diff options
Diffstat (limited to 'third_party/aom/av1/encoder/mathutils.h')
-rw-r--r-- | third_party/aom/av1/encoder/mathutils.h | 359 |
1 files changed, 0 insertions, 359 deletions
diff --git a/third_party/aom/av1/encoder/mathutils.h b/third_party/aom/av1/encoder/mathutils.h deleted file mode 100644 index 64f936176..000000000 --- a/third_party/aom/av1/encoder/mathutils.h +++ /dev/null @@ -1,359 +0,0 @@ -/* - * Copyright (c) 2017, Alliance for Open Media. All rights reserved - * - * This source code is subject to the terms of the BSD 2 Clause License and - * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License - * was not distributed with this source code in the LICENSE file, you can - * obtain it at www.aomedia.org/license/software. If the Alliance for Open - * Media Patent License 1.0 was not distributed with this source code in the - * PATENTS file, you can obtain it at www.aomedia.org/license/patent. - */ - -#ifndef AOM_AV1_ENCODER_MATHUTILS_H_ -#define AOM_AV1_ENCODER_MATHUTILS_H_ - -#include <memory.h> -#include <math.h> -#include <stdio.h> -#include <stdlib.h> -#include <assert.h> - -static const double TINY_NEAR_ZERO = 1.0E-16; - -// Solves Ax = b, where x and b are column vectors of size nx1 and A is nxn -static INLINE int linsolve(int n, double *A, int stride, double *b, double *x) { - int i, j, k; - double c; - // Forward elimination - for (k = 0; k < n - 1; k++) { - // Bring the largest magnitude to the diagonal position - for (i = n - 1; i > k; i--) { - if (fabs(A[(i - 1) * stride + k]) < fabs(A[i * stride + k])) { - for (j = 0; j < n; j++) { - c = A[i * stride + j]; - A[i * stride + j] = A[(i - 1) * stride + j]; - A[(i - 1) * stride + j] = c; - } - c = b[i]; - b[i] = b[i - 1]; - b[i - 1] = c; - } - } - for (i = k; i < n - 1; i++) { - if (fabs(A[k * stride + k]) < TINY_NEAR_ZERO) return 0; - c = A[(i + 1) * stride + k] / A[k * stride + k]; - for (j = 0; j < n; j++) A[(i + 1) * stride + j] -= c * A[k * stride + j]; - b[i + 1] -= c * b[k]; - } - } - // Backward substitution - for (i = n - 1; i >= 0; i--) { - if (fabs(A[i * stride + i]) < TINY_NEAR_ZERO) return 0; - c = 0; - for (j = i + 1; j <= n - 1; j++) c += A[i * stride + j] * x[j]; - x[i] = (b[i] - c) / A[i * stride + i]; - } - - return 1; -} - -//////////////////////////////////////////////////////////////////////////////// -// Least-squares -// Solves for n-dim x in a least squares sense to minimize |Ax - b|^2 -// The solution is simply x = (A'A)^-1 A'b or simply the solution for -// the system: A'A x = A'b -static INLINE int least_squares(int n, double *A, int rows, int stride, - double *b, double *scratch, double *x) { - int i, j, k; - double *scratch_ = NULL; - double *AtA, *Atb; - if (!scratch) { - scratch_ = (double *)aom_malloc(sizeof(*scratch) * n * (n + 1)); - scratch = scratch_; - } - AtA = scratch; - Atb = scratch + n * n; - - for (i = 0; i < n; ++i) { - for (j = i; j < n; ++j) { - AtA[i * n + j] = 0.0; - for (k = 0; k < rows; ++k) - AtA[i * n + j] += A[k * stride + i] * A[k * stride + j]; - AtA[j * n + i] = AtA[i * n + j]; - } - Atb[i] = 0; - for (k = 0; k < rows; ++k) Atb[i] += A[k * stride + i] * b[k]; - } - int ret = linsolve(n, AtA, n, Atb, x); - if (scratch_) aom_free(scratch_); - return ret; -} - -// Matrix multiply -static INLINE void multiply_mat(const double *m1, const double *m2, double *res, - const int m1_rows, const int inner_dim, - const int m2_cols) { - double sum; - - int row, col, inner; - for (row = 0; row < m1_rows; ++row) { - for (col = 0; col < m2_cols; ++col) { - sum = 0; - for (inner = 0; inner < inner_dim; ++inner) - sum += m1[row * inner_dim + inner] * m2[inner * m2_cols + col]; - *(res++) = sum; - } - } -} - -// -// The functions below are needed only for homography computation -// Remove if the homography models are not used. -// -/////////////////////////////////////////////////////////////////////////////// -// svdcmp -// Adopted from Numerical Recipes in C - -static INLINE double sign(double a, double b) { - return ((b) >= 0 ? fabs(a) : -fabs(a)); -} - -static INLINE double pythag(double a, double b) { - double ct; - const double absa = fabs(a); - const double absb = fabs(b); - - if (absa > absb) { - ct = absb / absa; - return absa * sqrt(1.0 + ct * ct); - } else { - ct = absa / absb; - return (absb == 0) ? 0 : absb * sqrt(1.0 + ct * ct); - } -} - -static INLINE int svdcmp(double **u, int m, int n, double w[], double **v) { - const int max_its = 30; - int flag, i, its, j, jj, k, l, nm; - double anorm, c, f, g, h, s, scale, x, y, z; - double *rv1 = (double *)aom_malloc(sizeof(*rv1) * (n + 1)); - g = scale = anorm = 0.0; - for (i = 0; i < n; i++) { - l = i + 1; - rv1[i] = scale * g; - g = s = scale = 0.0; - if (i < m) { - for (k = i; k < m; k++) scale += fabs(u[k][i]); - if (scale != 0.) { - for (k = i; k < m; k++) { - u[k][i] /= scale; - s += u[k][i] * u[k][i]; - } - f = u[i][i]; - g = -sign(sqrt(s), f); - h = f * g - s; - u[i][i] = f - g; - for (j = l; j < n; j++) { - for (s = 0.0, k = i; k < m; k++) s += u[k][i] * u[k][j]; - f = s / h; - for (k = i; k < m; k++) u[k][j] += f * u[k][i]; - } - for (k = i; k < m; k++) u[k][i] *= scale; - } - } - w[i] = scale * g; - g = s = scale = 0.0; - if (i < m && i != n - 1) { - for (k = l; k < n; k++) scale += fabs(u[i][k]); - if (scale != 0.) { - for (k = l; k < n; k++) { - u[i][k] /= scale; - s += u[i][k] * u[i][k]; - } - f = u[i][l]; - g = -sign(sqrt(s), f); - h = f * g - s; - u[i][l] = f - g; - for (k = l; k < n; k++) rv1[k] = u[i][k] / h; - for (j = l; j < m; j++) { - for (s = 0.0, k = l; k < n; k++) s += u[j][k] * u[i][k]; - for (k = l; k < n; k++) u[j][k] += s * rv1[k]; - } - for (k = l; k < n; k++) u[i][k] *= scale; - } - } - anorm = fmax(anorm, (fabs(w[i]) + fabs(rv1[i]))); - } - - for (i = n - 1; i >= 0; i--) { - if (i < n - 1) { - if (g != 0.) { - for (j = l; j < n; j++) v[j][i] = (u[i][j] / u[i][l]) / g; - for (j = l; j < n; j++) { - for (s = 0.0, k = l; k < n; k++) s += u[i][k] * v[k][j]; - for (k = l; k < n; k++) v[k][j] += s * v[k][i]; - } - } - for (j = l; j < n; j++) v[i][j] = v[j][i] = 0.0; - } - v[i][i] = 1.0; - g = rv1[i]; - l = i; - } - for (i = AOMMIN(m, n) - 1; i >= 0; i--) { - l = i + 1; - g = w[i]; - for (j = l; j < n; j++) u[i][j] = 0.0; - if (g != 0.) { - g = 1.0 / g; - for (j = l; j < n; j++) { - for (s = 0.0, k = l; k < m; k++) s += u[k][i] * u[k][j]; - f = (s / u[i][i]) * g; - for (k = i; k < m; k++) u[k][j] += f * u[k][i]; - } - for (j = i; j < m; j++) u[j][i] *= g; - } else { - for (j = i; j < m; j++) u[j][i] = 0.0; - } - ++u[i][i]; - } - for (k = n - 1; k >= 0; k--) { - for (its = 0; its < max_its; its++) { - flag = 1; - for (l = k; l >= 0; l--) { - nm = l - 1; - if ((double)(fabs(rv1[l]) + anorm) == anorm || nm < 0) { - flag = 0; - break; - } - if ((double)(fabs(w[nm]) + anorm) == anorm) break; - } - if (flag) { - c = 0.0; - s = 1.0; - for (i = l; i <= k; i++) { - f = s * rv1[i]; - rv1[i] = c * rv1[i]; - if ((double)(fabs(f) + anorm) == anorm) break; - g = w[i]; - h = pythag(f, g); - w[i] = h; - h = 1.0 / h; - c = g * h; - s = -f * h; - for (j = 0; j < m; j++) { - y = u[j][nm]; - z = u[j][i]; - u[j][nm] = y * c + z * s; - u[j][i] = z * c - y * s; - } - } - } - z = w[k]; - if (l == k) { - if (z < 0.0) { - w[k] = -z; - for (j = 0; j < n; j++) v[j][k] = -v[j][k]; - } - break; - } - if (its == max_its - 1) { - aom_free(rv1); - return 1; - } - assert(k > 0); - x = w[l]; - nm = k - 1; - y = w[nm]; - g = rv1[nm]; - h = rv1[k]; - f = ((y - z) * (y + z) + (g - h) * (g + h)) / (2.0 * h * y); - g = pythag(f, 1.0); - f = ((x - z) * (x + z) + h * ((y / (f + sign(g, f))) - h)) / x; - c = s = 1.0; - for (j = l; j <= nm; j++) { - i = j + 1; - g = rv1[i]; - y = w[i]; - h = s * g; - g = c * g; - z = pythag(f, h); - rv1[j] = z; - c = f / z; - s = h / z; - f = x * c + g * s; - g = g * c - x * s; - h = y * s; - y *= c; - for (jj = 0; jj < n; jj++) { - x = v[jj][j]; - z = v[jj][i]; - v[jj][j] = x * c + z * s; - v[jj][i] = z * c - x * s; - } - z = pythag(f, h); - w[j] = z; - if (z != 0.) { - z = 1.0 / z; - c = f * z; - s = h * z; - } - f = c * g + s * y; - x = c * y - s * g; - for (jj = 0; jj < m; jj++) { - y = u[jj][j]; - z = u[jj][i]; - u[jj][j] = y * c + z * s; - u[jj][i] = z * c - y * s; - } - } - rv1[l] = 0.0; - rv1[k] = f; - w[k] = x; - } - } - aom_free(rv1); - return 0; -} - -static INLINE int SVD(double *U, double *W, double *V, double *matx, int M, - int N) { - // Assumes allocation for U is MxN - double **nrU = (double **)aom_malloc((M) * sizeof(*nrU)); - double **nrV = (double **)aom_malloc((N) * sizeof(*nrV)); - int problem, i; - - problem = !(nrU && nrV); - if (!problem) { - for (i = 0; i < M; i++) { - nrU[i] = &U[i * N]; - } - for (i = 0; i < N; i++) { - nrV[i] = &V[i * N]; - } - } else { - if (nrU) aom_free(nrU); - if (nrV) aom_free(nrV); - return 1; - } - - /* copy from given matx into nrU */ - for (i = 0; i < M; i++) { - memcpy(&(nrU[i][0]), matx + N * i, N * sizeof(*matx)); - } - - /* HERE IT IS: do SVD */ - if (svdcmp(nrU, M, N, W, nrV)) { - aom_free(nrU); - aom_free(nrV); - return 1; - } - - /* aom_free Numerical Recipes arrays */ - aom_free(nrU); - aom_free(nrV); - - return 0; -} - -#endif // AOM_AV1_ENCODER_MATHUTILS_H_ |