdf[0]));
- dc_rate += 1;
-
-#if !CONFIG_ANS
- tell2 = od_ec_enc_tell_frac(&enc->w.ec);
-#else
-#error "CONFIG_PVQ currently requires !CONFIG_ANS."
-#endif
- od_encode_checkpoint(enc, &dc_buf);
- generic_encode(&enc->w, &enc->state.adapt->model_dc[pli],
- n - 1, &enc->state.adapt->ex_dc[pli][bs][0], 2);
-#if !CONFIG_ANS
- tell2 = od_ec_enc_tell_frac(&enc->w.ec) - tell2;
-#else
-#error "CONFIG_PVQ currently requires !CONFIG_ANS."
-#endif
- dc_rate += tell2/8.0;
- od_encode_rollback(enc, &dc_buf);
-
- out[0] = od_rdo_quant(in[0] - ref[0], dc_quant, dc_rate,
- enc->pvq_norm_lambda);
- }
- }
- /* We decide to skip, roll back everything as it was before. */
- od_encode_rollback(enc, &buf);
- aom_write_symbol(&enc->w, out[0] != 0, skip_cdf, 4);
- ac_dc_coded = (out[0] != 0);
- if (is_keyframe) for (i = 1; i < 1 << (2*bs + 4); i++) out[i] = 0;
- else for (i = 1; i < 1 << (2*bs + 4); i++) out[i] = ref[i];
- }
- if (pvq_info)
- pvq_info->ac_dc_coded = ac_dc_coded;
- return ac_dc_coded;
-}