summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/decoder/decodeframe.c
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/aom/av1/decoder/decodeframe.c')
-rw-r--r--third_party/aom/av1/decoder/decodeframe.c5159
1 files changed, 5159 insertions, 0 deletions
diff --git a/third_party/aom/av1/decoder/decodeframe.c b/third_party/aom/av1/decoder/decodeframe.c
new file mode 100644
index 000000000..289d38670
--- /dev/null
+++ b/third_party/aom/av1/decoder/decodeframe.c
@@ -0,0 +1,5159 @@
+/*
+ * Copyright (c) 2016, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#include <assert.h>
+#include <stdlib.h> // qsort()
+
+#include "./aom_config.h"
+#include "./aom_dsp_rtcd.h"
+#include "./aom_scale_rtcd.h"
+#include "./av1_rtcd.h"
+
+#include "aom/aom_codec.h"
+#include "aom_dsp/aom_dsp_common.h"
+#include "aom_dsp/bitreader.h"
+#include "aom_dsp/bitreader_buffer.h"
+#include "aom_dsp/binary_codes_reader.h"
+#include "aom_mem/aom_mem.h"
+#include "aom_ports/mem.h"
+#include "aom_ports/mem_ops.h"
+#include "aom_scale/aom_scale.h"
+#include "aom_util/aom_thread.h"
+
+#if CONFIG_BITSTREAM_DEBUG
+#include "aom_util/debug_util.h"
+#endif // CONFIG_BITSTREAM_DEBUG
+
+#include "av1/common/alloccommon.h"
+#if CONFIG_CDEF
+#include "av1/common/cdef.h"
+#include "av1/common/clpf.h"
+#endif
+#if CONFIG_INSPECTION
+#include "av1/decoder/inspection.h"
+#endif
+#include "av1/common/common.h"
+#include "av1/common/entropy.h"
+#include "av1/common/entropymode.h"
+#include "av1/common/entropymv.h"
+#include "av1/common/idct.h"
+#include "av1/common/pred_common.h"
+#include "av1/common/quant_common.h"
+#include "av1/common/reconinter.h"
+#include "av1/common/reconintra.h"
+#include "av1/common/seg_common.h"
+#include "av1/common/thread_common.h"
+#include "av1/common/tile_common.h"
+
+#include "av1/decoder/decodeframe.h"
+#include "av1/decoder/decodemv.h"
+#include "av1/decoder/decoder.h"
+#if CONFIG_LV_MAP
+#include "av1/decoder/decodetxb.h"
+#endif
+#include "av1/decoder/detokenize.h"
+#include "av1/decoder/dsubexp.h"
+
+#if CONFIG_WARPED_MOTION || CONFIG_GLOBAL_MOTION
+#include "av1/common/warped_motion.h"
+#endif // CONFIG_WARPED_MOTION || CONFIG_GLOBAL_MOTION
+
+#define MAX_AV1_HEADER_SIZE 80
+#define ACCT_STR __func__
+
+#if CONFIG_PVQ
+#include "av1/common/partition.h"
+#include "av1/common/pvq.h"
+#include "av1/common/scan.h"
+#include "av1/decoder/decint.h"
+#include "av1/decoder/pvq_decoder.h"
+#include "av1/encoder/encodemb.h"
+#include "av1/encoder/hybrid_fwd_txfm.h"
+#endif
+
+#if CONFIG_CFL
+#include "av1/common/cfl.h"
+#endif
+
+static struct aom_read_bit_buffer *init_read_bit_buffer(
+ AV1Decoder *pbi, struct aom_read_bit_buffer *rb, const uint8_t *data,
+ const uint8_t *data_end, uint8_t clear_data[MAX_AV1_HEADER_SIZE]);
+static int read_compressed_header(AV1Decoder *pbi, const uint8_t *data,
+ size_t partition_size);
+static size_t read_uncompressed_header(AV1Decoder *pbi,
+ struct aom_read_bit_buffer *rb);
+
+static int is_compound_reference_allowed(const AV1_COMMON *cm) {
+#if CONFIG_LOWDELAY_COMPOUND // Normative in decoder
+ return !frame_is_intra_only(cm);
+#else
+ int i;
+ if (frame_is_intra_only(cm)) return 0;
+ for (i = 1; i < INTER_REFS_PER_FRAME; ++i)
+ if (cm->ref_frame_sign_bias[i + 1] != cm->ref_frame_sign_bias[1]) return 1;
+
+ return 0;
+#endif
+}
+
+static void setup_compound_reference_mode(AV1_COMMON *cm) {
+#if CONFIG_EXT_REFS
+ cm->comp_fwd_ref[0] = LAST_FRAME;
+ cm->comp_fwd_ref[1] = LAST2_FRAME;
+ cm->comp_fwd_ref[2] = LAST3_FRAME;
+ cm->comp_fwd_ref[3] = GOLDEN_FRAME;
+
+ cm->comp_bwd_ref[0] = BWDREF_FRAME;
+ cm->comp_bwd_ref[1] = ALTREF_FRAME;
+#else
+ if (cm->ref_frame_sign_bias[LAST_FRAME] ==
+ cm->ref_frame_sign_bias[GOLDEN_FRAME]) {
+ cm->comp_fixed_ref = ALTREF_FRAME;
+ cm->comp_var_ref[0] = LAST_FRAME;
+ cm->comp_var_ref[1] = GOLDEN_FRAME;
+ } else if (cm->ref_frame_sign_bias[LAST_FRAME] ==
+ cm->ref_frame_sign_bias[ALTREF_FRAME]) {
+ cm->comp_fixed_ref = GOLDEN_FRAME;
+ cm->comp_var_ref[0] = LAST_FRAME;
+ cm->comp_var_ref[1] = ALTREF_FRAME;
+ } else {
+ cm->comp_fixed_ref = LAST_FRAME;
+ cm->comp_var_ref[0] = GOLDEN_FRAME;
+ cm->comp_var_ref[1] = ALTREF_FRAME;
+ }
+#endif // CONFIG_EXT_REFS
+}
+
+static int read_is_valid(const uint8_t *start, size_t len, const uint8_t *end) {
+ return len != 0 && len <= (size_t)(end - start);
+}
+
+static int decode_unsigned_max(struct aom_read_bit_buffer *rb, int max) {
+ const int data = aom_rb_read_literal(rb, get_unsigned_bits(max));
+ return data > max ? max : data;
+}
+
+static TX_MODE read_tx_mode(AV1_COMMON *cm, MACROBLOCKD *xd,
+ struct aom_read_bit_buffer *rb) {
+ int i, all_lossless = 1;
+#if CONFIG_TX64X64
+ TX_MODE tx_mode;
+#endif
+
+ if (cm->seg.enabled) {
+ for (i = 0; i < MAX_SEGMENTS; ++i) {
+ if (!xd->lossless[i]) {
+ all_lossless = 0;
+ break;
+ }
+ }
+ } else {
+ all_lossless = xd->lossless[0];
+ }
+
+ if (all_lossless) return ONLY_4X4;
+#if CONFIG_TX64X64
+ tx_mode = aom_rb_read_bit(rb) ? TX_MODE_SELECT : aom_rb_read_literal(rb, 2);
+ if (tx_mode == ALLOW_32X32) tx_mode += aom_rb_read_bit(rb);
+ return tx_mode;
+#else
+ return aom_rb_read_bit(rb) ? TX_MODE_SELECT : aom_rb_read_literal(rb, 2);
+#endif // CONFIG_TX64X64
+}
+
+#if !CONFIG_EC_ADAPT
+static void read_tx_size_probs(FRAME_CONTEXT *fc, aom_reader *r) {
+ int i, j, k;
+ for (i = 0; i < MAX_TX_DEPTH; ++i)
+ for (j = 0; j < TX_SIZE_CONTEXTS; ++j)
+ for (k = 0; k < i + 1; ++k)
+ av1_diff_update_prob(r, &fc->tx_size_probs[i][j][k], ACCT_STR);
+}
+#endif
+
+#if !CONFIG_EC_ADAPT
+static void read_switchable_interp_probs(FRAME_CONTEXT *fc, aom_reader *r) {
+ int i, j;
+ for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j) {
+ for (i = 0; i < SWITCHABLE_FILTERS - 1; ++i)
+ av1_diff_update_prob(r, &fc->switchable_interp_prob[j][i], ACCT_STR);
+ }
+}
+#endif
+
+static void read_inter_mode_probs(FRAME_CONTEXT *fc, aom_reader *r) {
+#if CONFIG_REF_MV
+ int i;
+ for (i = 0; i < NEWMV_MODE_CONTEXTS; ++i)
+ av1_diff_update_prob(r, &fc->newmv_prob[i], ACCT_STR);
+ for (i = 0; i < ZEROMV_MODE_CONTEXTS; ++i)
+ av1_diff_update_prob(r, &fc->zeromv_prob[i], ACCT_STR);
+ for (i = 0; i < REFMV_MODE_CONTEXTS; ++i)
+ av1_diff_update_prob(r, &fc->refmv_prob[i], ACCT_STR);
+ for (i = 0; i < DRL_MODE_CONTEXTS; ++i)
+ av1_diff_update_prob(r, &fc->drl_prob[i], ACCT_STR);
+#else
+#if !CONFIG_EC_ADAPT
+ int i, j;
+ for (i = 0; i < INTER_MODE_CONTEXTS; ++i) {
+ for (j = 0; j < INTER_MODES - 1; ++j)
+ av1_diff_update_prob(r, &fc->inter_mode_probs[i][j], ACCT_STR);
+ }
+#else
+ (void)fc;
+ (void)r;
+#endif
+#endif
+}
+
+#if CONFIG_EXT_INTER
+static void read_inter_compound_mode_probs(FRAME_CONTEXT *fc, aom_reader *r) {
+ int i, j;
+ if (aom_read(r, GROUP_DIFF_UPDATE_PROB, ACCT_STR)) {
+ for (j = 0; j < INTER_MODE_CONTEXTS; ++j) {
+ for (i = 0; i < INTER_COMPOUND_MODES - 1; ++i) {
+ av1_diff_update_prob(r, &fc->inter_compound_mode_probs[j][i], ACCT_STR);
+ }
+ }
+ }
+}
+#endif // CONFIG_EXT_INTER
+#if !CONFIG_EC_ADAPT
+#if !CONFIG_EXT_TX
+static void read_ext_tx_probs(FRAME_CONTEXT *fc, aom_reader *r) {
+ int i, j, k;
+ if (aom_read(r, GROUP_DIFF_UPDATE_PROB, ACCT_STR)) {
+ for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
+ for (j = 0; j < TX_TYPES; ++j) {
+ for (k = 0; k < TX_TYPES - 1; ++k)
+ av1_diff_update_prob(r, &fc->intra_ext_tx_prob[i][j][k], ACCT_STR);
+ }
+ }
+ }
+ if (aom_read(r, GROUP_DIFF_UPDATE_PROB, ACCT_STR)) {
+ for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
+ for (k = 0; k < TX_TYPES - 1; ++k)
+ av1_diff_update_prob(r, &fc->inter_ext_tx_prob[i][k], ACCT_STR);
+ }
+ }
+}
+#endif
+#endif
+
+static REFERENCE_MODE read_frame_reference_mode(
+ const AV1_COMMON *cm, struct aom_read_bit_buffer *rb) {
+ if (is_compound_reference_allowed(cm)) {
+#if CONFIG_REF_ADAPT
+ return aom_rb_read_bit(rb) ? REFERENCE_MODE_SELECT : SINGLE_REFERENCE;
+#else
+ return aom_rb_read_bit(rb)
+ ? REFERENCE_MODE_SELECT
+ : (aom_rb_read_bit(rb) ? COMPOUND_REFERENCE : SINGLE_REFERENCE);
+#endif // CONFIG_REF_ADAPT
+ } else {
+ return SINGLE_REFERENCE;
+ }
+}
+
+static void read_frame_reference_mode_probs(AV1_COMMON *cm, aom_reader *r) {
+ FRAME_CONTEXT *const fc = cm->fc;
+ int i, j;
+
+ if (cm->reference_mode == REFERENCE_MODE_SELECT)
+ for (i = 0; i < COMP_INTER_CONTEXTS; ++i)
+ av1_diff_update_prob(r, &fc->comp_inter_prob[i], ACCT_STR);
+
+ if (cm->reference_mode != COMPOUND_REFERENCE) {
+ for (i = 0; i < REF_CONTEXTS; ++i) {
+ for (j = 0; j < (SINGLE_REFS - 1); ++j) {
+ av1_diff_update_prob(r, &fc->single_ref_prob[i][j], ACCT_STR);
+ }
+ }
+ }
+
+ if (cm->reference_mode != SINGLE_REFERENCE) {
+ for (i = 0; i < REF_CONTEXTS; ++i) {
+#if CONFIG_EXT_REFS
+ for (j = 0; j < (FWD_REFS - 1); ++j)
+ av1_diff_update_prob(r, &fc->comp_ref_prob[i][j], ACCT_STR);
+ for (j = 0; j < (BWD_REFS - 1); ++j)
+ av1_diff_update_prob(r, &fc->comp_bwdref_prob[i][j], ACCT_STR);
+#else
+ for (j = 0; j < (COMP_REFS - 1); ++j)
+ av1_diff_update_prob(r, &fc->comp_ref_prob[i][j], ACCT_STR);
+#endif // CONFIG_EXT_REFS
+ }
+ }
+}
+
+static void update_mv_probs(aom_prob *p, int n, aom_reader *r) {
+ int i;
+ for (i = 0; i < n; ++i) av1_diff_update_prob(r, &p[i], ACCT_STR);
+}
+
+static void read_mv_probs(nmv_context *ctx, int allow_hp, aom_reader *r) {
+ int i;
+
+#if !CONFIG_EC_ADAPT
+ int j;
+ update_mv_probs(ctx->joints, MV_JOINTS - 1, r);
+
+ for (i = 0; i < 2; ++i) {
+ nmv_component *const comp_ctx = &ctx->comps[i];
+ update_mv_probs(&comp_ctx->sign, 1, r);
+ update_mv_probs(comp_ctx->classes, MV_CLASSES - 1, r);
+ update_mv_probs(comp_ctx->class0, CLASS0_SIZE - 1, r);
+ update_mv_probs(comp_ctx->bits, MV_OFFSET_BITS, r);
+ }
+ for (i = 0; i < 2; ++i) {
+ nmv_component *const comp_ctx = &ctx->comps[i];
+ for (j = 0; j < CLASS0_SIZE; ++j) {
+ update_mv_probs(comp_ctx->class0_fp[j], MV_FP_SIZE - 1, r);
+ }
+ update_mv_probs(comp_ctx->fp, MV_FP_SIZE - 1, r);
+ }
+#endif // !CONFIG_EC_ADAPT
+
+ if (allow_hp) {
+ for (i = 0; i < 2; ++i) {
+ nmv_component *const comp_ctx = &ctx->comps[i];
+ update_mv_probs(&comp_ctx->class0_hp, 1, r);
+ update_mv_probs(&comp_ctx->hp, 1, r);
+ }
+ }
+}
+
+static void inverse_transform_block(MACROBLOCKD *xd, int plane,
+ const TX_TYPE tx_type,
+ const TX_SIZE tx_size, uint8_t *dst,
+ int stride, int16_t scan_line, int eob) {
+ struct macroblockd_plane *const pd = &xd->plane[plane];
+ tran_low_t *const dqcoeff = pd->dqcoeff;
+ av1_inverse_transform_block(xd, dqcoeff, tx_type, tx_size, dst, stride, eob);
+ memset(dqcoeff, 0, (scan_line + 1) * sizeof(dqcoeff[0]));
+}
+
+#if CONFIG_PVQ
+static int av1_pvq_decode_helper(MACROBLOCKD *xd, tran_low_t *ref_coeff,
+ tran_low_t *dqcoeff, int16_t *quant, int pli,
+ int bs, TX_TYPE tx_type, int xdec,
+ PVQ_SKIP_TYPE ac_dc_coded) {
+ unsigned int flags; // used for daala's stream analyzer.
+ int off;
+ const int is_keyframe = 0;
+ const int has_dc_skip = 1;
+ int coeff_shift = 3 - av1_get_tx_scale(bs);
+ int hbd_downshift = 0;
+ int rounding_mask;
+ // DC quantizer for PVQ
+ int pvq_dc_quant;
+ int lossless = (quant[0] == 0);
+ const int blk_size = tx_size_wide[bs];
+ int eob = 0;
+ int i;
+ od_dec_ctx *dec = &xd->daala_dec;
+ int use_activity_masking = dec->use_activity_masking;
+ DECLARE_ALIGNED(16, tran_low_t, dqcoeff_pvq[OD_TXSIZE_MAX * OD_TXSIZE_MAX]);
+ DECLARE_ALIGNED(16, tran_low_t, ref_coeff_pvq[OD_TXSIZE_MAX * OD_TXSIZE_MAX]);
+
+ od_coeff ref_int32[OD_TXSIZE_MAX * OD_TXSIZE_MAX];
+ od_coeff out_int32[OD_TXSIZE_MAX * OD_TXSIZE_MAX];
+
+#if CONFIG_HIGHBITDEPTH
+ hbd_downshift = xd->bd - 8;
+#endif // CONFIG_HIGHBITDEPTH
+
+ od_raster_to_coding_order(ref_coeff_pvq, blk_size, tx_type, ref_coeff,
+ blk_size);
+
+ assert(OD_COEFF_SHIFT >= 4);
+ if (lossless)
+ pvq_dc_quant = 1;
+ else {
+ if (use_activity_masking)
+ pvq_dc_quant = OD_MAXI(
+ 1, (quant[0] << (OD_COEFF_SHIFT - 3) >> hbd_downshift) *
+ dec->state.pvq_qm_q4[pli][od_qm_get_index(bs, 0)] >>
+ 4);
+ else
+ pvq_dc_quant =
+ OD_MAXI(1, quant[0] << (OD_COEFF_SHIFT - 3) >> hbd_downshift);
+ }
+
+ off = od_qm_offset(bs, xdec);
+
+ // copy int16 inputs to int32
+ for (i = 0; i < blk_size * blk_size; i++) {
+ ref_int32[i] =
+ AOM_SIGNED_SHL(ref_coeff_pvq[i], OD_COEFF_SHIFT - coeff_shift) >>
+ hbd_downshift;
+ }
+
+ od_pvq_decode(dec, ref_int32, out_int32,
+ OD_MAXI(1, quant[1] << (OD_COEFF_SHIFT - 3) >> hbd_downshift),
+ pli, bs, OD_PVQ_BETA[use_activity_masking][pli][bs],
+ is_keyframe, &flags, ac_dc_coded, dec->state.qm + off,
+ dec->state.qm_inv + off);
+
+ if (!has_dc_skip || out_int32[0]) {
+ out_int32[0] =
+ has_dc_skip + generic_decode(dec->r, &dec->state.adapt->model_dc[pli],
+ &dec->state.adapt->ex_dc[pli][bs][0], 2,
+ "dc:mag");
+ if (out_int32[0]) out_int32[0] *= aom_read_bit(dec->r, "dc:sign") ? -1 : 1;
+ }
+ out_int32[0] = out_int32[0] * pvq_dc_quant + ref_int32[0];
+
+ // copy int32 result back to int16
+ assert(OD_COEFF_SHIFT > coeff_shift);
+ rounding_mask = (1 << (OD_COEFF_SHIFT - coeff_shift - 1)) - 1;
+ for (i = 0; i < blk_size * blk_size; i++) {
+ out_int32[i] = AOM_SIGNED_SHL(out_int32[i], hbd_downshift);
+ dqcoeff_pvq[i] = (out_int32[i] + (out_int32[i] < 0) + rounding_mask) >>
+ (OD_COEFF_SHIFT - coeff_shift);
+ }
+
+ od_coding_order_to_raster(dqcoeff, blk_size, tx_type, dqcoeff_pvq, blk_size);
+
+ eob = blk_size * blk_size;
+
+ return eob;
+}
+
+static PVQ_SKIP_TYPE read_pvq_skip(AV1_COMMON *cm, MACROBLOCKD *const xd,
+ int plane, TX_SIZE tx_size) {
+ // decode ac/dc coded flag. bit0: DC coded, bit1 : AC coded
+ // NOTE : we don't use 5 symbols for luma here in aom codebase,
+ // since block partition is taken care of by aom.
+ // So, only AC/DC skip info is coded
+ const int ac_dc_coded = aom_read_symbol(
+ xd->daala_dec.r,
+ xd->daala_dec.state.adapt->skip_cdf[2 * tx_size + (plane != 0)], 4,
+ "skip");
+ if (ac_dc_coded < 0 || ac_dc_coded > 3) {
+ aom_internal_error(&cm->error, AOM_CODEC_INVALID_PARAM,
+ "Invalid PVQ Skip Type");
+ }
+ return ac_dc_coded;
+}
+
+static int av1_pvq_decode_helper2(AV1_COMMON *cm, MACROBLOCKD *const xd,
+ MB_MODE_INFO *const mbmi, int plane, int row,
+ int col, TX_SIZE tx_size, TX_TYPE tx_type) {
+ struct macroblockd_plane *const pd = &xd->plane[plane];
+ // transform block size in pixels
+ int tx_blk_size = tx_size_wide[tx_size];
+ int i, j;
+ tran_low_t *pvq_ref_coeff = pd->pvq_ref_coeff;
+ const int diff_stride = tx_blk_size;
+ int16_t *pred = pd->pred;
+ tran_low_t *const dqcoeff = pd->dqcoeff;
+ uint8_t *dst;
+ int eob;
+ const PVQ_SKIP_TYPE ac_dc_coded = read_pvq_skip(cm, xd, plane, tx_size);
+
+ eob = 0;
+ dst = &pd->dst.buf[4 * row * pd->dst.stride + 4 * col];
+
+ if (ac_dc_coded) {
+ int xdec = pd->subsampling_x;
+ int seg_id = mbmi->segment_id;
+ int16_t *quant;
+ FWD_TXFM_PARAM fwd_txfm_param;
+ // ToDo(yaowu): correct this with optimal number from decoding process.
+ const int max_scan_line = tx_size_2d[tx_size];
+#if CONFIG_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ for (j = 0; j < tx_blk_size; j++)
+ for (i = 0; i < tx_blk_size; i++)
+ pred[diff_stride * j + i] =
+ CONVERT_TO_SHORTPTR(dst)[pd->dst.stride * j + i];
+ } else {
+#endif
+ for (j = 0; j < tx_blk_size; j++)
+ for (i = 0; i < tx_blk_size; i++)
+ pred[diff_stride * j + i] = dst[pd->dst.stride * j + i];
+#if CONFIG_HIGHBITDEPTH
+ }
+#endif
+
+ fwd_txfm_param.tx_type = tx_type;
+ fwd_txfm_param.tx_size = tx_size;
+ fwd_txfm_param.lossless = xd->lossless[seg_id];
+
+#if CONFIG_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ fwd_txfm_param.bd = xd->bd;
+ av1_highbd_fwd_txfm(pred, pvq_ref_coeff, diff_stride, &fwd_txfm_param);
+ } else {
+#endif // CONFIG_HIGHBITDEPTH
+ av1_fwd_txfm(pred, pvq_ref_coeff, diff_stride, &fwd_txfm_param);
+#if CONFIG_HIGHBITDEPTH
+ }
+#endif // CONFIG_HIGHBITDEPTH
+
+ quant = &pd->seg_dequant[seg_id][0]; // aom's quantizer
+
+ eob = av1_pvq_decode_helper(xd, pvq_ref_coeff, dqcoeff, quant, plane,
+ tx_size, tx_type, xdec, ac_dc_coded);
+
+ inverse_transform_block(xd, plane, tx_type, tx_size, dst, pd->dst.stride,
+ max_scan_line, eob);
+ }
+
+ return eob;
+}
+#endif
+
+static int get_block_idx(const MACROBLOCKD *xd, int plane, int row, int col) {
+ const int bsize = xd->mi[0]->mbmi.sb_type;
+ const struct macroblockd_plane *pd = &xd->plane[plane];
+#if CONFIG_CB4X4
+#if CONFIG_CHROMA_2X2
+ const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
+#else
+ const BLOCK_SIZE plane_bsize =
+ AOMMAX(BLOCK_4X4, get_plane_block_size(bsize, pd));
+#endif // CONFIG_CHROMA_2X2
+#else
+ const BLOCK_SIZE plane_bsize =
+ get_plane_block_size(AOMMAX(BLOCK_8X8, bsize), pd);
+#endif
+ const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
+ const TX_SIZE tx_size = get_tx_size(plane, xd);
+ const uint8_t txh_unit = tx_size_high_unit[tx_size];
+ return row * max_blocks_wide + col * txh_unit;
+}
+
+static void predict_and_reconstruct_intra_block(
+ AV1_COMMON *cm, MACROBLOCKD *const xd, aom_reader *const r,
+ MB_MODE_INFO *const mbmi, int plane, int row, int col, TX_SIZE tx_size) {
+ PLANE_TYPE plane_type = get_plane_type(plane);
+ const int block_idx = get_block_idx(xd, plane, row, col);
+#if CONFIG_PVQ
+ (void)r;
+#endif
+ av1_predict_intra_block_facade(xd, plane, block_idx, col, row, tx_size);
+
+ if (!mbmi->skip) {
+#if !CONFIG_PVQ
+ struct macroblockd_plane *const pd = &xd->plane[plane];
+#if CONFIG_LV_MAP
+ int16_t max_scan_line = 0;
+ int eob;
+ av1_read_coeffs_txb_facade(cm, xd, r, row, col, block_idx, plane,
+ pd->dqcoeff, &max_scan_line, &eob);
+ // tx_type will be read out in av1_read_coeffs_txb_facade
+ TX_TYPE tx_type = get_tx_type(plane_type, xd, block_idx, tx_size);
+#else // CONFIG_LV_MAP
+ TX_TYPE tx_type = get_tx_type(plane_type, xd, block_idx, tx_size);
+ const SCAN_ORDER *scan_order = get_scan(cm, tx_size, tx_type, 0);
+ int16_t max_scan_line = 0;
+ const int eob =
+ av1_decode_block_tokens(cm, xd, plane, scan_order, col, row, tx_size,
+ tx_type, &max_scan_line, r, mbmi->segment_id);
+#endif // CONFIG_LV_MAP
+ if (eob) {
+ uint8_t *dst =
+ &pd->dst.buf[(row * pd->dst.stride + col) << tx_size_wide_log2[0]];
+ inverse_transform_block(xd, plane, tx_type, tx_size, dst, pd->dst.stride,
+ max_scan_line, eob);
+ }
+#else
+ TX_TYPE tx_type = get_tx_type(plane_type, xd, block_idx, tx_size);
+ av1_pvq_decode_helper2(cm, xd, mbmi, plane, row, col, tx_size, tx_type);
+#endif
+ }
+#if CONFIG_CFL
+ if (plane == AOM_PLANE_Y) {
+ struct macroblockd_plane *const pd = &xd->plane[plane];
+ uint8_t *dst =
+ &pd->dst.buf[(row * pd->dst.stride + col) << tx_size_wide_log2[0]];
+ cfl_store(xd->cfl, dst, pd->dst.stride, row, col, tx_size);
+ }
+#endif
+}
+
+#if CONFIG_VAR_TX && !CONFIG_COEF_INTERLEAVE
+static void decode_reconstruct_tx(AV1_COMMON *cm, MACROBLOCKD *const xd,
+ aom_reader *r, MB_MODE_INFO *const mbmi,
+ int plane, BLOCK_SIZE plane_bsize,
+ int blk_row, int blk_col, TX_SIZE tx_size,
+ int *eob_total) {
+ const struct macroblockd_plane *const pd = &xd->plane[plane];
+ const BLOCK_SIZE bsize = txsize_to_bsize[tx_size];
+ const int tx_row = blk_row >> (1 - pd->subsampling_y);
+ const int tx_col = blk_col >> (1 - pd->subsampling_x);
+ const TX_SIZE plane_tx_size =
+ plane ? uv_txsize_lookup[bsize][mbmi->inter_tx_size[tx_row][tx_col]][0][0]
+ : mbmi->inter_tx_size[tx_row][tx_col];
+ // Scale to match transform block unit.
+ const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
+ const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
+
+ if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
+
+ if (tx_size == plane_tx_size) {
+ PLANE_TYPE plane_type = get_plane_type(plane);
+ int block_idx = get_block_idx(xd, plane, blk_row, blk_col);
+#if CONFIG_LV_MAP
+ (void)segment_id;
+ int16_t max_scan_line = 0;
+ int eob;
+ av1_read_coeffs_txb_facade(cm, xd, r, row, col, block_idx, plane,
+ pd->dqcoeff, &max_scan_line, &eob);
+ // tx_type will be read out in av1_read_coeffs_txb_facade
+ TX_TYPE tx_type = get_tx_type(plane_type, xd, block_idx, plane_tx_size);
+#else // CONFIG_LV_MAP
+ TX_TYPE tx_type = get_tx_type(plane_type, xd, block_idx, plane_tx_size);
+ const SCAN_ORDER *sc = get_scan(cm, plane_tx_size, tx_type, 1);
+ int16_t max_scan_line = 0;
+ const int eob = av1_decode_block_tokens(
+ cm, xd, plane, sc, blk_col, blk_row, plane_tx_size, tx_type,
+ &max_scan_line, r, mbmi->segment_id);
+#endif // CONFIG_LV_MAP
+ inverse_transform_block(xd, plane, tx_type, plane_tx_size,
+ &pd->dst.buf[(blk_row * pd->dst.stride + blk_col)
+ << tx_size_wide_log2[0]],
+ pd->dst.stride, max_scan_line, eob);
+ *eob_total += eob;
+ } else {
+ const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
+ const int bsl = tx_size_wide_unit[sub_txs];
+ int i;
+
+ assert(bsl > 0);
+
+ for (i = 0; i < 4; ++i) {
+ const int offsetr = blk_row + (i >> 1) * bsl;
+ const int offsetc = blk_col + (i & 0x01) * bsl;
+
+ if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue;
+
+ decode_reconstruct_tx(cm, xd, r, mbmi, plane, plane_bsize, offsetr,
+ offsetc, sub_txs, eob_total);
+ }
+ }
+}
+#endif // CONFIG_VAR_TX
+
+#if !CONFIG_VAR_TX || CONFIG_SUPERTX || CONFIG_COEF_INTERLEAVE || \
+ (!CONFIG_VAR_TX && CONFIG_EXT_TX && CONFIG_RECT_TX)
+static int reconstruct_inter_block(AV1_COMMON *cm, MACROBLOCKD *const xd,
+ aom_reader *const r, int segment_id,
+ int plane, int row, int col,
+ TX_SIZE tx_size) {
+ PLANE_TYPE plane_type = get_plane_type(plane);
+ int block_idx = get_block_idx(xd, plane, row, col);
+#if CONFIG_PVQ
+ int eob;
+ (void)r;
+ (void)segment_id;
+#else
+ struct macroblockd_plane *const pd = &xd->plane[plane];
+#endif
+
+#if !CONFIG_PVQ
+#if CONFIG_LV_MAP
+ (void)segment_id;
+ int16_t max_scan_line = 0;
+ int eob;
+ av1_read_coeffs_txb_facade(cm, xd, r, row, col, block_idx, plane, pd->dqcoeff,
+ &max_scan_line, &eob);
+ // tx_type will be read out in av1_read_coeffs_txb_facade
+ TX_TYPE tx_type = get_tx_type(plane_type, xd, block_idx, tx_size);
+#else // CONFIG_LV_MAP
+ int16_t max_scan_line = 0;
+ TX_TYPE tx_type = get_tx_type(plane_type, xd, block_idx, tx_size);
+ const SCAN_ORDER *scan_order = get_scan(cm, tx_size, tx_type, 1);
+ const int eob =
+ av1_decode_block_tokens(cm, xd, plane, scan_order, col, row, tx_size,
+ tx_type, &max_scan_line, r, segment_id);
+#endif // CONFIG_LV_MAP
+ uint8_t *dst =
+ &pd->dst.buf[(row * pd->dst.stride + col) << tx_size_wide_log2[0]];
+ if (eob)
+ inverse_transform_block(xd, plane, tx_type, tx_size, dst, pd->dst.stride,
+ max_scan_line, eob);
+#else
+ TX_TYPE tx_type = get_tx_type(plane_type, xd, block_idx, tx_size);
+ eob = av1_pvq_decode_helper2(cm, xd, &xd->mi[0]->mbmi, plane, row, col,
+ tx_size, tx_type);
+#endif
+ return eob;
+}
+#endif // !CONFIG_VAR_TX || CONFIG_SUPER_TX
+
+static void set_offsets(AV1_COMMON *const cm, MACROBLOCKD *const xd,
+ BLOCK_SIZE bsize, int mi_row, int mi_col, int bw,
+ int bh, int x_mis, int y_mis) {
+ const int offset = mi_row * cm->mi_stride + mi_col;
+ int x, y;
+ const TileInfo *const tile = &xd->tile;
+
+ xd->mi = cm->mi_grid_visible + offset;
+ xd->mi[0] = &cm->mi[offset];
+ // TODO(slavarnway): Generate sb_type based on bwl and bhl, instead of
+ // passing bsize from decode_partition().
+ xd->mi[0]->mbmi.sb_type = bsize;
+#if CONFIG_RD_DEBUG
+ xd->mi[0]->mbmi.mi_row = mi_row;
+ xd->mi[0]->mbmi.mi_col = mi_col;
+#endif
+ for (y = 0; y < y_mis; ++y)
+ for (x = !y; x < x_mis; ++x) xd->mi[y * cm->mi_stride + x] = xd->mi[0];
+
+ set_plane_n4(xd, bw, bh);
+ set_skip_context(xd, mi_row, mi_col);
+
+#if CONFIG_VAR_TX
+ xd->max_tx_size = max_txsize_lookup[bsize];
+#endif
+
+ // Distance of Mb to the various image edges. These are specified to 8th pel
+ // as they are always compared to values that are in 1/8th pel units
+ set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw,
+#if CONFIG_DEPENDENT_HORZTILES
+ cm->dependent_horz_tiles,
+#endif // CONFIG_DEPENDENT_HORZTILES
+ cm->mi_rows, cm->mi_cols);
+
+ av1_setup_dst_planes(xd->plane, bsize, get_frame_new_buffer(cm), mi_row,
+ mi_col);
+}
+
+#if CONFIG_SUPERTX
+static MB_MODE_INFO *set_offsets_extend(AV1_COMMON *const cm,
+ MACROBLOCKD *const xd,
+ const TileInfo *const tile,
+ BLOCK_SIZE bsize_pred, int mi_row_pred,
+ int mi_col_pred, int mi_row_ori,
+ int mi_col_ori) {
+ // Used in supertx
+ // (mi_row_ori, mi_col_ori): location for mv
+ // (mi_row_pred, mi_col_pred, bsize_pred): region to predict
+ const int bw = mi_size_wide[bsize_pred];
+ const int bh = mi_size_high[bsize_pred];
+ const int offset = mi_row_ori * cm->mi_stride + mi_col_ori;
+ xd->mi = cm->mi_grid_visible + offset;
+ xd->mi[0] = cm->mi + offset;
+ set_mi_row_col(xd, tile, mi_row_pred, bh, mi_col_pred, bw,
+#if CONFIG_DEPENDENT_HORZTILES
+ cm->dependent_horz_tiles,
+#endif // CONFIG_DEPENDENT_HORZTILES
+ cm->mi_rows, cm->mi_cols);
+
+ xd->up_available = (mi_row_ori > tile->mi_row_start);
+ xd->left_available = (mi_col_ori > tile->mi_col_start);
+
+ set_plane_n4(xd, bw, bh);
+
+ return &xd->mi[0]->mbmi;
+}
+
+#if CONFIG_SUPERTX
+static MB_MODE_INFO *set_mb_offsets(AV1_COMMON *const cm, MACROBLOCKD *const xd,
+ BLOCK_SIZE bsize, int mi_row, int mi_col,
+ int bw, int bh, int x_mis, int y_mis) {
+ const int offset = mi_row * cm->mi_stride + mi_col;
+ const TileInfo *const tile = &xd->tile;
+ int x, y;
+
+ xd->mi = cm->mi_grid_visible + offset;
+ xd->mi[0] = cm->mi + offset;
+ xd->mi[0]->mbmi.sb_type = bsize;
+ for (y = 0; y < y_mis; ++y)
+ for (x = !y; x < x_mis; ++x) xd->mi[y * cm->mi_stride + x] = xd->mi[0];
+
+ set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw,
+#if CONFIG_DEPENDENT_HORZTILES
+ cm->dependent_horz_tiles,
+#endif // CONFIG_DEPENDENT_HORZTILES
+ cm->mi_rows, cm->mi_cols);
+ return &xd->mi[0]->mbmi;
+}
+#endif
+
+static void set_offsets_topblock(AV1_COMMON *const cm, MACROBLOCKD *const xd,
+ const TileInfo *const tile, BLOCK_SIZE bsize,
+ int mi_row, int mi_col) {
+ const int bw = mi_size_wide[bsize];
+ const int bh = mi_size_high[bsize];
+ const int offset = mi_row * cm->mi_stride + mi_col;
+
+ xd->mi = cm->mi_grid_visible + offset;
+ xd->mi[0] = cm->mi + offset;
+
+ set_plane_n4(xd, bw, bh);
+
+ set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw,
+#if CONFIG_DEPENDENT_HORZTILES
+ cm->dependent_horz_tiles,
+#endif // CONFIG_DEPENDENT_HORZTILES
+ cm->mi_rows, cm->mi_cols);
+
+ av1_setup_dst_planes(xd->plane, bsize, get_frame_new_buffer(cm), mi_row,
+ mi_col);
+}
+
+static void set_param_topblock(AV1_COMMON *const cm, MACROBLOCKD *const xd,
+ BLOCK_SIZE bsize, int mi_row, int mi_col,
+ int txfm, int skip) {
+ const int bw = mi_size_wide[bsize];
+ const int bh = mi_size_high[bsize];
+ const int x_mis = AOMMIN(bw, cm->mi_cols - mi_col);
+ const int y_mis = AOMMIN(bh, cm->mi_rows - mi_row);
+ const int offset = mi_row * cm->mi_stride + mi_col;
+ int x, y;
+
+ xd->mi = cm->mi_grid_visible + offset;
+ xd->mi[0] = cm->mi + offset;
+
+ for (y = 0; y < y_mis; ++y)
+ for (x = 0; x < x_mis; ++x) {
+ xd->mi[y * cm->mi_stride + x]->mbmi.skip = skip;
+ xd->mi[y * cm->mi_stride + x]->mbmi.tx_type = txfm;
+ }
+#if CONFIG_VAR_TX
+ xd->above_txfm_context = cm->above_txfm_context + mi_col;
+ xd->left_txfm_context =
+ xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
+ set_txfm_ctxs(xd->mi[0]->mbmi.tx_size, bw, bh, skip, xd);
+#endif
+}
+
+static void set_ref(AV1_COMMON *const cm, MACROBLOCKD *const xd, int idx,
+ int mi_row, int mi_col) {
+ MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
+ RefBuffer *ref_buffer = &cm->frame_refs[mbmi->ref_frame[idx] - LAST_FRAME];
+ xd->block_refs[idx] = ref_buffer;
+ if (!av1_is_valid_scale(&ref_buffer->sf))
+ aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
+ "Invalid scale factors");
+ av1_setup_pre_planes(xd, idx, ref_buffer->buf, mi_row, mi_col,
+ &ref_buffer->sf);
+ aom_merge_corrupted_flag(&xd->corrupted, ref_buffer->buf->corrupted);
+}
+
+static void dec_predict_b_extend(
+ AV1Decoder *const pbi, MACROBLOCKD *const xd, const TileInfo *const tile,
+ int block, int mi_row_ori, int mi_col_ori, int mi_row_pred, int mi_col_pred,
+ int mi_row_top, int mi_col_top, uint8_t *dst_buf[3], int dst_stride[3],
+ BLOCK_SIZE bsize_top, BLOCK_SIZE bsize_pred, int b_sub8x8, int bextend) {
+ // Used in supertx
+ // (mi_row_ori, mi_col_ori): location for mv
+ // (mi_row_pred, mi_col_pred, bsize_pred): region to predict
+ // (mi_row_top, mi_col_top, bsize_top): region of the top partition size
+ // block: sub location of sub8x8 blocks
+ // b_sub8x8: 1: ori is sub8x8; 0: ori is not sub8x8
+ // bextend: 1: region to predict is an extension of ori; 0: not
+ int r = (mi_row_pred - mi_row_top) * MI_SIZE;
+ int c = (mi_col_pred - mi_col_top) * MI_SIZE;
+ const int mi_width_top = mi_size_wide[bsize_top];
+ const int mi_height_top = mi_size_high[bsize_top];
+ MB_MODE_INFO *mbmi;
+ AV1_COMMON *const cm = &pbi->common;
+
+ if (mi_row_pred < mi_row_top || mi_col_pred < mi_col_top ||
+ mi_row_pred >= mi_row_top + mi_height_top ||
+ mi_col_pred >= mi_col_top + mi_width_top || mi_row_pred >= cm->mi_rows ||
+ mi_col_pred >= cm->mi_cols)
+ return;
+
+ mbmi = set_offsets_extend(cm, xd, tile, bsize_pred, mi_row_pred, mi_col_pred,
+ mi_row_ori, mi_col_ori);
+ set_ref(cm, xd, 0, mi_row_pred, mi_col_pred);
+ if (has_second_ref(&xd->mi[0]->mbmi))
+ set_ref(cm, xd, 1, mi_row_pred, mi_col_pred);
+
+ if (!bextend) mbmi->tx_size = max_txsize_lookup[bsize_top];
+
+ xd->plane[0].dst.stride = dst_stride[0];
+ xd->plane[1].dst.stride = dst_stride[1];
+ xd->plane[2].dst.stride = dst_stride[2];
+ xd->plane[0].dst.buf = dst_buf[0] +
+ (r >> xd->plane[0].subsampling_y) * dst_stride[0] +
+ (c >> xd->plane[0].subsampling_x);
+ xd->plane[1].dst.buf = dst_buf[1] +
+ (r >> xd->plane[1].subsampling_y) * dst_stride[1] +
+ (c >> xd->plane[1].subsampling_x);
+ xd->plane[2].dst.buf = dst_buf[2] +
+ (r >> xd->plane[2].subsampling_y) * dst_stride[2] +
+ (c >> xd->plane[2].subsampling_x);
+
+ if (!b_sub8x8)
+ av1_build_inter_predictors_sb_extend(xd,
+#if CONFIG_EXT_INTER
+ mi_row_ori, mi_col_ori,
+#endif // CONFIG_EXT_INTER
+ mi_row_pred, mi_col_pred, bsize_pred);
+ else
+ av1_build_inter_predictors_sb_sub8x8_extend(xd,
+#if CONFIG_EXT_INTER
+ mi_row_ori, mi_col_ori,
+#endif // CONFIG_EXT_INTER
+ mi_row_pred, mi_col_pred,
+ bsize_pred, block);
+}
+
+static void dec_extend_dir(AV1Decoder *const pbi, MACROBLOCKD *const xd,
+ const TileInfo *const tile, int block,
+ BLOCK_SIZE bsize, BLOCK_SIZE top_bsize, int mi_row,
+ int mi_col, int mi_row_top, int mi_col_top,
+ uint8_t *dst_buf[3], int dst_stride[3], int dir) {
+ // dir: 0-lower, 1-upper, 2-left, 3-right
+ // 4-lowerleft, 5-upperleft, 6-lowerright, 7-upperright
+ const int mi_width = mi_size_wide[bsize];
+ const int mi_height = mi_size_high[bsize];
+ int xss = xd->plane[1].subsampling_x;
+ int yss = xd->plane[1].subsampling_y;
+#if CONFIG_CB4X4
+ const int unify_bsize = 1;
+#else
+ const int unify_bsize = 0;
+#endif
+ int b_sub8x8 = (bsize < BLOCK_8X8) && !unify_bsize ? 1 : 0;
+ BLOCK_SIZE extend_bsize;
+ int mi_row_pred, mi_col_pred;
+
+ int wide_unit, high_unit;
+ int i, j;
+ int ext_offset = 0;
+
+ if (dir == 0 || dir == 1) {
+ extend_bsize =
+ (mi_width == mi_size_wide[BLOCK_8X8] || bsize < BLOCK_8X8 || xss < yss)
+ ? BLOCK_8X8
+ : BLOCK_16X8;
+#if CONFIG_CB4X4
+ if (bsize < BLOCK_8X8) {
+ extend_bsize = BLOCK_4X4;
+ ext_offset = mi_size_wide[BLOCK_8X8];
+ }
+#endif
+
+ wide_unit = mi_size_wide[extend_bsize];
+ high_unit = mi_size_high[extend_bsize];
+
+ mi_row_pred = mi_row + ((dir == 0) ? mi_height : -(mi_height + ext_offset));
+ mi_col_pred = mi_col;
+
+ for (j = 0; j < mi_height + ext_offset; j += high_unit)
+ for (i = 0; i < mi_width + ext_offset; i += wide_unit)
+ dec_predict_b_extend(pbi, xd, tile, block, mi_row, mi_col,
+ mi_row_pred + j, mi_col_pred + i, mi_row_top,
+ mi_col_top, dst_buf, dst_stride, top_bsize,
+ extend_bsize, b_sub8x8, 1);
+ } else if (dir == 2 || dir == 3) {
+ extend_bsize =
+ (mi_height == mi_size_high[BLOCK_8X8] || bsize < BLOCK_8X8 || yss < xss)
+ ? BLOCK_8X8
+ : BLOCK_8X16;
+#if CONFIG_CB4X4
+ if (bsize < BLOCK_8X8) {
+ extend_bsize = BLOCK_4X4;
+ ext_offset = mi_size_wide[BLOCK_8X8];
+ }
+#endif
+
+ wide_unit = mi_size_wide[extend_bsize];
+ high_unit = mi_size_high[extend_bsize];
+
+ mi_row_pred = mi_row;
+ mi_col_pred = mi_col + ((dir == 3) ? mi_width : -(mi_width + ext_offset));
+
+ for (j = 0; j < mi_height + ext_offset; j += high_unit)
+ for (i = 0; i < mi_width + ext_offset; i += wide_unit)
+ dec_predict_b_extend(pbi, xd, tile, block, mi_row, mi_col,
+ mi_row_pred + j, mi_col_pred + i, mi_row_top,
+ mi_col_top, dst_buf, dst_stride, top_bsize,
+ extend_bsize, b_sub8x8, 1);
+ } else {
+ extend_bsize = BLOCK_8X8;
+#if CONFIG_CB4X4
+ if (bsize < BLOCK_8X8) {
+ extend_bsize = BLOCK_4X4;
+ ext_offset = mi_size_wide[BLOCK_8X8];
+ }
+#endif
+ wide_unit = mi_size_wide[extend_bsize];
+ high_unit = mi_size_high[extend_bsize];
+
+ mi_row_pred = mi_row + ((dir == 4 || dir == 6) ? mi_height
+ : -(mi_height + ext_offset));
+ mi_col_pred =
+ mi_col + ((dir == 6 || dir == 7) ? mi_width : -(mi_width + ext_offset));
+
+ for (j = 0; j < mi_height + ext_offset; j += high_unit)
+ for (i = 0; i < mi_width + ext_offset; i += wide_unit)
+ dec_predict_b_extend(pbi, xd, tile, block, mi_row, mi_col,
+ mi_row_pred + j, mi_col_pred + i, mi_row_top,
+ mi_col_top, dst_buf, dst_stride, top_bsize,
+ extend_bsize, b_sub8x8, 1);
+ }
+}
+
+static void dec_extend_all(AV1Decoder *const pbi, MACROBLOCKD *const xd,
+ const TileInfo *const tile, int block,
+ BLOCK_SIZE bsize, BLOCK_SIZE top_bsize, int mi_row,
+ int mi_col, int mi_row_top, int mi_col_top,
+ uint8_t *dst_buf[3], int dst_stride[3]) {
+ for (int i = 0; i < 8; ++i) {
+ dec_extend_dir(pbi, xd, tile, block, bsize, top_bsize, mi_row, mi_col,
+ mi_row_top, mi_col_top, dst_buf, dst_stride, i);
+ }
+}
+
+static void dec_predict_sb_complex(AV1Decoder *const pbi, MACROBLOCKD *const xd,
+ const TileInfo *const tile, int mi_row,
+ int mi_col, int mi_row_top, int mi_col_top,
+ BLOCK_SIZE bsize, BLOCK_SIZE top_bsize,
+ uint8_t *dst_buf[3], int dst_stride[3]) {
+ const AV1_COMMON *const cm = &pbi->common;
+ const int hbs = mi_size_wide[bsize] / 2;
+ const PARTITION_TYPE partition = get_partition(cm, mi_row, mi_col, bsize);
+ const BLOCK_SIZE subsize = get_subsize(bsize, partition);
+#if CONFIG_EXT_PARTITION_TYPES
+ const BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT);
+#endif
+ int i;
+ const int mi_offset = mi_row * cm->mi_stride + mi_col;
+ uint8_t *dst_buf1[3], *dst_buf2[3], *dst_buf3[3];
+#if CONFIG_CB4X4
+ const int unify_bsize = 1;
+#else
+ const int unify_bsize = 0;
+#endif
+
+ DECLARE_ALIGNED(16, uint8_t, tmp_buf1[MAX_MB_PLANE * MAX_TX_SQUARE * 2]);
+ DECLARE_ALIGNED(16, uint8_t, tmp_buf2[MAX_MB_PLANE * MAX_TX_SQUARE * 2]);
+ DECLARE_ALIGNED(16, uint8_t, tmp_buf3[MAX_MB_PLANE * MAX_TX_SQUARE * 2]);
+ int dst_stride1[3] = { MAX_TX_SIZE, MAX_TX_SIZE, MAX_TX_SIZE };
+ int dst_stride2[3] = { MAX_TX_SIZE, MAX_TX_SIZE, MAX_TX_SIZE };
+ int dst_stride3[3] = { MAX_TX_SIZE, MAX_TX_SIZE, MAX_TX_SIZE };
+
+#if CONFIG_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ int len = sizeof(uint16_t);
+ dst_buf1[0] = CONVERT_TO_BYTEPTR(tmp_buf1);
+ dst_buf1[1] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_TX_SQUARE * len);
+ dst_buf1[2] = CONVERT_TO_BYTEPTR(tmp_buf1 + 2 * MAX_TX_SQUARE * len);
+ dst_buf2[0] = CONVERT_TO_BYTEPTR(tmp_buf2);
+ dst_buf2[1] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_TX_SQUARE * len);
+ dst_buf2[2] = CONVERT_TO_BYTEPTR(tmp_buf2 + 2 * MAX_TX_SQUARE * len);
+ dst_buf3[0] = CONVERT_TO_BYTEPTR(tmp_buf3);
+ dst_buf3[1] = CONVERT_TO_BYTEPTR(tmp_buf3 + MAX_TX_SQUARE * len);
+ dst_buf3[2] = CONVERT_TO_BYTEPTR(tmp_buf3 + 2 * MAX_TX_SQUARE * len);
+ } else {
+#endif
+ dst_buf1[0] = tmp_buf1;
+ dst_buf1[1] = tmp_buf1 + MAX_TX_SQUARE;
+ dst_buf1[2] = tmp_buf1 + 2 * MAX_TX_SQUARE;
+ dst_buf2[0] = tmp_buf2;
+ dst_buf2[1] = tmp_buf2 + MAX_TX_SQUARE;
+ dst_buf2[2] = tmp_buf2 + 2 * MAX_TX_SQUARE;
+ dst_buf3[0] = tmp_buf3;
+ dst_buf3[1] = tmp_buf3 + MAX_TX_SQUARE;
+ dst_buf3[2] = tmp_buf3 + 2 * MAX_TX_SQUARE;
+#if CONFIG_HIGHBITDEPTH
+ }
+#endif
+
+ if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
+
+ xd->mi = cm->mi_grid_visible + mi_offset;
+ xd->mi[0] = cm->mi + mi_offset;
+
+ for (i = 0; i < MAX_MB_PLANE; i++) {
+ xd->plane[i].dst.buf = dst_buf[i];
+ xd->plane[i].dst.stride = dst_stride[i];
+ }
+
+ switch (partition) {
+ case PARTITION_NONE:
+ assert(bsize < top_bsize);
+ dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col,
+ mi_row_top, mi_col_top, dst_buf, dst_stride,
+ top_bsize, bsize, 0, 0);
+ dec_extend_all(pbi, xd, tile, 0, bsize, top_bsize, mi_row, mi_col,
+ mi_row_top, mi_col_top, dst_buf, dst_stride);
+ break;
+ case PARTITION_HORZ:
+ if (bsize == BLOCK_8X8 && !unify_bsize) {
+ // For sub8x8, predict in 8x8 unit
+ // First half
+ dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col,
+ mi_row_top, mi_col_top, dst_buf, dst_stride,
+ top_bsize, BLOCK_8X8, 1, 0);
+ if (bsize < top_bsize)
+ dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
+ mi_row_top, mi_col_top, dst_buf, dst_stride);
+
+ // Second half
+ dec_predict_b_extend(pbi, xd, tile, 2, mi_row, mi_col, mi_row, mi_col,
+ mi_row_top, mi_col_top, dst_buf1, dst_stride1,
+ top_bsize, BLOCK_8X8, 1, 1);
+ if (bsize < top_bsize)
+ dec_extend_all(pbi, xd, tile, 2, subsize, top_bsize, mi_row, mi_col,
+ mi_row_top, mi_col_top, dst_buf1, dst_stride1);
+
+ // weighted average to smooth the boundary
+ xd->plane[0].dst.buf = dst_buf[0];
+ xd->plane[0].dst.stride = dst_stride[0];
+ av1_build_masked_inter_predictor_complex(
+ xd, dst_buf[0], dst_stride[0], dst_buf1[0], dst_stride1[0], mi_row,
+ mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ,
+ 0);
+ } else {
+ // First half
+ dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col,
+ mi_row_top, mi_col_top, dst_buf, dst_stride,
+ top_bsize, subsize, 0, 0);
+ if (bsize < top_bsize)
+ dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
+ mi_row_top, mi_col_top, dst_buf, dst_stride);
+ else
+ dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
+ mi_row_top, mi_col_top, dst_buf, dst_stride, 0);
+
+ if (mi_row + hbs < cm->mi_rows) {
+ // Second half
+ dec_predict_b_extend(pbi, xd, tile, 0, mi_row + hbs, mi_col,
+ mi_row + hbs, mi_col, mi_row_top, mi_col_top,
+ dst_buf1, dst_stride1, top_bsize, subsize, 0, 0);
+ if (bsize < top_bsize)
+ dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row + hbs,
+ mi_col, mi_row_top, mi_col_top, dst_buf1,
+ dst_stride1);
+ else
+ dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row + hbs,
+ mi_col, mi_row_top, mi_col_top, dst_buf1,
+ dst_stride1, 1);
+
+ // weighted average to smooth the boundary
+ for (i = 0; i < MAX_MB_PLANE; i++) {
+ xd->plane[i].dst.buf = dst_buf[i];
+ xd->plane[i].dst.stride = dst_stride[i];
+ av1_build_masked_inter_predictor_complex(
+ xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i],
+ mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
+ PARTITION_HORZ, i);
+ }
+ }
+ }
+ break;
+ case PARTITION_VERT:
+ if (bsize == BLOCK_8X8 && !unify_bsize) {
+ // First half
+ dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col,
+ mi_row_top, mi_col_top, dst_buf, dst_stride,
+ top_bsize, BLOCK_8X8, 1, 0);
+ if (bsize < top_bsize)
+ dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
+ mi_row_top, mi_col_top, dst_buf, dst_stride);
+
+ // Second half
+ dec_predict_b_extend(pbi, xd, tile, 1, mi_row, mi_col, mi_row, mi_col,
+ mi_row_top, mi_col_top, dst_buf1, dst_stride1,
+ top_bsize, BLOCK_8X8, 1, 1);
+ if (bsize < top_bsize)
+ dec_extend_all(pbi, xd, tile, 1, subsize, top_bsize, mi_row, mi_col,
+ mi_row_top, mi_col_top, dst_buf1, dst_stride1);
+
+ // Smooth
+ xd->plane[0].dst.buf = dst_buf[0];
+ xd->plane[0].dst.stride = dst_stride[0];
+ av1_build_masked_inter_predictor_complex(
+ xd, dst_buf[0], dst_stride[0], dst_buf1[0], dst_stride1[0], mi_row,
+ mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT,
+ 0);
+ } else {
+ // First half
+ dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col,
+ mi_row_top, mi_col_top, dst_buf, dst_stride,
+ top_bsize, subsize, 0, 0);
+ if (bsize < top_bsize)
+ dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
+ mi_row_top, mi_col_top, dst_buf, dst_stride);
+ else
+ dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
+ mi_row_top, mi_col_top, dst_buf, dst_stride, 3);
+
+ // Second half
+ if (mi_col + hbs < cm->mi_cols) {
+ dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col + hbs, mi_row,
+ mi_col + hbs, mi_row_top, mi_col_top, dst_buf1,
+ dst_stride1, top_bsize, subsize, 0, 0);
+ if (bsize < top_bsize)
+ dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row,
+ mi_col + hbs, mi_row_top, mi_col_top, dst_buf1,
+ dst_stride1);
+ else
+ dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row,
+ mi_col + hbs, mi_row_top, mi_col_top, dst_buf1,
+ dst_stride1, 2);
+
+ // Smooth
+ for (i = 0; i < MAX_MB_PLANE; i++) {
+ xd->plane[i].dst.buf = dst_buf[i];
+ xd->plane[i].dst.stride = dst_stride[i];
+ av1_build_masked_inter_predictor_complex(
+ xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i],
+ mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
+ PARTITION_VERT, i);
+ }
+ }
+ }
+ break;
+ case PARTITION_SPLIT:
+ if (bsize == BLOCK_8X8 && !unify_bsize) {
+ dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col,
+ mi_row_top, mi_col_top, dst_buf, dst_stride,
+ top_bsize, BLOCK_8X8, 1, 0);
+ dec_predict_b_extend(pbi, xd, tile, 1, mi_row, mi_col, mi_row, mi_col,
+ mi_row_top, mi_col_top, dst_buf1, dst_stride1,
+ top_bsize, BLOCK_8X8, 1, 1);
+ dec_predict_b_extend(pbi, xd, tile, 2, mi_row, mi_col, mi_row, mi_col,
+ mi_row_top, mi_col_top, dst_buf2, dst_stride2,
+ top_bsize, BLOCK_8X8, 1, 1);
+ dec_predict_b_extend(pbi, xd, tile, 3, mi_row, mi_col, mi_row, mi_col,
+ mi_row_top, mi_col_top, dst_buf3, dst_stride3,
+ top_bsize, BLOCK_8X8, 1, 1);
+ if (bsize < top_bsize) {
+ dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
+ mi_row_top, mi_col_top, dst_buf, dst_stride);
+ dec_extend_all(pbi, xd, tile, 1, subsize, top_bsize, mi_row, mi_col,
+ mi_row_top, mi_col_top, dst_buf1, dst_stride1);
+ dec_extend_all(pbi, xd, tile, 2, subsize, top_bsize, mi_row, mi_col,
+ mi_row_top, mi_col_top, dst_buf2, dst_stride2);
+ dec_extend_all(pbi, xd, tile, 3, subsize, top_bsize, mi_row, mi_col,
+ mi_row_top, mi_col_top, dst_buf3, dst_stride3);
+ }
+ } else {
+ dec_predict_sb_complex(pbi, xd, tile, mi_row, mi_col, mi_row_top,
+ mi_col_top, subsize, top_bsize, dst_buf,
+ dst_stride);
+ if (mi_row < cm->mi_rows && mi_col + hbs < cm->mi_cols)
+ dec_predict_sb_complex(pbi, xd, tile, mi_row, mi_col + hbs,
+ mi_row_top, mi_col_top, subsize, top_bsize,
+ dst_buf1, dst_stride1);
+ if (mi_row + hbs < cm->mi_rows && mi_col < cm->mi_cols)
+ dec_predict_sb_complex(pbi, xd, tile, mi_row + hbs, mi_col,
+ mi_row_top, mi_col_top, subsize, top_bsize,
+ dst_buf2, dst_stride2);
+ if (mi_row + hbs < cm->mi_rows && mi_col + hbs < cm->mi_cols)
+ dec_predict_sb_complex(pbi, xd, tile, mi_row + hbs, mi_col + hbs,
+ mi_row_top, mi_col_top, subsize, top_bsize,
+ dst_buf3, dst_stride3);
+ }
+ for (i = 0; i < MAX_MB_PLANE; i++) {
+#if !CONFIG_CB4X4
+ if (bsize == BLOCK_8X8 && i != 0)
+ continue; // Skip <4x4 chroma smoothing
+#endif
+ if (mi_row < cm->mi_rows && mi_col + hbs < cm->mi_cols) {
+ av1_build_masked_inter_predictor_complex(
+ xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i],
+ mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
+ PARTITION_VERT, i);
+ if (mi_row + hbs < cm->mi_rows) {
+ av1_build_masked_inter_predictor_complex(
+ xd, dst_buf2[i], dst_stride2[i], dst_buf3[i], dst_stride3[i],
+ mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
+ PARTITION_VERT, i);
+ av1_build_masked_inter_predictor_complex(
+ xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i],
+ mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
+ PARTITION_HORZ, i);
+ }
+ } else if (mi_row + hbs < cm->mi_rows && mi_col < cm->mi_cols) {
+ av1_build_masked_inter_predictor_complex(
+ xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i],
+ mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
+ PARTITION_HORZ, i);
+ }
+ }
+ break;
+#if CONFIG_EXT_PARTITION_TYPES
+ case PARTITION_HORZ_A:
+ dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col,
+ mi_row_top, mi_col_top, dst_buf, dst_stride,
+ top_bsize, bsize2, 0, 0);
+ dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row, mi_col,
+ mi_row_top, mi_col_top, dst_buf, dst_stride);
+
+ dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col + hbs, mi_row,
+ mi_col + hbs, mi_row_top, mi_col_top, dst_buf1,
+ dst_stride1, top_bsize, bsize2, 0, 0);
+ dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row, mi_col + hbs,
+ mi_row_top, mi_col_top, dst_buf1, dst_stride1);
+
+ dec_predict_b_extend(pbi, xd, tile, 0, mi_row + hbs, mi_col, mi_row + hbs,
+ mi_col, mi_row_top, mi_col_top, dst_buf2,
+ dst_stride2, top_bsize, subsize, 0, 0);
+ if (bsize < top_bsize)
+ dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row + hbs,
+ mi_col, mi_row_top, mi_col_top, dst_buf2, dst_stride2);
+ else
+ dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row + hbs,
+ mi_col, mi_row_top, mi_col_top, dst_buf2, dst_stride2,
+ 1);
+
+ for (i = 0; i < MAX_MB_PLANE; i++) {
+ xd->plane[i].dst.buf = dst_buf[i];
+ xd->plane[i].dst.stride = dst_stride[i];
+ av1_build_masked_inter_predictor_complex(
+ xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row,
+ mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT,
+ i);
+ }
+ for (i = 0; i < MAX_MB_PLANE; i++) {
+ av1_build_masked_inter_predictor_complex(
+ xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i], mi_row,
+ mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ,
+ i);
+ }
+ break;
+ case PARTITION_VERT_A:
+
+ dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col,
+ mi_row_top, mi_col_top, dst_buf, dst_stride,
+ top_bsize, bsize2, 0, 0);
+ dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row, mi_col,
+ mi_row_top, mi_col_top, dst_buf, dst_stride);
+
+ dec_predict_b_extend(pbi, xd, tile, 0, mi_row + hbs, mi_col, mi_row + hbs,
+ mi_col, mi_row_top, mi_col_top, dst_buf1,
+ dst_stride1, top_bsize, bsize2, 0, 0);
+ dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row + hbs, mi_col,
+ mi_row_top, mi_col_top, dst_buf1, dst_stride1);
+
+ dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col + hbs, mi_row,
+ mi_col + hbs, mi_row_top, mi_col_top, dst_buf2,
+ dst_stride2, top_bsize, subsize, 0, 0);
+ if (bsize < top_bsize)
+ dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row,
+ mi_col + hbs, mi_row_top, mi_col_top, dst_buf2,
+ dst_stride2);
+ else
+ dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row,
+ mi_col + hbs, mi_row_top, mi_col_top, dst_buf2,
+ dst_stride2, 2);
+
+ for (i = 0; i < MAX_MB_PLANE; i++) {
+ xd->plane[i].dst.buf = dst_buf[i];
+ xd->plane[i].dst.stride = dst_stride[i];
+ av1_build_masked_inter_predictor_complex(
+ xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row,
+ mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ,
+ i);
+ }
+ for (i = 0; i < MAX_MB_PLANE; i++) {
+ av1_build_masked_inter_predictor_complex(
+ xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i], mi_row,
+ mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT,
+ i);
+ }
+ break;
+ case PARTITION_HORZ_B:
+ dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col,
+ mi_row_top, mi_col_top, dst_buf, dst_stride,
+ top_bsize, subsize, 0, 0);
+ if (bsize < top_bsize)
+ dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
+ mi_row_top, mi_col_top, dst_buf, dst_stride);
+ else
+ dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
+ mi_row_top, mi_col_top, dst_buf, dst_stride, 0);
+
+ dec_predict_b_extend(pbi, xd, tile, 0, mi_row + hbs, mi_col, mi_row + hbs,
+ mi_col, mi_row_top, mi_col_top, dst_buf1,
+ dst_stride1, top_bsize, bsize2, 0, 0);
+ dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row + hbs, mi_col,
+ mi_row_top, mi_col_top, dst_buf1, dst_stride1);
+
+ dec_predict_b_extend(pbi, xd, tile, 0, mi_row + hbs, mi_col + hbs,
+ mi_row + hbs, mi_col + hbs, mi_row_top, mi_col_top,
+ dst_buf2, dst_stride2, top_bsize, bsize2, 0, 0);
+ dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row + hbs,
+ mi_col + hbs, mi_row_top, mi_col_top, dst_buf2,
+ dst_stride2);
+
+ for (i = 0; i < MAX_MB_PLANE; i++) {
+ xd->plane[i].dst.buf = dst_buf1[i];
+ xd->plane[i].dst.stride = dst_stride1[i];
+ av1_build_masked_inter_predictor_complex(
+ xd, dst_buf1[i], dst_stride1[i], dst_buf2[i], dst_stride2[i],
+ mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
+ PARTITION_VERT, i);
+ }
+ for (i = 0; i < MAX_MB_PLANE; i++) {
+ xd->plane[i].dst.buf = dst_buf[i];
+ xd->plane[i].dst.stride = dst_stride[i];
+ av1_build_masked_inter_predictor_complex(
+ xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row,
+ mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ,
+ i);
+ }
+ break;
+ case PARTITION_VERT_B:
+ dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col,
+ mi_row_top, mi_col_top, dst_buf, dst_stride,
+ top_bsize, subsize, 0, 0);
+ if (bsize < top_bsize)
+ dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
+ mi_row_top, mi_col_top, dst_buf, dst_stride);
+ else
+ dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
+ mi_row_top, mi_col_top, dst_buf, dst_stride, 3);
+
+ dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col + hbs, mi_row,
+ mi_col + hbs, mi_row_top, mi_col_top, dst_buf1,
+ dst_stride1, top_bsize, bsize2, 0, 0);
+ dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row, mi_col + hbs,
+ mi_row_top, mi_col_top, dst_buf1, dst_stride1);
+
+ dec_predict_b_extend(pbi, xd, tile, 0, mi_row + hbs, mi_col + hbs,
+ mi_row + hbs, mi_col + hbs, mi_row_top, mi_col_top,
+ dst_buf2, dst_stride2, top_bsize, bsize2, 0, 0);
+ dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row + hbs,
+ mi_col + hbs, mi_row_top, mi_col_top, dst_buf2,
+ dst_stride2);
+
+ for (i = 0; i < MAX_MB_PLANE; i++) {
+ xd->plane[i].dst.buf = dst_buf1[i];
+ xd->plane[i].dst.stride = dst_stride1[i];
+ av1_build_masked_inter_predictor_complex(
+ xd, dst_buf1[i], dst_stride1[i], dst_buf2[i], dst_stride2[i],
+ mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
+ PARTITION_HORZ, i);
+ }
+ for (i = 0; i < MAX_MB_PLANE; i++) {
+ xd->plane[i].dst.buf = dst_buf[i];
+ xd->plane[i].dst.stride = dst_stride[i];
+ av1_build_masked_inter_predictor_complex(
+ xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row,
+ mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT,
+ i);
+ }
+ break;
+#endif // CONFIG_EXT_PARTITION_TYPES
+ default: assert(0);
+ }
+}
+
+static void set_segment_id_supertx(const AV1_COMMON *const cm, int mi_row,
+ int mi_col, BLOCK_SIZE bsize) {
+ const struct segmentation *seg = &cm->seg;
+ const int miw = AOMMIN(mi_size_wide[bsize], cm->mi_cols - mi_col);
+ const int mih = AOMMIN(mi_size_high[bsize], cm->mi_rows - mi_row);
+ const int mi_offset = mi_row * cm->mi_stride + mi_col;
+ MODE_INFO **const mip = cm->mi_grid_visible + mi_offset;
+ int r, c;
+ int seg_id_supertx = MAX_SEGMENTS;
+
+ if (!seg->enabled) {
+ seg_id_supertx = 0;
+ } else {
+ // Find the minimum segment_id
+ for (r = 0; r < mih; r++)
+ for (c = 0; c < miw; c++)
+ seg_id_supertx =
+ AOMMIN(mip[r * cm->mi_stride + c]->mbmi.segment_id, seg_id_supertx);
+ assert(0 <= seg_id_supertx && seg_id_supertx < MAX_SEGMENTS);
+ }
+
+ // Assign the the segment_id back to segment_id_supertx
+ for (r = 0; r < mih; r++)
+ for (c = 0; c < miw; c++)
+ mip[r * cm->mi_stride + c]->mbmi.segment_id_supertx = seg_id_supertx;
+}
+#endif // CONFIG_SUPERTX
+
+static void decode_mbmi_block(AV1Decoder *const pbi, MACROBLOCKD *const xd,
+#if CONFIG_SUPERTX
+ int supertx_enabled,
+#endif // CONFIG_SUPERTX
+ int mi_row, int mi_col, aom_reader *r,
+#if CONFIG_EXT_PARTITION_TYPES
+ PARTITION_TYPE partition,
+#endif // CONFIG_EXT_PARTITION_TYPES
+ BLOCK_SIZE bsize) {
+ AV1_COMMON *const cm = &pbi->common;
+ const int bw = mi_size_wide[bsize];
+ const int bh = mi_size_high[bsize];
+ const int x_mis = AOMMIN(bw, cm->mi_cols - mi_col);
+ const int y_mis = AOMMIN(bh, cm->mi_rows - mi_row);
+
+#if CONFIG_ACCOUNTING
+ aom_accounting_set_context(&pbi->accounting, mi_col, mi_row);
+#endif
+#if CONFIG_SUPERTX
+ if (supertx_enabled) {
+ set_mb_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis, y_mis);
+ } else {
+ set_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis, y_mis);
+ }
+#if CONFIG_EXT_PARTITION_TYPES
+ xd->mi[0]->mbmi.partition = partition;
+#endif
+ av1_read_mode_info(pbi, xd, supertx_enabled, mi_row, mi_col, r, x_mis, y_mis);
+#else
+ set_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis, y_mis);
+#if CONFIG_EXT_PARTITION_TYPES
+ xd->mi[0]->mbmi.partition = partition;
+#endif
+ av1_read_mode_info(pbi, xd, mi_row, mi_col, r, x_mis, y_mis);
+#endif // CONFIG_SUPERTX
+
+ if (bsize >= BLOCK_8X8 && (cm->subsampling_x || cm->subsampling_y)) {
+ const BLOCK_SIZE uv_subsize =
+ ss_size_lookup[bsize][cm->subsampling_x][cm->subsampling_y];
+ if (uv_subsize == BLOCK_INVALID)
+ aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
+ "Invalid block size.");
+ }
+
+#if CONFIG_SUPERTX
+ xd->mi[0]->mbmi.segment_id_supertx = MAX_SEGMENTS;
+#endif // CONFIG_SUPERTX
+
+ int reader_corrupted_flag = aom_reader_has_error(r);
+ aom_merge_corrupted_flag(&xd->corrupted, reader_corrupted_flag);
+}
+
+static void decode_token_and_recon_block(AV1Decoder *const pbi,
+ MACROBLOCKD *const xd, int mi_row,
+ int mi_col, aom_reader *r,
+ BLOCK_SIZE bsize) {
+ AV1_COMMON *const cm = &pbi->common;
+ const int bw = mi_size_wide[bsize];
+ const int bh = mi_size_high[bsize];
+ const int x_mis = AOMMIN(bw, cm->mi_cols - mi_col);
+ const int y_mis = AOMMIN(bh, cm->mi_rows - mi_row);
+
+ set_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis, y_mis);
+ MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
+
+#if CONFIG_DELTA_Q
+ if (cm->delta_q_present_flag) {
+ int i;
+ for (i = 0; i < MAX_SEGMENTS; i++) {
+#if CONFIG_EXT_DELTA_Q
+ xd->plane[0].seg_dequant[i][0] =
+ av1_dc_quant(av1_get_qindex(&cm->seg, i, xd->current_qindex),
+ cm->y_dc_delta_q, cm->bit_depth);
+ xd->plane[0].seg_dequant[i][1] = av1_ac_quant(
+ av1_get_qindex(&cm->seg, i, xd->current_qindex), 0, cm->bit_depth);
+ xd->plane[1].seg_dequant[i][0] =
+ av1_dc_quant(av1_get_qindex(&cm->seg, i, xd->current_qindex),
+ cm->uv_dc_delta_q, cm->bit_depth);
+ xd->plane[1].seg_dequant[i][1] =
+ av1_ac_quant(av1_get_qindex(&cm->seg, i, xd->current_qindex),
+ cm->uv_ac_delta_q, cm->bit_depth);
+ xd->plane[2].seg_dequant[i][0] =
+ av1_dc_quant(av1_get_qindex(&cm->seg, i, xd->current_qindex),
+ cm->uv_dc_delta_q, cm->bit_depth);
+ xd->plane[2].seg_dequant[i][1] =
+ av1_ac_quant(av1_get_qindex(&cm->seg, i, xd->current_qindex),
+ cm->uv_ac_delta_q, cm->bit_depth);
+#else
+ xd->plane[0].seg_dequant[i][0] =
+ av1_dc_quant(xd->current_qindex, cm->y_dc_delta_q, cm->bit_depth);
+ xd->plane[0].seg_dequant[i][1] =
+ av1_ac_quant(xd->current_qindex, 0, cm->bit_depth);
+ xd->plane[1].seg_dequant[i][0] =
+ av1_dc_quant(xd->current_qindex, cm->uv_dc_delta_q, cm->bit_depth);
+ xd->plane[1].seg_dequant[i][1] =
+ av1_ac_quant(xd->current_qindex, cm->uv_ac_delta_q, cm->bit_depth);
+ xd->plane[2].seg_dequant[i][0] =
+ av1_dc_quant(xd->current_qindex, cm->uv_dc_delta_q, cm->bit_depth);
+ xd->plane[2].seg_dequant[i][1] =
+ av1_ac_quant(xd->current_qindex, cm->uv_ac_delta_q, cm->bit_depth);
+#endif
+ }
+ }
+#endif
+
+#if CONFIG_CB4X4
+ if (mbmi->skip) reset_skip_context(xd, bsize);
+#else
+ if (mbmi->skip) reset_skip_context(xd, AOMMAX(BLOCK_8X8, bsize));
+#endif
+
+#if CONFIG_COEF_INTERLEAVE
+ {
+ const struct macroblockd_plane *const pd_y = &xd->plane[0];
+ const struct macroblockd_plane *const pd_c = &xd->plane[1];
+ const TX_SIZE tx_log2_y = mbmi->tx_size;
+ const TX_SIZE tx_log2_c = get_uv_tx_size(mbmi, pd_c);
+ const int tx_sz_y = (1 << tx_log2_y);
+ const int tx_sz_c = (1 << tx_log2_c);
+ const int num_4x4_w_y = pd_y->n4_w;
+ const int num_4x4_h_y = pd_y->n4_h;
+ const int num_4x4_w_c = pd_c->n4_w;
+ const int num_4x4_h_c = pd_c->n4_h;
+ const int max_4x4_w_y = get_max_4x4_size(num_4x4_w_y, xd->mb_to_right_edge,
+ pd_y->subsampling_x);
+ const int max_4x4_h_y = get_max_4x4_size(num_4x4_h_y, xd->mb_to_bottom_edge,
+ pd_y->subsampling_y);
+ const int max_4x4_w_c = get_max_4x4_size(num_4x4_w_c, xd->mb_to_right_edge,
+ pd_c->subsampling_x);
+ const int max_4x4_h_c = get_max_4x4_size(num_4x4_h_c, xd->mb_to_bottom_edge,
+ pd_c->subsampling_y);
+
+ // The max_4x4_w/h may be smaller than tx_sz under some corner cases,
+ // i.e. when the SB is splitted by tile boundaries.
+ const int tu_num_w_y = (max_4x4_w_y + tx_sz_y - 1) / tx_sz_y;
+ const int tu_num_h_y = (max_4x4_h_y + tx_sz_y - 1) / tx_sz_y;
+ const int tu_num_w_c = (max_4x4_w_c + tx_sz_c - 1) / tx_sz_c;
+ const int tu_num_h_c = (max_4x4_h_c + tx_sz_c - 1) / tx_sz_c;
+ const int tu_num_c = tu_num_w_c * tu_num_h_c;
+
+ if (!is_inter_block(mbmi)) {
+ int tu_idx_c = 0;
+ int row_y, col_y, row_c, col_c;
+ int plane;
+
+#if CONFIG_PALETTE
+ for (plane = 0; plane <= 1; ++plane) {
+ if (mbmi->palette_mode_info.palette_size[plane])
+ av1_decode_palette_tokens(xd, plane, r);
+ }
+#endif
+
+ for (row_y = 0; row_y < tu_num_h_y; row_y++) {
+ for (col_y = 0; col_y < tu_num_w_y; col_y++) {
+ // luma
+ predict_and_reconstruct_intra_block(
+ cm, xd, r, mbmi, 0, row_y * tx_sz_y, col_y * tx_sz_y, tx_log2_y);
+ // chroma
+ if (tu_idx_c < tu_num_c) {
+ row_c = (tu_idx_c / tu_num_w_c) * tx_sz_c;
+ col_c = (tu_idx_c % tu_num_w_c) * tx_sz_c;
+ predict_and_reconstruct_intra_block(cm, xd, r, mbmi, 1, row_c,
+ col_c, tx_log2_c);
+ predict_and_reconstruct_intra_block(cm, xd, r, mbmi, 2, row_c,
+ col_c, tx_log2_c);
+ tu_idx_c++;
+ }
+ }
+ }
+
+ // In 422 case, it's possilbe that Chroma has more TUs than Luma
+ while (tu_idx_c < tu_num_c) {
+ row_c = (tu_idx_c / tu_num_w_c) * tx_sz_c;
+ col_c = (tu_idx_c % tu_num_w_c) * tx_sz_c;
+ predict_and_reconstruct_intra_block(cm, xd, r, mbmi, 1, row_c, col_c,
+ tx_log2_c);
+ predict_and_reconstruct_intra_block(cm, xd, r, mbmi, 2, row_c, col_c,
+ tx_log2_c);
+ tu_idx_c++;
+ }
+ } else {
+ // Prediction
+ av1_build_inter_predictors_sb(xd, mi_row, mi_col, NULL,
+ AOMMAX(bsize, BLOCK_8X8));
+
+ // Reconstruction
+ if (!mbmi->skip) {
+ int eobtotal = 0;
+ int tu_idx_c = 0;
+ int row_y, col_y, row_c, col_c;
+
+ for (row_y = 0; row_y < tu_num_h_y; row_y++) {
+ for (col_y = 0; col_y < tu_num_w_y; col_y++) {
+ // luma
+ eobtotal += reconstruct_inter_block(cm, xd, r, mbmi->segment_id, 0,
+ row_y * tx_sz_y,
+ col_y * tx_sz_y, tx_log2_y);
+ // chroma
+ if (tu_idx_c < tu_num_c) {
+ row_c = (tu_idx_c / tu_num_w_c) * tx_sz_c;
+ col_c = (tu_idx_c % tu_num_w_c) * tx_sz_c;
+ eobtotal += reconstruct_inter_block(cm, xd, r, mbmi->segment_id,
+ 1, row_c, col_c, tx_log2_c);
+ eobtotal += reconstruct_inter_block(cm, xd, r, mbmi->segment_id,
+ 2, row_c, col_c, tx_log2_c);
+ tu_idx_c++;
+ }
+ }
+ }
+
+ // In 422 case, it's possilbe that Chroma has more TUs than Luma
+ while (tu_idx_c < tu_num_c) {
+ row_c = (tu_idx_c / tu_num_w_c) * tx_sz_c;
+ col_c = (tu_idx_c % tu_num_w_c) * tx_sz_c;
+ eobtotal += reconstruct_inter_block(cm, xd, r, mbmi->segment_id, 1,
+ row_c, col_c, tx_log2_c);
+ eobtotal += reconstruct_inter_block(cm, xd, r, mbmi->segment_id, 2,
+ row_c, col_c, tx_log2_c);
+ tu_idx_c++;
+ }
+
+ // TODO(CONFIG_COEF_INTERLEAVE owners): bring eob == 0 corner case
+ // into line with the defaut configuration
+ if (bsize >= BLOCK_8X8 && eobtotal == 0) mbmi->skip = 1;
+ }
+ }
+ }
+#else // CONFIG_COEF_INTERLEAVE
+ if (!is_inter_block(mbmi)) {
+ int plane;
+#if CONFIG_PALETTE
+ for (plane = 0; plane <= 1; ++plane) {
+ if (mbmi->palette_mode_info.palette_size[plane])
+ av1_decode_palette_tokens(xd, plane, r);
+ }
+#endif // CONFIG_PALETTE
+ for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
+ const struct macroblockd_plane *const pd = &xd->plane[plane];
+ const TX_SIZE tx_size = get_tx_size(plane, xd);
+ const int stepr = tx_size_high_unit[tx_size];
+ const int stepc = tx_size_wide_unit[tx_size];
+#if CONFIG_CB4X4
+#if CONFIG_CHROMA_2X2
+ const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
+#else
+ const BLOCK_SIZE plane_bsize =
+ AOMMAX(BLOCK_4X4, get_plane_block_size(bsize, pd));
+#endif // CONFIG_CHROMA_2X2
+#else
+ const BLOCK_SIZE plane_bsize =
+ get_plane_block_size(AOMMAX(BLOCK_8X8, bsize), pd);
+#endif
+ int row, col;
+ const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
+ const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
+#if CONFIG_CB4X4
+ if (!is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x,
+ pd->subsampling_y))
+ continue;
+#endif
+
+ for (row = 0; row < max_blocks_high; row += stepr)
+ for (col = 0; col < max_blocks_wide; col += stepc)
+ predict_and_reconstruct_intra_block(cm, xd, r, mbmi, plane, row, col,
+ tx_size);
+ }
+ } else {
+ int ref;
+
+ for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) {
+ const MV_REFERENCE_FRAME frame = mbmi->ref_frame[ref];
+ if (frame < LAST_FRAME) {
+#if CONFIG_INTRABC
+ assert(is_intrabc_block(mbmi));
+ assert(frame == INTRA_FRAME);
+ assert(ref == 0);
+#else
+ assert(0);
+#endif // CONFIG_INTRABC
+ } else {
+ RefBuffer *ref_buf = &cm->frame_refs[frame - LAST_FRAME];
+
+ xd->block_refs[ref] = ref_buf;
+ if ((!av1_is_valid_scale(&ref_buf->sf)))
+ aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM,
+ "Reference frame has invalid dimensions");
+ av1_setup_pre_planes(xd, ref, ref_buf->buf, mi_row, mi_col,
+ &ref_buf->sf);
+ }
+ }
+
+#if CONFIG_CB4X4
+ av1_build_inter_predictors_sb(xd, mi_row, mi_col, NULL, bsize);
+#else
+ av1_build_inter_predictors_sb(xd, mi_row, mi_col, NULL,
+ AOMMAX(bsize, BLOCK_8X8));
+#endif
+
+#if CONFIG_MOTION_VAR
+ if (mbmi->motion_mode == OBMC_CAUSAL) {
+#if CONFIG_NCOBMC
+ av1_build_ncobmc_inter_predictors_sb(cm, xd, mi_row, mi_col);
+#else
+ av1_build_obmc_inter_predictors_sb(cm, xd, mi_row, mi_col);
+#endif
+ }
+#endif // CONFIG_MOTION_VAR
+
+ // Reconstruction
+ if (!mbmi->skip) {
+ int eobtotal = 0;
+ int plane;
+
+ for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
+ const struct macroblockd_plane *const pd = &xd->plane[plane];
+#if CONFIG_CB4X4
+#if CONFIG_CHROMA_2X2
+ const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
+#else
+ const BLOCK_SIZE plane_bsize =
+ AOMMAX(BLOCK_4X4, get_plane_block_size(bsize, pd));
+#endif // CONFIG_CHROMA_2X2
+#else
+ const BLOCK_SIZE plane_bsize =
+ get_plane_block_size(AOMMAX(BLOCK_8X8, bsize), pd);
+#endif
+ const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
+ const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
+ int row, col;
+
+#if CONFIG_CB4X4
+ if (!is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x,
+ pd->subsampling_y))
+ continue;
+#endif
+
+#if CONFIG_VAR_TX
+ const TX_SIZE max_tx_size = get_vartx_max_txsize(mbmi, plane_bsize);
+ const int bh_var_tx = tx_size_high_unit[max_tx_size];
+ const int bw_var_tx = tx_size_wide_unit[max_tx_size];
+ for (row = 0; row < max_blocks_high; row += bh_var_tx)
+ for (col = 0; col < max_blocks_wide; col += bw_var_tx)
+ decode_reconstruct_tx(cm, xd, r, mbmi, plane, plane_bsize, row, col,
+ max_tx_size, &eobtotal);
+#else
+ const TX_SIZE tx_size = get_tx_size(plane, xd);
+ const int stepr = tx_size_high_unit[tx_size];
+ const int stepc = tx_size_wide_unit[tx_size];
+ for (row = 0; row < max_blocks_high; row += stepr)
+ for (col = 0; col < max_blocks_wide; col += stepc)
+ eobtotal += reconstruct_inter_block(cm, xd, r, mbmi->segment_id,
+ plane, row, col, tx_size);
+#endif
+ }
+ }
+ }
+#endif // CONFIG_COEF_INTERLEAVE
+
+ int reader_corrupted_flag = aom_reader_has_error(r);
+ aom_merge_corrupted_flag(&xd->corrupted, reader_corrupted_flag);
+}
+
+#if CONFIG_NCOBMC && CONFIG_MOTION_VAR
+static void detoken_and_recon_sb(AV1Decoder *const pbi, MACROBLOCKD *const xd,
+ int mi_row, int mi_col, aom_reader *r,
+ BLOCK_SIZE bsize) {
+ AV1_COMMON *const cm = &pbi->common;
+ const int hbs = mi_size_wide[bsize] >> 1;
+#if CONFIG_CB4X4
+ const int unify_bsize = 1;
+#else
+ const int unify_bsize = 0;
+#endif
+#if CONFIG_EXT_PARTITION_TYPES
+ BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT);
+#endif
+ PARTITION_TYPE partition;
+ BLOCK_SIZE subsize;
+ const int has_rows = (mi_row + hbs) < cm->mi_rows;
+ const int has_cols = (mi_col + hbs) < cm->mi_cols;
+
+ if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
+
+ partition = get_partition(cm, mi_row, mi_col, bsize);
+ subsize = subsize_lookup[partition][bsize];
+
+ if (!hbs && !unify_bsize) {
+ xd->bmode_blocks_wl = 1 >> !!(partition & PARTITION_VERT);
+ xd->bmode_blocks_hl = 1 >> !!(partition & PARTITION_HORZ);
+ decode_token_and_recon_block(pbi, xd, mi_row, mi_col, r, subsize);
+ } else {
+ switch (partition) {
+ case PARTITION_NONE:
+ decode_token_and_recon_block(pbi, xd, mi_row, mi_col, r, bsize);
+ break;
+ case PARTITION_HORZ:
+ decode_token_and_recon_block(pbi, xd, mi_row, mi_col, r, subsize);
+ if (has_rows)
+ decode_token_and_recon_block(pbi, xd, mi_row + hbs, mi_col, r,
+ subsize);
+ break;
+ case PARTITION_VERT:
+ decode_token_and_recon_block(pbi, xd, mi_row, mi_col, r, subsize);
+ if (has_cols)
+ decode_token_and_recon_block(pbi, xd, mi_row, mi_col + hbs, r,
+ subsize);
+ break;
+ case PARTITION_SPLIT:
+ detoken_and_recon_sb(pbi, xd, mi_row, mi_col, r, subsize);
+ detoken_and_recon_sb(pbi, xd, mi_row, mi_col + hbs, r, subsize);
+ detoken_and_recon_sb(pbi, xd, mi_row + hbs, mi_col, r, subsize);
+ detoken_and_recon_sb(pbi, xd, mi_row + hbs, mi_col + hbs, r, subsize);
+ break;
+#if CONFIG_EXT_PARTITION_TYPES
+ case PARTITION_HORZ_A:
+ decode_token_and_recon_block(pbi, xd, mi_row, mi_col, r, bsize2);
+ decode_token_and_recon_block(pbi, xd, mi_row, mi_col + hbs, r, bsize2);
+ decode_token_and_recon_block(pbi, xd, mi_row + hbs, mi_col, r, subsize);
+ break;
+ case PARTITION_HORZ_B:
+ decode_token_and_recon_block(pbi, xd, mi_row, mi_col, r, subsize);
+ decode_token_and_recon_block(pbi, xd, mi_row + hbs, mi_col, r, bsize2);
+ decode_token_and_recon_block(pbi, xd, mi_row + hbs, mi_col + hbs, r,
+ bsize2);
+ break;
+ case PARTITION_VERT_A:
+ decode_token_and_recon_block(pbi, xd, mi_row, mi_col, r, bsize2);
+ decode_token_and_recon_block(pbi, xd, mi_row + hbs, mi_col, r, bsize2);
+ decode_token_and_recon_block(pbi, xd, mi_row, mi_col + hbs, r, subsize);
+ break;
+ case PARTITION_VERT_B:
+ decode_token_and_recon_block(pbi, xd, mi_row, mi_col, r, subsize);
+ decode_token_and_recon_block(pbi, xd, mi_row, mi_col + hbs, r, bsize2);
+ decode_token_and_recon_block(pbi, xd, mi_row + hbs, mi_col + hbs, r,
+ bsize2);
+ break;
+#endif
+ default: assert(0 && "Invalid partition type");
+ }
+ }
+}
+#endif
+
+static void decode_block(AV1Decoder *const pbi, MACROBLOCKD *const xd,
+#if CONFIG_SUPERTX
+ int supertx_enabled,
+#endif // CONFIG_SUPERTX
+ int mi_row, int mi_col, aom_reader *r,
+#if CONFIG_EXT_PARTITION_TYPES
+ PARTITION_TYPE partition,
+#endif // CONFIG_EXT_PARTITION_TYPES
+ BLOCK_SIZE bsize) {
+ decode_mbmi_block(pbi, xd,
+#if CONFIG_SUPERTX
+ supertx_enabled,
+#endif
+ mi_row, mi_col, r,
+#if CONFIG_EXT_PARTITION_TYPES
+ partition,
+#endif
+ bsize);
+#if !(CONFIG_MOTION_VAR && CONFIG_NCOBMC)
+#if CONFIG_SUPERTX
+ if (!supertx_enabled)
+#endif // CONFIG_SUPERTX
+ decode_token_and_recon_block(pbi, xd, mi_row, mi_col, r, bsize);
+#endif
+}
+
+static PARTITION_TYPE read_partition(AV1_COMMON *cm, MACROBLOCKD *xd,
+ int mi_row, int mi_col, aom_reader *r,
+ int has_rows, int has_cols,
+ BLOCK_SIZE bsize) {
+#if CONFIG_UNPOISON_PARTITION_CTX
+ const int ctx =
+ partition_plane_context(xd, mi_row, mi_col, has_rows, has_cols, bsize);
+ const aom_prob *const probs =
+ ctx < PARTITION_CONTEXTS ? cm->fc->partition_prob[ctx] : NULL;
+ FRAME_COUNTS *const counts = ctx < PARTITION_CONTEXTS ? xd->counts : NULL;
+#else
+ const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
+ const aom_prob *const probs = cm->fc->partition_prob[ctx];
+ FRAME_COUNTS *const counts = xd->counts;
+#endif
+ PARTITION_TYPE p;
+#if CONFIG_EC_ADAPT
+ FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
+ (void)cm;
+#elif CONFIG_EC_MULTISYMBOL
+ FRAME_CONTEXT *ec_ctx = cm->fc;
+#endif
+
+#if CONFIG_EC_MULTISYMBOL
+ aom_cdf_prob *partition_cdf = (ctx >= 0) ? ec_ctx->partition_cdf[ctx] : NULL;
+#endif
+
+ if (has_rows && has_cols)
+#if CONFIG_EXT_PARTITION_TYPES
+ if (bsize <= BLOCK_8X8)
+#if CONFIG_EC_MULTISYMBOL
+ p = (PARTITION_TYPE)aom_read_symbol(r, partition_cdf, PARTITION_TYPES,
+ ACCT_STR);
+#else
+ p = (PARTITION_TYPE)aom_read_tree(r, av1_partition_tree, probs, ACCT_STR);
+#endif
+ else
+#if CONFIG_EC_MULTISYMBOL
+ p = (PARTITION_TYPE)aom_read_symbol(r, partition_cdf, EXT_PARTITION_TYPES,
+ ACCT_STR);
+#else
+ p = (PARTITION_TYPE)aom_read_tree(r, av1_ext_partition_tree, probs,
+ ACCT_STR);
+#endif
+#else
+#if CONFIG_EC_MULTISYMBOL
+ p = (PARTITION_TYPE)aom_read_symbol(r, partition_cdf, PARTITION_TYPES,
+ ACCT_STR);
+#else
+ p = (PARTITION_TYPE)aom_read_tree(r, av1_partition_tree, probs, ACCT_STR);
+#endif
+#endif // CONFIG_EXT_PARTITION_TYPES
+ else if (!has_rows && has_cols)
+ p = aom_read(r, probs[1], ACCT_STR) ? PARTITION_SPLIT : PARTITION_HORZ;
+ else if (has_rows && !has_cols)
+ p = aom_read(r, probs[2], ACCT_STR) ? PARTITION_SPLIT : PARTITION_VERT;
+ else
+ p = PARTITION_SPLIT;
+
+ if (counts) ++counts->partition[ctx][p];
+
+ return p;
+}
+
+#if CONFIG_SUPERTX
+static int read_skip(AV1_COMMON *cm, const MACROBLOCKD *xd, int segment_id,
+ aom_reader *r) {
+ if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
+ return 1;
+ } else {
+ const int ctx = av1_get_skip_context(xd);
+ const int skip = aom_read(r, cm->fc->skip_probs[ctx], ACCT_STR);
+ FRAME_COUNTS *counts = xd->counts;
+ if (counts) ++counts->skip[ctx][skip];
+ return skip;
+ }
+}
+#endif // CONFIG_SUPERTX
+
+// TODO(slavarnway): eliminate bsize and subsize in future commits
+static void decode_partition(AV1Decoder *const pbi, MACROBLOCKD *const xd,
+#if CONFIG_SUPERTX
+ int supertx_enabled,
+#endif
+ int mi_row, int mi_col, aom_reader *r,
+ BLOCK_SIZE bsize, int n4x4_l2) {
+ AV1_COMMON *const cm = &pbi->common;
+ const int n8x8_l2 = n4x4_l2 - 1;
+ const int num_8x8_wh = mi_size_wide[bsize];
+ const int hbs = num_8x8_wh >> 1;
+#if CONFIG_CB4X4
+ const int unify_bsize = 1;
+#else
+ const int unify_bsize = 0;
+#endif
+ PARTITION_TYPE partition;
+ BLOCK_SIZE subsize;
+#if CONFIG_EXT_PARTITION_TYPES
+ BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT);
+#endif
+ const int has_rows = (mi_row + hbs) < cm->mi_rows;
+ const int has_cols = (mi_col + hbs) < cm->mi_cols;
+#if CONFIG_SUPERTX
+ const int read_token = !supertx_enabled;
+ int skip = 0;
+ TX_SIZE supertx_size = max_txsize_lookup[bsize];
+ const TileInfo *const tile = &xd->tile;
+ int txfm = DCT_DCT;
+#endif // CONFIG_SUPERTX
+
+ if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
+
+ partition = (bsize < BLOCK_8X8) ? PARTITION_NONE
+ : read_partition(cm, xd, mi_row, mi_col, r,
+ has_rows, has_cols, bsize);
+ subsize = subsize_lookup[partition][bsize]; // get_subsize(bsize, partition);
+
+#if CONFIG_PVQ
+ assert(partition < PARTITION_TYPES);
+ assert(subsize < BLOCK_SIZES);
+#endif
+#if CONFIG_SUPERTX
+ if (!frame_is_intra_only(cm) && partition != PARTITION_NONE &&
+ bsize <= MAX_SUPERTX_BLOCK_SIZE && !supertx_enabled && !xd->lossless[0]) {
+ const int supertx_context = partition_supertx_context_lookup[partition];
+ supertx_enabled = aom_read(
+ r, cm->fc->supertx_prob[supertx_context][supertx_size], ACCT_STR);
+ if (xd->counts)
+ xd->counts->supertx[supertx_context][supertx_size][supertx_enabled]++;
+#if CONFIG_VAR_TX
+ if (supertx_enabled) xd->supertx_size = supertx_size;
+#endif
+ }
+#endif // CONFIG_SUPERTX
+ if (!hbs && !unify_bsize) {
+ // calculate bmode block dimensions (log 2)
+ xd->bmode_blocks_wl = 1 >> !!(partition & PARTITION_VERT);
+ xd->bmode_blocks_hl = 1 >> !!(partition & PARTITION_HORZ);
+ decode_block(pbi, xd,
+#if CONFIG_SUPERTX
+ supertx_enabled,
+#endif // CONFIG_SUPERTX
+ mi_row, mi_col, r,
+#if CONFIG_EXT_PARTITION_TYPES
+ partition,
+#endif // CONFIG_EXT_PARTITION_TYPES
+ subsize);
+ } else {
+ switch (partition) {
+ case PARTITION_NONE:
+ decode_block(pbi, xd,
+#if CONFIG_SUPERTX
+ supertx_enabled,
+#endif // CONFIG_SUPERTX
+ mi_row, mi_col, r,
+#if CONFIG_EXT_PARTITION_TYPES
+ partition,
+#endif // CONFIG_EXT_PARTITION_TYPES
+ subsize);
+ break;
+ case PARTITION_HORZ:
+ decode_block(pbi, xd,
+#if CONFIG_SUPERTX
+ supertx_enabled,
+#endif // CONFIG_SUPERTX
+ mi_row, mi_col, r,
+#if CONFIG_EXT_PARTITION_TYPES
+ partition,
+#endif // CONFIG_EXT_PARTITION_TYPES
+ subsize);
+ if (has_rows)
+ decode_block(pbi, xd,
+#if CONFIG_SUPERTX
+ supertx_enabled,
+#endif // CONFIG_SUPERTX
+ mi_row + hbs, mi_col, r,
+#if CONFIG_EXT_PARTITION_TYPES
+ partition,
+#endif // CONFIG_EXT_PARTITION_TYPES
+ subsize);
+ break;
+ case PARTITION_VERT:
+ decode_block(pbi, xd,
+#if CONFIG_SUPERTX
+ supertx_enabled,
+#endif // CONFIG_SUPERTX
+ mi_row, mi_col, r,
+#if CONFIG_EXT_PARTITION_TYPES
+ partition,
+#endif // CONFIG_EXT_PARTITION_TYPES
+ subsize);
+ if (has_cols)
+ decode_block(pbi, xd,
+#if CONFIG_SUPERTX
+ supertx_enabled,
+#endif // CONFIG_SUPERTX
+ mi_row, mi_col + hbs, r,
+#if CONFIG_EXT_PARTITION_TYPES
+ partition,
+#endif // CONFIG_EXT_PARTITION_TYPES
+ subsize);
+ break;
+ case PARTITION_SPLIT:
+ decode_partition(pbi, xd,
+#if CONFIG_SUPERTX
+ supertx_enabled,
+#endif // CONFIG_SUPERTX
+ mi_row, mi_col, r, subsize, n8x8_l2);
+ decode_partition(pbi, xd,
+#if CONFIG_SUPERTX
+ supertx_enabled,
+#endif // CONFIG_SUPERTX
+ mi_row, mi_col + hbs, r, subsize, n8x8_l2);
+ decode_partition(pbi, xd,
+#if CONFIG_SUPERTX
+ supertx_enabled,
+#endif // CONFIG_SUPERTX
+ mi_row + hbs, mi_col, r, subsize, n8x8_l2);
+ decode_partition(pbi, xd,
+#if CONFIG_SUPERTX
+ supertx_enabled,
+#endif // CONFIG_SUPERTX
+ mi_row + hbs, mi_col + hbs, r, subsize, n8x8_l2);
+ break;
+#if CONFIG_EXT_PARTITION_TYPES
+ case PARTITION_HORZ_A:
+ decode_block(pbi, xd,
+#if CONFIG_SUPERTX
+ supertx_enabled,
+#endif
+ mi_row, mi_col, r, partition, bsize2);
+ decode_block(pbi, xd,
+#if CONFIG_SUPERTX
+ supertx_enabled,
+#endif
+ mi_row, mi_col + hbs, r, partition, bsize2);
+ decode_block(pbi, xd,
+#if CONFIG_SUPERTX
+ supertx_enabled,
+#endif
+ mi_row + hbs, mi_col, r, partition, subsize);
+ break;
+ case PARTITION_HORZ_B:
+ decode_block(pbi, xd,
+#if CONFIG_SUPERTX
+ supertx_enabled,
+#endif
+ mi_row, mi_col, r, partition, subsize);
+ decode_block(pbi, xd,
+#if CONFIG_SUPERTX
+ supertx_enabled,
+#endif
+ mi_row + hbs, mi_col, r, partition, bsize2);
+ decode_block(pbi, xd,
+#if CONFIG_SUPERTX
+ supertx_enabled,
+#endif
+ mi_row + hbs, mi_col + hbs, r, partition, bsize2);
+ break;
+ case PARTITION_VERT_A:
+ decode_block(pbi, xd,
+#if CONFIG_SUPERTX
+ supertx_enabled,
+#endif
+ mi_row, mi_col, r, partition, bsize2);
+ decode_block(pbi, xd,
+#if CONFIG_SUPERTX
+ supertx_enabled,
+#endif
+ mi_row + hbs, mi_col, r, partition, bsize2);
+ decode_block(pbi, xd,
+#if CONFIG_SUPERTX
+ supertx_enabled,
+#endif
+ mi_row, mi_col + hbs, r, partition, subsize);
+ break;
+ case PARTITION_VERT_B:
+ decode_block(pbi, xd,
+#if CONFIG_SUPERTX
+ supertx_enabled,
+#endif
+ mi_row, mi_col, r, partition, subsize);
+ decode_block(pbi, xd,
+#if CONFIG_SUPERTX
+ supertx_enabled,
+#endif
+ mi_row, mi_col + hbs, r, partition, bsize2);
+ decode_block(pbi, xd,
+#if CONFIG_SUPERTX
+ supertx_enabled,
+#endif
+ mi_row + hbs, mi_col + hbs, r, partition, bsize2);
+ break;
+#endif
+ default: assert(0 && "Invalid partition type");
+ }
+ }
+
+#if CONFIG_SUPERTX
+ if (supertx_enabled && read_token) {
+ uint8_t *dst_buf[3];
+ int dst_stride[3], i;
+ int offset = mi_row * cm->mi_stride + mi_col;
+
+ set_segment_id_supertx(cm, mi_row, mi_col, bsize);
+
+#if CONFIG_DELTA_Q
+ if (cm->delta_q_present_flag) {
+ for (i = 0; i < MAX_SEGMENTS; i++) {
+ xd->plane[0].seg_dequant[i][0] =
+ av1_dc_quant(xd->current_qindex, cm->y_dc_delta_q, cm->bit_depth);
+ xd->plane[0].seg_dequant[i][1] =
+ av1_ac_quant(xd->current_qindex, 0, cm->bit_depth);
+ xd->plane[1].seg_dequant[i][0] =
+ av1_dc_quant(xd->current_qindex, cm->uv_dc_delta_q, cm->bit_depth);
+ xd->plane[1].seg_dequant[i][1] =
+ av1_ac_quant(xd->current_qindex, cm->uv_ac_delta_q, cm->bit_depth);
+ xd->plane[2].seg_dequant[i][0] =
+ av1_dc_quant(xd->current_qindex, cm->uv_dc_delta_q, cm->bit_depth);
+ xd->plane[2].seg_dequant[i][1] =
+ av1_ac_quant(xd->current_qindex, cm->uv_ac_delta_q, cm->bit_depth);
+ }
+ }
+#endif
+
+ xd->mi = cm->mi_grid_visible + offset;
+ xd->mi[0] = cm->mi + offset;
+ set_mi_row_col(xd, tile, mi_row, mi_size_high[bsize], mi_col,
+ mi_size_wide[bsize],
+#if CONFIG_DEPENDENT_HORZTILES
+ cm->dependent_horz_tiles,
+#endif // CONFIG_DEPENDENT_HORZTILES
+ cm->mi_rows, cm->mi_cols);
+ set_skip_context(xd, mi_row, mi_col);
+ skip = read_skip(cm, xd, xd->mi[0]->mbmi.segment_id_supertx, r);
+ if (skip) {
+ reset_skip_context(xd, bsize);
+ } else {
+#if CONFIG_EXT_TX
+ if (get_ext_tx_types(supertx_size, bsize, 1, cm->reduced_tx_set_used) >
+ 1) {
+ const int eset =
+ get_ext_tx_set(supertx_size, bsize, 1, cm->reduced_tx_set_used);
+ if (eset > 0) {
+ txfm = aom_read_tree(r, av1_ext_tx_inter_tree[eset],
+ cm->fc->inter_ext_tx_prob[eset][supertx_size],
+ ACCT_STR);
+ if (xd->counts) ++xd->counts->inter_ext_tx[eset][supertx_size][txfm];
+ }
+ }
+#else
+ if (supertx_size < TX_32X32) {
+ txfm = aom_read_tree(r, av1_ext_tx_tree,
+ cm->fc->inter_ext_tx_prob[supertx_size], ACCT_STR);
+ if (xd->counts) ++xd->counts->inter_ext_tx[supertx_size][txfm];
+ }
+#endif // CONFIG_EXT_TX
+ }
+
+ av1_setup_dst_planes(xd->plane, bsize, get_frame_new_buffer(cm), mi_row,
+ mi_col);
+ for (i = 0; i < MAX_MB_PLANE; i++) {
+ dst_buf[i] = xd->plane[i].dst.buf;
+ dst_stride[i] = xd->plane[i].dst.stride;
+ }
+ dec_predict_sb_complex(pbi, xd, tile, mi_row, mi_col, mi_row, mi_col, bsize,
+ bsize, dst_buf, dst_stride);
+
+ if (!skip) {
+ int eobtotal = 0;
+ MB_MODE_INFO *mbmi;
+ set_offsets_topblock(cm, xd, tile, bsize, mi_row, mi_col);
+ mbmi = &xd->mi[0]->mbmi;
+ mbmi->tx_type = txfm;
+ assert(mbmi->segment_id_supertx != MAX_SEGMENTS);
+ for (i = 0; i < MAX_MB_PLANE; ++i) {
+ const struct macroblockd_plane *const pd = &xd->plane[i];
+ int row, col;
+ const TX_SIZE tx_size = get_tx_size(i, xd);
+ const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
+ const int stepr = tx_size_high_unit[tx_size];
+ const int stepc = tx_size_wide_unit[tx_size];
+ const int max_blocks_wide = max_block_wide(xd, plane_bsize, i);
+ const int max_blocks_high = max_block_high(xd, plane_bsize, i);
+
+ for (row = 0; row < max_blocks_high; row += stepr)
+ for (col = 0; col < max_blocks_wide; col += stepc)
+ eobtotal += reconstruct_inter_block(
+ cm, xd, r, mbmi->segment_id_supertx, i, row, col, tx_size);
+ }
+ if ((unify_bsize || !(subsize < BLOCK_8X8)) && eobtotal == 0) skip = 1;
+ }
+ set_param_topblock(cm, xd, bsize, mi_row, mi_col, txfm, skip);
+ }
+#endif // CONFIG_SUPERTX
+
+#if CONFIG_EXT_PARTITION_TYPES
+ update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition);
+#else
+ // update partition context
+ if (bsize >= BLOCK_8X8 &&
+ (bsize == BLOCK_8X8 || partition != PARTITION_SPLIT))
+ update_partition_context(xd, mi_row, mi_col, subsize, bsize);
+#endif // CONFIG_EXT_PARTITION_TYPES
+
+#if CONFIG_CDEF
+#if CONFIG_EXT_PARTITION
+ if (cm->sb_size == BLOCK_128X128 && bsize == BLOCK_128X128) {
+ if (!sb_all_skip(cm, mi_row, mi_col)) {
+ cm->mi_grid_visible[mi_row * cm->mi_stride + mi_col]->mbmi.cdef_strength =
+ aom_read_literal(r, cm->cdef_bits, ACCT_STR);
+ } else {
+ cm->mi_grid_visible[mi_row * cm->mi_stride + mi_col]->mbmi.cdef_strength =
+ 0;
+ }
+ } else if (cm->sb_size == BLOCK_64X64 && bsize == BLOCK_64X64) {
+#else
+ if (bsize == BLOCK_64X64) {
+#endif
+ if (!sb_all_skip(cm, mi_row, mi_col)) {
+ cm->mi_grid_visible[mi_row * cm->mi_stride + mi_col]->mbmi.cdef_strength =
+ aom_read_literal(r, cm->cdef_bits, ACCT_STR);
+ } else {
+ cm->mi_grid_visible[mi_row * cm->mi_stride + mi_col]->mbmi.cdef_strength =
+ -1;
+ }
+ }
+#endif // CONFIG_CDEF
+}
+
+static void setup_bool_decoder(const uint8_t *data, const uint8_t *data_end,
+ const size_t read_size,
+ struct aom_internal_error_info *error_info,
+ aom_reader *r,
+#if CONFIG_ANS && ANS_MAX_SYMBOLS
+ int window_size,
+#endif // CONFIG_ANS && ANS_MAX_SYMBOLS
+ aom_decrypt_cb decrypt_cb, void *decrypt_state) {
+ // Validate the calculated partition length. If the buffer
+ // described by the partition can't be fully read, then restrict
+ // it to the portion that can be (for EC mode) or throw an error.
+ if (!read_is_valid(data, read_size, data_end))
+ aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME,
+ "Truncated packet or corrupt tile length");
+
+#if CONFIG_ANS && ANS_MAX_SYMBOLS
+ r->window_size = window_size;
+#endif
+ if (aom_reader_init(r, data, read_size, decrypt_cb, decrypt_state))
+ aom_internal_error(error_info, AOM_CODEC_MEM_ERROR,
+ "Failed to allocate bool decoder %d", 1);
+}
+
+#if !CONFIG_PVQ && !(CONFIG_EC_ADAPT && CONFIG_NEW_TOKENSET) && !CONFIG_LV_MAP
+static void read_coef_probs_common(av1_coeff_probs_model *coef_probs,
+ aom_reader *r) {
+ int i, j, k, l, m;
+#if CONFIG_EC_ADAPT
+ const int node_limit = UNCONSTRAINED_NODES - 1;
+#else
+ const int node_limit = UNCONSTRAINED_NODES;
+#endif
+
+ if (aom_read_bit(r, ACCT_STR))
+ for (i = 0; i < PLANE_TYPES; ++i)
+ for (j = 0; j < REF_TYPES; ++j)
+ for (k = 0; k < COEF_BANDS; ++k)
+ for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l)
+ for (m = 0; m < node_limit; ++m)
+ av1_diff_update_prob(r, &coef_probs[i][j][k][l][m], ACCT_STR);
+}
+
+static void read_coef_probs(FRAME_CONTEXT *fc, TX_MODE tx_mode, aom_reader *r) {
+ const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
+ TX_SIZE tx_size;
+ for (tx_size = 0; tx_size <= max_tx_size; ++tx_size)
+ read_coef_probs_common(fc->coef_probs[tx_size], r);
+}
+#endif
+
+static void setup_segmentation(AV1_COMMON *const cm,
+ struct aom_read_bit_buffer *rb) {
+ struct segmentation *const seg = &cm->seg;
+ int i, j;
+
+ seg->update_map = 0;
+ seg->update_data = 0;
+
+ seg->enabled = aom_rb_read_bit(rb);
+ if (!seg->enabled) return;
+
+ // Segmentation map update
+ if (frame_is_intra_only(cm) || cm->error_resilient_mode) {
+ seg->update_map = 1;
+ } else {
+ seg->update_map = aom_rb_read_bit(rb);
+ }
+ if (seg->update_map) {
+ if (frame_is_intra_only(cm) || cm->error_resilient_mode) {
+ seg->temporal_update = 0;
+ } else {
+ seg->temporal_update = aom_rb_read_bit(rb);
+ }
+ }
+
+ // Segmentation data update
+ seg->update_data = aom_rb_read_bit(rb);
+ if (seg->update_data) {
+ seg->abs_delta = aom_rb_read_bit(rb);
+
+ av1_clearall_segfeatures(seg);
+
+ for (i = 0; i < MAX_SEGMENTS; i++) {
+ for (j = 0; j < SEG_LVL_MAX; j++) {
+ int data = 0;
+ const int feature_enabled = aom_rb_read_bit(rb);
+ if (feature_enabled) {
+ av1_enable_segfeature(seg, i, j);
+ data = decode_unsigned_max(rb, av1_seg_feature_data_max(j));
+ if (av1_is_segfeature_signed(j))
+ data = aom_rb_read_bit(rb) ? -data : data;
+ }
+ av1_set_segdata(seg, i, j, data);
+ }
+ }
+ }
+}
+
+#if CONFIG_LOOP_RESTORATION
+static void decode_restoration_mode(AV1_COMMON *cm,
+ struct aom_read_bit_buffer *rb) {
+ int p;
+ RestorationInfo *rsi = &cm->rst_info[0];
+ if (aom_rb_read_bit(rb)) {
+ rsi->frame_restoration_type =
+ aom_rb_read_bit(rb) ? RESTORE_SGRPROJ : RESTORE_WIENER;
+ } else {
+ rsi->frame_restoration_type =
+ aom_rb_read_bit(rb) ? RESTORE_SWITCHABLE : RESTORE_NONE;
+ }
+ for (p = 1; p < MAX_MB_PLANE; ++p) {
+ cm->rst_info[p].frame_restoration_type =
+ aom_rb_read_bit(rb) ? RESTORE_WIENER : RESTORE_NONE;
+ }
+
+ cm->rst_info[0].restoration_tilesize = RESTORATION_TILESIZE_MAX;
+ cm->rst_info[1].restoration_tilesize = RESTORATION_TILESIZE_MAX;
+ cm->rst_info[2].restoration_tilesize = RESTORATION_TILESIZE_MAX;
+ if (cm->rst_info[0].frame_restoration_type != RESTORE_NONE ||
+ cm->rst_info[1].frame_restoration_type != RESTORE_NONE ||
+ cm->rst_info[2].frame_restoration_type != RESTORE_NONE) {
+ rsi = &cm->rst_info[0];
+ rsi->restoration_tilesize >>= aom_rb_read_bit(rb);
+ if (rsi->restoration_tilesize != RESTORATION_TILESIZE_MAX) {
+ rsi->restoration_tilesize >>= aom_rb_read_bit(rb);
+ }
+ cm->rst_info[1].restoration_tilesize = cm->rst_info[0].restoration_tilesize;
+ cm->rst_info[2].restoration_tilesize = cm->rst_info[0].restoration_tilesize;
+ }
+}
+
+static void read_wiener_filter(WienerInfo *wiener_info,
+ WienerInfo *ref_wiener_info, aom_reader *rb) {
+ wiener_info->vfilter[0] = wiener_info->vfilter[WIENER_WIN - 1] =
+ aom_read_primitive_refsubexpfin(
+ rb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
+ WIENER_FILT_TAP0_SUBEXP_K,
+ ref_wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV) +
+ WIENER_FILT_TAP0_MINV;
+ wiener_info->vfilter[1] = wiener_info->vfilter[WIENER_WIN - 2] =
+ aom_read_primitive_refsubexpfin(
+ rb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
+ WIENER_FILT_TAP1_SUBEXP_K,
+ ref_wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV) +
+ WIENER_FILT_TAP1_MINV;
+ wiener_info->vfilter[2] = wiener_info->vfilter[WIENER_WIN - 3] =
+ aom_read_primitive_refsubexpfin(
+ rb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
+ WIENER_FILT_TAP2_SUBEXP_K,
+ ref_wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV) +
+ WIENER_FILT_TAP2_MINV;
+ // The central element has an implicit +WIENER_FILT_STEP
+ wiener_info->vfilter[WIENER_HALFWIN] =
+ -2 * (wiener_info->vfilter[0] + wiener_info->vfilter[1] +
+ wiener_info->vfilter[2]);
+
+ wiener_info->hfilter[0] = wiener_info->hfilter[WIENER_WIN - 1] =
+ aom_read_primitive_refsubexpfin(
+ rb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
+ WIENER_FILT_TAP0_SUBEXP_K,
+ ref_wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV) +
+ WIENER_FILT_TAP0_MINV;
+ wiener_info->hfilter[1] = wiener_info->hfilter[WIENER_WIN - 2] =
+ aom_read_primitive_refsubexpfin(
+ rb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
+ WIENER_FILT_TAP1_SUBEXP_K,
+ ref_wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV) +
+ WIENER_FILT_TAP1_MINV;
+ wiener_info->hfilter[2] = wiener_info->hfilter[WIENER_WIN - 3] =
+ aom_read_primitive_refsubexpfin(
+ rb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
+ WIENER_FILT_TAP2_SUBEXP_K,
+ ref_wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV) +
+ WIENER_FILT_TAP2_MINV;
+ // The central element has an implicit +WIENER_FILT_STEP
+ wiener_info->hfilter[WIENER_HALFWIN] =
+ -2 * (wiener_info->hfilter[0] + wiener_info->hfilter[1] +
+ wiener_info->hfilter[2]);
+ memcpy(ref_wiener_info, wiener_info, sizeof(*wiener_info));
+}
+
+static void read_sgrproj_filter(SgrprojInfo *sgrproj_info,
+ SgrprojInfo *ref_sgrproj_info, aom_reader *rb) {
+ sgrproj_info->ep = aom_read_literal(rb, SGRPROJ_PARAMS_BITS, ACCT_STR);
+ sgrproj_info->xqd[0] =
+ aom_read_primitive_refsubexpfin(
+ rb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K,
+ ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0) +
+ SGRPROJ_PRJ_MIN0;
+ sgrproj_info->xqd[1] =
+ aom_read_primitive_refsubexpfin(
+ rb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K,
+ ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1) +
+ SGRPROJ_PRJ_MIN1;
+ memcpy(ref_sgrproj_info, sgrproj_info, sizeof(*sgrproj_info));
+}
+
+static void decode_restoration(AV1_COMMON *cm, aom_reader *rb) {
+ int i, p;
+ SgrprojInfo ref_sgrproj_info;
+ WienerInfo ref_wiener_info;
+ set_default_wiener(&ref_wiener_info);
+ set_default_sgrproj(&ref_sgrproj_info);
+ const int ntiles = av1_get_rest_ntiles(cm->width, cm->height,
+ cm->rst_info[0].restoration_tilesize,
+ NULL, NULL, NULL, NULL);
+ const int ntiles_uv = av1_get_rest_ntiles(
+ ROUND_POWER_OF_TWO(cm->width, cm->subsampling_x),
+ ROUND_POWER_OF_TWO(cm->height, cm->subsampling_y),
+ cm->rst_info[1].restoration_tilesize, NULL, NULL, NULL, NULL);
+ RestorationInfo *rsi = &cm->rst_info[0];
+ if (rsi->frame_restoration_type != RESTORE_NONE) {
+ if (rsi->frame_restoration_type == RESTORE_SWITCHABLE) {
+ for (i = 0; i < ntiles; ++i) {
+ rsi->restoration_type[i] =
+ aom_read_tree(rb, av1_switchable_restore_tree,
+ cm->fc->switchable_restore_prob, ACCT_STR);
+ if (rsi->restoration_type[i] == RESTORE_WIENER) {
+ read_wiener_filter(&rsi->wiener_info[i], &ref_wiener_info, rb);
+ } else if (rsi->restoration_type[i] == RESTORE_SGRPROJ) {
+ read_sgrproj_filter(&rsi->sgrproj_info[i], &ref_sgrproj_info, rb);
+ }
+ }
+ } else if (rsi->frame_restoration_type == RESTORE_WIENER) {
+ for (i = 0; i < ntiles; ++i) {
+ if (aom_read(rb, RESTORE_NONE_WIENER_PROB, ACCT_STR)) {
+ rsi->restoration_type[i] = RESTORE_WIENER;
+ read_wiener_filter(&rsi->wiener_info[i], &ref_wiener_info, rb);
+ } else {
+ rsi->restoration_type[i] = RESTORE_NONE;
+ }
+ }
+ } else if (rsi->frame_restoration_type == RESTORE_SGRPROJ) {
+ for (i = 0; i < ntiles; ++i) {
+ if (aom_read(rb, RESTORE_NONE_SGRPROJ_PROB, ACCT_STR)) {
+ rsi->restoration_type[i] = RESTORE_SGRPROJ;
+ read_sgrproj_filter(&rsi->sgrproj_info[i], &ref_sgrproj_info, rb);
+ } else {
+ rsi->restoration_type[i] = RESTORE_NONE;
+ }
+ }
+ }
+ }
+ for (p = 1; p < MAX_MB_PLANE; ++p) {
+ set_default_wiener(&ref_wiener_info);
+ rsi = &cm->rst_info[p];
+ if (rsi->frame_restoration_type == RESTORE_WIENER) {
+ for (i = 0; i < ntiles_uv; ++i) {
+ if (ntiles_uv > 1)
+ rsi->restoration_type[i] =
+ aom_read(rb, RESTORE_NONE_WIENER_PROB, ACCT_STR) ? RESTORE_WIENER
+ : RESTORE_NONE;
+ else
+ rsi->restoration_type[i] = RESTORE_WIENER;
+ if (rsi->restoration_type[i] == RESTORE_WIENER) {
+ read_wiener_filter(&rsi->wiener_info[i], &ref_wiener_info, rb);
+ }
+ }
+ }
+ }
+}
+#endif // CONFIG_LOOP_RESTORATION
+
+static void setup_loopfilter(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) {
+ struct loopfilter *lf = &cm->lf;
+ lf->filter_level = aom_rb_read_literal(rb, 6);
+ lf->sharpness_level = aom_rb_read_literal(rb, 3);
+
+ // Read in loop filter deltas applied at the MB level based on mode or ref
+ // frame.
+ lf->mode_ref_delta_update = 0;
+
+ lf->mode_ref_delta_enabled = aom_rb_read_bit(rb);
+ if (lf->mode_ref_delta_enabled) {
+ lf->mode_ref_delta_update = aom_rb_read_bit(rb);
+ if (lf->mode_ref_delta_update) {
+ int i;
+
+ for (i = 0; i < TOTAL_REFS_PER_FRAME; i++)
+ if (aom_rb_read_bit(rb))
+ lf->ref_deltas[i] = aom_rb_read_inv_signed_literal(rb, 6);
+
+ for (i = 0; i < MAX_MODE_LF_DELTAS; i++)
+ if (aom_rb_read_bit(rb))
+ lf->mode_deltas[i] = aom_rb_read_inv_signed_literal(rb, 6);
+ }
+ }
+}
+
+#if CONFIG_CDEF
+static void setup_cdef(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) {
+ int i;
+ cm->cdef_dering_damping = aom_rb_read_literal(rb, 1) + 5;
+ cm->cdef_clpf_damping = aom_rb_read_literal(rb, 2) + 3;
+ cm->cdef_bits = aom_rb_read_literal(rb, 2);
+ cm->nb_cdef_strengths = 1 << cm->cdef_bits;
+ for (i = 0; i < cm->nb_cdef_strengths; i++) {
+ cm->cdef_strengths[i] = aom_rb_read_literal(rb, CDEF_STRENGTH_BITS);
+ cm->cdef_uv_strengths[i] = aom_rb_read_literal(rb, CDEF_STRENGTH_BITS);
+ }
+}
+#endif // CONFIG_CDEF
+
+static INLINE int read_delta_q(struct aom_read_bit_buffer *rb) {
+ return aom_rb_read_bit(rb) ? aom_rb_read_inv_signed_literal(rb, 6) : 0;
+}
+
+static void setup_quantization(AV1_COMMON *const cm,
+ struct aom_read_bit_buffer *rb) {
+ cm->base_qindex = aom_rb_read_literal(rb, QINDEX_BITS);
+ cm->y_dc_delta_q = read_delta_q(rb);
+ cm->uv_dc_delta_q = read_delta_q(rb);
+ cm->uv_ac_delta_q = read_delta_q(rb);
+ cm->dequant_bit_depth = cm->bit_depth;
+#if CONFIG_AOM_QM
+ cm->using_qmatrix = aom_rb_read_bit(rb);
+ if (cm->using_qmatrix) {
+ cm->min_qmlevel = aom_rb_read_literal(rb, QM_LEVEL_BITS);
+ cm->max_qmlevel = aom_rb_read_literal(rb, QM_LEVEL_BITS);
+ } else {
+ cm->min_qmlevel = 0;
+ cm->max_qmlevel = 0;
+ }
+#endif
+}
+
+static void setup_segmentation_dequant(AV1_COMMON *const cm) {
+ // Build y/uv dequant values based on segmentation.
+ int i = 0;
+#if CONFIG_AOM_QM
+ int lossless;
+ int j = 0;
+ int qmlevel;
+ int using_qm = cm->using_qmatrix;
+ int minqm = cm->min_qmlevel;
+ int maxqm = cm->max_qmlevel;
+#endif
+#if CONFIG_NEW_QUANT
+ int b;
+ int dq;
+#endif // CONFIG_NEW_QUANT
+ if (cm->seg.enabled) {
+ for (i = 0; i < MAX_SEGMENTS; ++i) {
+ const int qindex = av1_get_qindex(&cm->seg, i, cm->base_qindex);
+ cm->y_dequant[i][0] =
+ av1_dc_quant(qindex, cm->y_dc_delta_q, cm->bit_depth);
+ cm->y_dequant[i][1] = av1_ac_quant(qindex, 0, cm->bit_depth);
+ cm->uv_dequant[i][0] =
+ av1_dc_quant(qindex, cm->uv_dc_delta_q, cm->bit_depth);
+ cm->uv_dequant[i][1] =
+ av1_ac_quant(qindex, cm->uv_ac_delta_q, cm->bit_depth);
+#if CONFIG_AOM_QM
+ lossless = qindex == 0 && cm->y_dc_delta_q == 0 &&
+ cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0;
+ // NB: depends on base index so there is only 1 set per frame
+ // No quant weighting when lossless or signalled not using QM
+ qmlevel = (lossless || using_qm == 0)
+ ? NUM_QM_LEVELS - 1
+ : aom_get_qmlevel(cm->base_qindex, minqm, maxqm);
+ for (j = 0; j < TX_SIZES; ++j) {
+ cm->y_iqmatrix[i][1][j] = aom_iqmatrix(cm, qmlevel, 0, j, 1);
+ cm->y_iqmatrix[i][0][j] = aom_iqmatrix(cm, qmlevel, 0, j, 0);
+ cm->uv_iqmatrix[i][1][j] = aom_iqmatrix(cm, qmlevel, 1, j, 1);
+ cm->uv_iqmatrix[i][0][j] = aom_iqmatrix(cm, qmlevel, 1, j, 0);
+ }
+#endif // CONFIG_AOM_QM
+#if CONFIG_NEW_QUANT
+ for (dq = 0; dq < QUANT_PROFILES; dq++) {
+ for (b = 0; b < COEF_BANDS; ++b) {
+ av1_get_dequant_val_nuq(cm->y_dequant[i][b != 0], b,
+ cm->y_dequant_nuq[i][dq][b], NULL, dq);
+ av1_get_dequant_val_nuq(cm->uv_dequant[i][b != 0], b,
+ cm->uv_dequant_nuq[i][dq][b], NULL, dq);
+ }
+ }
+#endif // CONFIG_NEW_QUANT
+ }
+ } else {
+ const int qindex = cm->base_qindex;
+ // When segmentation is disabled, only the first value is used. The
+ // remaining are don't cares.
+ cm->y_dequant[0][0] = av1_dc_quant(qindex, cm->y_dc_delta_q, cm->bit_depth);
+ cm->y_dequant[0][1] = av1_ac_quant(qindex, 0, cm->bit_depth);
+ cm->uv_dequant[0][0] =
+ av1_dc_quant(qindex, cm->uv_dc_delta_q, cm->bit_depth);
+ cm->uv_dequant[0][1] =
+ av1_ac_quant(qindex, cm->uv_ac_delta_q, cm->bit_depth);
+#if CONFIG_AOM_QM
+ lossless = qindex == 0 && cm->y_dc_delta_q == 0 && cm->uv_dc_delta_q == 0 &&
+ cm->uv_ac_delta_q == 0;
+ // No quant weighting when lossless or signalled not using QM
+ qmlevel = (lossless || using_qm == 0)
+ ? NUM_QM_LEVELS - 1
+ : aom_get_qmlevel(cm->base_qindex, minqm, maxqm);
+ for (j = 0; j < TX_SIZES; ++j) {
+ cm->y_iqmatrix[i][1][j] = aom_iqmatrix(cm, qmlevel, 0, j, 1);
+ cm->y_iqmatrix[i][0][j] = aom_iqmatrix(cm, qmlevel, 0, j, 0);
+ cm->uv_iqmatrix[i][1][j] = aom_iqmatrix(cm, qmlevel, 1, j, 1);
+ cm->uv_iqmatrix[i][0][j] = aom_iqmatrix(cm, qmlevel, 1, j, 0);
+ }
+#endif
+#if CONFIG_NEW_QUANT
+ for (dq = 0; dq < QUANT_PROFILES; dq++) {
+ for (b = 0; b < COEF_BANDS; ++b) {
+ av1_get_dequant_val_nuq(cm->y_dequant[0][b != 0], b,
+ cm->y_dequant_nuq[0][dq][b], NULL, dq);
+ av1_get_dequant_val_nuq(cm->uv_dequant[0][b != 0], b,
+ cm->uv_dequant_nuq[0][dq][b], NULL, dq);
+ }
+ }
+#endif // CONFIG_NEW_QUANT
+ }
+}
+
+static InterpFilter read_frame_interp_filter(struct aom_read_bit_buffer *rb) {
+ return aom_rb_read_bit(rb) ? SWITCHABLE
+ : aom_rb_read_literal(rb, LOG_SWITCHABLE_FILTERS);
+}
+
+static void setup_render_size(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) {
+ cm->render_width = cm->width;
+ cm->render_height = cm->height;
+ if (aom_rb_read_bit(rb))
+ av1_read_frame_size(rb, &cm->render_width, &cm->render_height);
+}
+
+#if CONFIG_FRAME_SUPERRES
+// TODO(afergs): make "struct aom_read_bit_buffer *const rb"?
+static void setup_superres_size(AV1_COMMON *const cm,
+ struct aom_read_bit_buffer *rb, int *width,
+ int *height) {
+ // TODO(afergs): Test this behaviour
+ // Frame superres is probably in compatible with this render resolution
+ assert(cm->width == cm->render_width && cm->height == cm->render_height);
+
+ cm->superres_width = cm->width;
+ cm->superres_height = cm->height;
+ if (aom_rb_read_bit(rb)) {
+ cm->superres_scale_numerator =
+ (uint8_t)aom_rb_read_literal(rb, SUPERRES_SCALE_BITS);
+ cm->superres_scale_numerator += SUPERRES_SCALE_NUMERATOR_MIN;
+ // Don't edit cm->width or cm->height directly, or the buffers won't get
+ // resized correctly
+ // TODO(afergs): Should the render resolution not be modified? It's the same
+ // by default (ie. when it isn't sent)...
+ // resize_context_buffers() will change cm->width to equal cm->render_width,
+ // then they'll be the same again
+ *width = cm->render_width =
+ cm->width * cm->superres_scale_numerator / SUPERRES_SCALE_DENOMINATOR;
+ *height = cm->render_height =
+ cm->height * cm->superres_scale_numerator / SUPERRES_SCALE_DENOMINATOR;
+ } else {
+ // 1:1 scaling - ie. no scaling, scale not provided
+ cm->superres_scale_numerator = SUPERRES_SCALE_DENOMINATOR;
+ }
+}
+#endif // CONFIG_FRAME_SUPERRES
+
+static void resize_mv_buffer(AV1_COMMON *cm) {
+ aom_free(cm->cur_frame->mvs);
+ cm->cur_frame->mi_rows = cm->mi_rows;
+ cm->cur_frame->mi_cols = cm->mi_cols;
+ CHECK_MEM_ERROR(cm, cm->cur_frame->mvs,
+ (MV_REF *)aom_calloc(cm->mi_rows * cm->mi_cols,
+ sizeof(*cm->cur_frame->mvs)));
+}
+
+static void resize_context_buffers(AV1_COMMON *cm, int width, int height) {
+#if CONFIG_SIZE_LIMIT
+ if (width > DECODE_WIDTH_LIMIT || height > DECODE_HEIGHT_LIMIT)
+ aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
+ "Dimensions of %dx%d beyond allowed size of %dx%d.",
+ width, height, DECODE_WIDTH_LIMIT, DECODE_HEIGHT_LIMIT);
+#endif
+ if (cm->width != width || cm->height != height) {
+ const int new_mi_rows =
+ ALIGN_POWER_OF_TWO(height, MI_SIZE_LOG2) >> MI_SIZE_LOG2;
+ const int new_mi_cols =
+ ALIGN_POWER_OF_TWO(width, MI_SIZE_LOG2) >> MI_SIZE_LOG2;
+
+ // Allocations in av1_alloc_context_buffers() depend on individual
+ // dimensions as well as the overall size.
+ if (new_mi_cols > cm->mi_cols || new_mi_rows > cm->mi_rows) {
+ if (av1_alloc_context_buffers(cm, width, height))
+ aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
+ "Failed to allocate context buffers");
+ } else {
+ av1_set_mb_mi(cm, width, height);
+ }
+ av1_init_context_buffers(cm);
+ cm->width = width;
+ cm->height = height;
+ }
+ if (cm->cur_frame->mvs == NULL || cm->mi_rows > cm->cur_frame->mi_rows ||
+ cm->mi_cols > cm->cur_frame->mi_cols) {
+ resize_mv_buffer(cm);
+ }
+}
+
+static void setup_frame_size(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) {
+ int width, height;
+ BufferPool *const pool = cm->buffer_pool;
+ av1_read_frame_size(rb, &width, &height);
+ setup_render_size(cm, rb);
+#if CONFIG_FRAME_SUPERRES
+ setup_superres_size(cm, rb, &width, &height);
+#endif // CONFIG_FRAME_SUPERRES
+ resize_context_buffers(cm, width, height);
+
+ lock_buffer_pool(pool);
+ if (aom_realloc_frame_buffer(
+ get_frame_new_buffer(cm), cm->width, cm->height, cm->subsampling_x,
+ cm->subsampling_y,
+#if CONFIG_HIGHBITDEPTH
+ cm->use_highbitdepth,
+#endif
+ AOM_BORDER_IN_PIXELS, cm->byte_alignment,
+ &pool->frame_bufs[cm->new_fb_idx].raw_frame_buffer, pool->get_fb_cb,
+ pool->cb_priv)) {
+ unlock_buffer_pool(pool);
+ aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
+ "Failed to allocate frame buffer");
+ }
+ unlock_buffer_pool(pool);
+
+ pool->frame_bufs[cm->new_fb_idx].buf.subsampling_x = cm->subsampling_x;
+ pool->frame_bufs[cm->new_fb_idx].buf.subsampling_y = cm->subsampling_y;
+ pool->frame_bufs[cm->new_fb_idx].buf.bit_depth = (unsigned int)cm->bit_depth;
+ pool->frame_bufs[cm->new_fb_idx].buf.color_space = cm->color_space;
+ pool->frame_bufs[cm->new_fb_idx].buf.color_range = cm->color_range;
+ pool->frame_bufs[cm->new_fb_idx].buf.render_width = cm->render_width;
+ pool->frame_bufs[cm->new_fb_idx].buf.render_height = cm->render_height;
+}
+
+static INLINE int valid_ref_frame_img_fmt(aom_bit_depth_t ref_bit_depth,
+ int ref_xss, int ref_yss,
+ aom_bit_depth_t this_bit_depth,
+ int this_xss, int this_yss) {
+ return ref_bit_depth == this_bit_depth && ref_xss == this_xss &&
+ ref_yss == this_yss;
+}
+
+static void setup_frame_size_with_refs(AV1_COMMON *cm,
+ struct aom_read_bit_buffer *rb) {
+ int width, height;
+ int found = 0, i;
+ int has_valid_ref_frame = 0;
+ BufferPool *const pool = cm->buffer_pool;
+ for (i = 0; i < INTER_REFS_PER_FRAME; ++i) {
+ if (aom_rb_read_bit(rb)) {
+ YV12_BUFFER_CONFIG *const buf = cm->frame_refs[i].buf;
+ width = buf->y_crop_width;
+ height = buf->y_crop_height;
+ cm->render_width = buf->render_width;
+ cm->render_height = buf->render_height;
+ found = 1;
+ break;
+ }
+ }
+
+ if (!found) {
+ av1_read_frame_size(rb, &width, &height);
+ setup_render_size(cm, rb);
+ }
+
+ if (width <= 0 || height <= 0)
+ aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
+ "Invalid frame size");
+
+ // Check to make sure at least one of frames that this frame references
+ // has valid dimensions.
+ for (i = 0; i < INTER_REFS_PER_FRAME; ++i) {
+ RefBuffer *const ref_frame = &cm->frame_refs[i];
+ has_valid_ref_frame |=
+ valid_ref_frame_size(ref_frame->buf->y_crop_width,
+ ref_frame->buf->y_crop_height, width, height);
+ }
+ if (!has_valid_ref_frame)
+ aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
+ "Referenced frame has invalid size");
+ for (i = 0; i < INTER_REFS_PER_FRAME; ++i) {
+ RefBuffer *const ref_frame = &cm->frame_refs[i];
+ if (!valid_ref_frame_img_fmt(ref_frame->buf->bit_depth,
+ ref_frame->buf->subsampling_x,
+ ref_frame->buf->subsampling_y, cm->bit_depth,
+ cm->subsampling_x, cm->subsampling_y))
+ aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
+ "Referenced frame has incompatible color format");
+ }
+
+ resize_context_buffers(cm, width, height);
+
+ lock_buffer_pool(pool);
+ if (aom_realloc_frame_buffer(
+ get_frame_new_buffer(cm), cm->width, cm->height, cm->subsampling_x,
+ cm->subsampling_y,
+#if CONFIG_HIGHBITDEPTH
+ cm->use_highbitdepth,
+#endif
+ AOM_BORDER_IN_PIXELS, cm->byte_alignment,
+ &pool->frame_bufs[cm->new_fb_idx].raw_frame_buffer, pool->get_fb_cb,
+ pool->cb_priv)) {
+ unlock_buffer_pool(pool);
+ aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
+ "Failed to allocate frame buffer");
+ }
+ unlock_buffer_pool(pool);
+
+ pool->frame_bufs[cm->new_fb_idx].buf.subsampling_x = cm->subsampling_x;
+ pool->frame_bufs[cm->new_fb_idx].buf.subsampling_y = cm->subsampling_y;
+ pool->frame_bufs[cm->new_fb_idx].buf.bit_depth = (unsigned int)cm->bit_depth;
+ pool->frame_bufs[cm->new_fb_idx].buf.color_space = cm->color_space;
+ pool->frame_bufs[cm->new_fb_idx].buf.color_range = cm->color_range;
+ pool->frame_bufs[cm->new_fb_idx].buf.render_width = cm->render_width;
+ pool->frame_bufs[cm->new_fb_idx].buf.render_height = cm->render_height;
+}
+
+static void read_tile_info(AV1Decoder *const pbi,
+ struct aom_read_bit_buffer *const rb) {
+ AV1_COMMON *const cm = &pbi->common;
+#if CONFIG_EXT_TILE
+ cm->tile_encoding_mode = aom_rb_read_literal(rb, 1);
+// Read the tile width/height
+#if CONFIG_EXT_PARTITION
+ if (cm->sb_size == BLOCK_128X128) {
+ cm->tile_width = aom_rb_read_literal(rb, 5) + 1;
+ cm->tile_height = aom_rb_read_literal(rb, 5) + 1;
+ } else
+#endif // CONFIG_EXT_PARTITION
+ {
+ cm->tile_width = aom_rb_read_literal(rb, 6) + 1;
+ cm->tile_height = aom_rb_read_literal(rb, 6) + 1;
+ }
+
+#if CONFIG_LOOPFILTERING_ACROSS_TILES
+ cm->loop_filter_across_tiles_enabled = aom_rb_read_bit(rb);
+#endif // CONFIG_LOOPFILTERING_ACROSS_TILES
+
+ cm->tile_width <<= cm->mib_size_log2;
+ cm->tile_height <<= cm->mib_size_log2;
+
+ cm->tile_width = AOMMIN(cm->tile_width, cm->mi_cols);
+ cm->tile_height = AOMMIN(cm->tile_height, cm->mi_rows);
+
+ // Get the number of tiles
+ cm->tile_cols = 1;
+ while (cm->tile_cols * cm->tile_width < cm->mi_cols) ++cm->tile_cols;
+
+ cm->tile_rows = 1;
+ while (cm->tile_rows * cm->tile_height < cm->mi_rows) ++cm->tile_rows;
+
+ if (cm->tile_cols * cm->tile_rows > 1) {
+ // Read the number of bytes used to store tile size
+ pbi->tile_col_size_bytes = aom_rb_read_literal(rb, 2) + 1;
+ pbi->tile_size_bytes = aom_rb_read_literal(rb, 2) + 1;
+ }
+
+#if CONFIG_DEPENDENT_HORZTILES
+ if (cm->tile_rows <= 1)
+ cm->dependent_horz_tiles = aom_rb_read_bit(rb);
+ else
+ cm->dependent_horz_tiles = 0;
+#endif
+#else
+ int min_log2_tile_cols, max_log2_tile_cols, max_ones;
+ av1_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
+
+ // columns
+ max_ones = max_log2_tile_cols - min_log2_tile_cols;
+ cm->log2_tile_cols = min_log2_tile_cols;
+ while (max_ones-- && aom_rb_read_bit(rb)) cm->log2_tile_cols++;
+
+ if (cm->log2_tile_cols > 6)
+ aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
+ "Invalid number of tile columns");
+
+ // rows
+ cm->log2_tile_rows = aom_rb_read_bit(rb);
+ if (cm->log2_tile_rows) cm->log2_tile_rows += aom_rb_read_bit(rb);
+#if CONFIG_DEPENDENT_HORZTILES
+ if (cm->log2_tile_rows != 0)
+ cm->dependent_horz_tiles = aom_rb_read_bit(rb);
+ else
+ cm->dependent_horz_tiles = 0;
+#endif
+#if CONFIG_LOOPFILTERING_ACROSS_TILES
+ cm->loop_filter_across_tiles_enabled = aom_rb_read_bit(rb);
+#endif // CONFIG_LOOPFILTERING_ACROSS_TILES
+
+ cm->tile_cols = 1 << cm->log2_tile_cols;
+ cm->tile_rows = 1 << cm->log2_tile_rows;
+
+ cm->tile_width = ALIGN_POWER_OF_TWO(cm->mi_cols, MAX_MIB_SIZE_LOG2);
+ cm->tile_width >>= cm->log2_tile_cols;
+ cm->tile_height = ALIGN_POWER_OF_TWO(cm->mi_rows, MAX_MIB_SIZE_LOG2);
+ cm->tile_height >>= cm->log2_tile_rows;
+
+ // round to integer multiples of superblock size
+ cm->tile_width = ALIGN_POWER_OF_TWO(cm->tile_width, MAX_MIB_SIZE_LOG2);
+ cm->tile_height = ALIGN_POWER_OF_TWO(cm->tile_height, MAX_MIB_SIZE_LOG2);
+
+// tile size magnitude
+#if !CONFIG_TILE_GROUPS
+ if (cm->tile_rows > 1 || cm->tile_cols > 1)
+#endif
+ pbi->tile_size_bytes = aom_rb_read_literal(rb, 2) + 1;
+#endif // CONFIG_EXT_TILE
+
+#if CONFIG_TILE_GROUPS
+ // Store an index to the location of the tile group information
+ pbi->tg_size_bit_offset = rb->bit_offset;
+ pbi->tg_size = 1 << (cm->log2_tile_rows + cm->log2_tile_cols);
+ if (cm->log2_tile_rows + cm->log2_tile_cols > 0) {
+ pbi->tg_start =
+ aom_rb_read_literal(rb, cm->log2_tile_rows + cm->log2_tile_cols);
+ pbi->tg_size =
+ 1 + aom_rb_read_literal(rb, cm->log2_tile_rows + cm->log2_tile_cols);
+ }
+#endif
+}
+
+static int mem_get_varsize(const uint8_t *src, int sz) {
+ switch (sz) {
+ case 1: return src[0];
+ case 2: return mem_get_le16(src);
+ case 3: return mem_get_le24(src);
+ case 4: return mem_get_le32(src);
+ default: assert("Invalid size" && 0); return -1;
+ }
+}
+
+#if CONFIG_EXT_TILE
+// Reads the next tile returning its size and adjusting '*data' accordingly
+// based on 'is_last'.
+static void get_tile_buffer(const uint8_t *const data_end,
+ struct aom_internal_error_info *error_info,
+ const uint8_t **data, aom_decrypt_cb decrypt_cb,
+ void *decrypt_state,
+ TileBufferDec (*const tile_buffers)[MAX_TILE_COLS],
+ int tile_size_bytes, int col, int row,
+ unsigned int tile_encoding_mode) {
+ size_t size;
+
+ size_t copy_size = 0;
+ const uint8_t *copy_data = NULL;
+
+ if (!read_is_valid(*data, tile_size_bytes, data_end))
+ aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME,
+ "Truncated packet or corrupt tile length");
+ if (decrypt_cb) {
+ uint8_t be_data[4];
+ decrypt_cb(decrypt_state, *data, be_data, tile_size_bytes);
+
+ // Only read number of bytes in cm->tile_size_bytes.
+ size = mem_get_varsize(be_data, tile_size_bytes);
+ } else {
+ size = mem_get_varsize(*data, tile_size_bytes);
+ }
+
+ // If cm->tile_encoding_mode = 1 (i.e. TILE_VR), then the top bit of the tile
+ // header indicates copy mode.
+ if (tile_encoding_mode && (size >> (tile_size_bytes * 8 - 1)) == 1) {
+ // The remaining bits in the top byte signal the row offset
+ int offset = (size >> (tile_size_bytes - 1) * 8) & 0x7f;
+
+ // Currently, only use tiles in same column as reference tiles.
+ copy_data = tile_buffers[row - offset][col].data;
+ copy_size = tile_buffers[row - offset][col].size;
+ size = 0;
+ }
+
+ *data += tile_size_bytes;
+
+ if (size > (size_t)(data_end - *data))
+ aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME,
+ "Truncated packet or corrupt tile size");
+
+ if (size > 0) {
+ tile_buffers[row][col].data = *data;
+ tile_buffers[row][col].size = size;
+ } else {
+ tile_buffers[row][col].data = copy_data;
+ tile_buffers[row][col].size = copy_size;
+ }
+
+ *data += size;
+
+ tile_buffers[row][col].raw_data_end = *data;
+}
+
+static void get_tile_buffers(
+ AV1Decoder *pbi, const uint8_t *data, const uint8_t *data_end,
+ TileBufferDec (*const tile_buffers)[MAX_TILE_COLS]) {
+ AV1_COMMON *const cm = &pbi->common;
+ const int tile_cols = cm->tile_cols;
+ const int tile_rows = cm->tile_rows;
+ const int have_tiles = tile_cols * tile_rows > 1;
+
+ if (!have_tiles) {
+ const size_t tile_size = data_end - data;
+ tile_buffers[0][0].data = data;
+ tile_buffers[0][0].size = tile_size;
+ tile_buffers[0][0].raw_data_end = NULL;
+ } else {
+ // We locate only the tile buffers that are required, which are the ones
+ // specified by pbi->dec_tile_col and pbi->dec_tile_row. Also, we always
+ // need the last (bottom right) tile buffer, as we need to know where the
+ // end of the compressed frame buffer is for proper superframe decoding.
+
+ const uint8_t *tile_col_data_end[MAX_TILE_COLS];
+ const uint8_t *const data_start = data;
+
+ const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows);
+ const int single_row = pbi->dec_tile_row >= 0;
+ const int tile_rows_start = single_row ? dec_tile_row : 0;
+ const int tile_rows_end = single_row ? tile_rows_start + 1 : tile_rows;
+ const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols);
+ const int single_col = pbi->dec_tile_col >= 0;
+ const int tile_cols_start = single_col ? dec_tile_col : 0;
+ const int tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols;
+
+ const int tile_col_size_bytes = pbi->tile_col_size_bytes;
+ const int tile_size_bytes = pbi->tile_size_bytes;
+
+ size_t tile_col_size;
+ int r, c;
+
+ // Read tile column sizes for all columns (we need the last tile buffer)
+ for (c = 0; c < tile_cols; ++c) {
+ const int is_last = c == tile_cols - 1;
+ if (!is_last) {
+ tile_col_size = mem_get_varsize(data, tile_col_size_bytes);
+ data += tile_col_size_bytes;
+ tile_col_data_end[c] = data + tile_col_size;
+ } else {
+ tile_col_size = data_end - data;
+ tile_col_data_end[c] = data_end;
+ }
+ data += tile_col_size;
+ }
+
+ data = data_start;
+
+ // Read the required tile sizes.
+ for (c = tile_cols_start; c < tile_cols_end; ++c) {
+ const int is_last = c == tile_cols - 1;
+
+ if (c > 0) data = tile_col_data_end[c - 1];
+
+ if (!is_last) data += tile_col_size_bytes;
+
+ // Get the whole of the last column, otherwise stop at the required tile.
+ for (r = 0; r < (is_last ? tile_rows : tile_rows_end); ++r) {
+ tile_buffers[r][c].col = c;
+
+ get_tile_buffer(tile_col_data_end[c], &pbi->common.error, &data,
+ pbi->decrypt_cb, pbi->decrypt_state, tile_buffers,
+ tile_size_bytes, c, r, cm->tile_encoding_mode);
+ }
+ }
+
+ // If we have not read the last column, then read it to get the last tile.
+ if (tile_cols_end != tile_cols) {
+ c = tile_cols - 1;
+
+ data = tile_col_data_end[c - 1];
+
+ for (r = 0; r < tile_rows; ++r) {
+ tile_buffers[r][c].col = c;
+
+ get_tile_buffer(tile_col_data_end[c], &pbi->common.error, &data,
+ pbi->decrypt_cb, pbi->decrypt_state, tile_buffers,
+ tile_size_bytes, c, r, cm->tile_encoding_mode);
+ }
+ }
+ }
+}
+#else
+// Reads the next tile returning its size and adjusting '*data' accordingly
+// based on 'is_last'.
+static void get_tile_buffer(const uint8_t *const data_end,
+ const int tile_size_bytes, int is_last,
+ struct aom_internal_error_info *error_info,
+ const uint8_t **data, aom_decrypt_cb decrypt_cb,
+ void *decrypt_state, TileBufferDec *const buf) {
+ size_t size;
+
+ if (!is_last) {
+ if (!read_is_valid(*data, tile_size_bytes, data_end))
+ aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME,
+ "Truncated packet or corrupt tile length");
+
+ if (decrypt_cb) {
+ uint8_t be_data[4];
+ decrypt_cb(decrypt_state, *data, be_data, tile_size_bytes);
+ size = mem_get_varsize(be_data, tile_size_bytes);
+ } else {
+ size = mem_get_varsize(*data, tile_size_bytes);
+ }
+ *data += tile_size_bytes;
+
+ if (size > (size_t)(data_end - *data))
+ aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME,
+ "Truncated packet or corrupt tile size");
+ } else {
+ size = data_end - *data;
+ }
+
+ buf->data = *data;
+ buf->size = size;
+
+ *data += size;
+}
+
+static void get_tile_buffers(
+ AV1Decoder *pbi, const uint8_t *data, const uint8_t *data_end,
+ TileBufferDec (*const tile_buffers)[MAX_TILE_COLS]) {
+ AV1_COMMON *const cm = &pbi->common;
+#if CONFIG_TILE_GROUPS
+ int r, c;
+ const int tile_cols = cm->tile_cols;
+ const int tile_rows = cm->tile_rows;
+ int tc = 0;
+ int first_tile_in_tg = 0;
+ struct aom_read_bit_buffer rb_tg_hdr;
+ uint8_t clear_data[MAX_AV1_HEADER_SIZE];
+ const int num_tiles = tile_rows * tile_cols;
+ const int num_bits = OD_ILOG(num_tiles) - 1;
+ const size_t hdr_size = pbi->uncomp_hdr_size + pbi->first_partition_size;
+ const int tg_size_bit_offset = pbi->tg_size_bit_offset;
+#if CONFIG_DEPENDENT_HORZTILES
+ int tile_group_start_col = 0;
+ int tile_group_start_row = 0;
+#endif
+
+ for (r = 0; r < tile_rows; ++r) {
+ for (c = 0; c < tile_cols; ++c, ++tc) {
+ TileBufferDec *const buf = &tile_buffers[r][c];
+ const int is_last = (r == tile_rows - 1) && (c == tile_cols - 1);
+ const size_t hdr_offset = (tc && tc == first_tile_in_tg) ? hdr_size : 0;
+
+ buf->col = c;
+ if (hdr_offset) {
+ init_read_bit_buffer(pbi, &rb_tg_hdr, data, data_end, clear_data);
+ rb_tg_hdr.bit_offset = tg_size_bit_offset;
+ if (num_tiles) {
+ pbi->tg_start = aom_rb_read_literal(&rb_tg_hdr, num_bits);
+ pbi->tg_size = 1 + aom_rb_read_literal(&rb_tg_hdr, num_bits);
+#if CONFIG_DEPENDENT_HORZTILES
+ tile_group_start_row = r;
+ tile_group_start_col = c;
+#endif
+ }
+ }
+ first_tile_in_tg += tc == first_tile_in_tg ? pbi->tg_size : 0;
+ data += hdr_offset;
+ get_tile_buffer(data_end, pbi->tile_size_bytes, is_last,
+ &pbi->common.error, &data, pbi->decrypt_cb,
+ pbi->decrypt_state, buf);
+#if CONFIG_DEPENDENT_HORZTILES
+ cm->tile_group_start_row[r][c] = tile_group_start_row;
+ cm->tile_group_start_col[r][c] = tile_group_start_col;
+#endif
+ }
+ }
+#else
+ int r, c;
+ const int tile_cols = cm->tile_cols;
+ const int tile_rows = cm->tile_rows;
+
+ for (r = 0; r < tile_rows; ++r) {
+ for (c = 0; c < tile_cols; ++c) {
+ const int is_last = (r == tile_rows - 1) && (c == tile_cols - 1);
+ TileBufferDec *const buf = &tile_buffers[r][c];
+ buf->col = c;
+ get_tile_buffer(data_end, pbi->tile_size_bytes, is_last, &cm->error,
+ &data, pbi->decrypt_cb, pbi->decrypt_state, buf);
+ }
+ }
+#endif
+}
+#endif // CONFIG_EXT_TILE
+
+#if CONFIG_PVQ
+static void daala_dec_init(AV1_COMMON *const cm, daala_dec_ctx *daala_dec,
+ aom_reader *r) {
+ daala_dec->r = r;
+
+ // TODO(yushin) : activity masking info needs be signaled by a bitstream
+ daala_dec->use_activity_masking = AV1_PVQ_ENABLE_ACTIVITY_MASKING;
+
+#if !CONFIG_DAALA_DIST
+ daala_dec->use_activity_masking = 0;
+#endif
+
+ if (daala_dec->use_activity_masking)
+ daala_dec->qm = OD_HVS_QM;
+ else
+ daala_dec->qm = OD_FLAT_QM;
+
+ od_init_qm(daala_dec->state.qm, daala_dec->state.qm_inv,
+ daala_dec->qm == OD_HVS_QM ? OD_QM8_Q4_HVS : OD_QM8_Q4_FLAT);
+
+ if (daala_dec->use_activity_masking) {
+ int pli;
+ int use_masking = daala_dec->use_activity_masking;
+ int segment_id = 0;
+ int qindex = av1_get_qindex(&cm->seg, segment_id, cm->base_qindex);
+
+ for (pli = 0; pli < MAX_MB_PLANE; pli++) {
+ int i;
+ int q;
+
+ q = qindex;
+ if (q <= OD_DEFAULT_QMS[use_masking][0][pli].interp_q << OD_COEFF_SHIFT) {
+ od_interp_qm(&daala_dec->state.pvq_qm_q4[pli][0], q,
+ &OD_DEFAULT_QMS[use_masking][0][pli], NULL);
+ } else {
+ i = 0;
+ while (OD_DEFAULT_QMS[use_masking][i + 1][pli].qm_q4 != NULL &&
+ q > OD_DEFAULT_QMS[use_masking][i + 1][pli].interp_q
+ << OD_COEFF_SHIFT) {
+ i++;
+ }
+ od_interp_qm(&daala_dec->state.pvq_qm_q4[pli][0], q,
+ &OD_DEFAULT_QMS[use_masking][i][pli],
+ &OD_DEFAULT_QMS[use_masking][i + 1][pli]);
+ }
+ }
+ }
+}
+#endif // #if CONFIG_PVQ
+
+static const uint8_t *decode_tiles(AV1Decoder *pbi, const uint8_t *data,
+ const uint8_t *data_end) {
+ AV1_COMMON *const cm = &pbi->common;
+ const AVxWorkerInterface *const winterface = aom_get_worker_interface();
+ const int tile_cols = cm->tile_cols;
+ const int tile_rows = cm->tile_rows;
+ const int n_tiles = tile_cols * tile_rows;
+ TileBufferDec(*const tile_buffers)[MAX_TILE_COLS] = pbi->tile_buffers;
+#if CONFIG_EXT_TILE
+ const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows);
+ const int single_row = pbi->dec_tile_row >= 0;
+ const int tile_rows_start = single_row ? dec_tile_row : 0;
+ const int tile_rows_end = single_row ? dec_tile_row + 1 : tile_rows;
+ const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols);
+ const int single_col = pbi->dec_tile_col >= 0;
+ const int tile_cols_start = single_col ? dec_tile_col : 0;
+ const int tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols;
+ const int inv_col_order = pbi->inv_tile_order && !single_col;
+ const int inv_row_order = pbi->inv_tile_order && !single_row;
+#else
+ const int tile_rows_start = 0;
+ const int tile_rows_end = tile_rows;
+ const int tile_cols_start = 0;
+ const int tile_cols_end = tile_cols;
+ const int inv_col_order = pbi->inv_tile_order;
+ const int inv_row_order = pbi->inv_tile_order;
+#endif // CONFIG_EXT_TILE
+ int tile_row, tile_col;
+
+#if CONFIG_SUBFRAME_PROB_UPDATE
+ cm->do_subframe_update = n_tiles == 1;
+#endif // CONFIG_SUBFRAME_PROB_UPDATE
+
+ if (cm->lf.filter_level && !cm->skip_loop_filter &&
+ pbi->lf_worker.data1 == NULL) {
+ CHECK_MEM_ERROR(cm, pbi->lf_worker.data1,
+ aom_memalign(32, sizeof(LFWorkerData)));
+ pbi->lf_worker.hook = (AVxWorkerHook)av1_loop_filter_worker;
+ if (pbi->max_threads > 1 && !winterface->reset(&pbi->lf_worker)) {
+ aom_internal_error(&cm->error, AOM_CODEC_ERROR,
+ "Loop filter thread creation failed");
+ }
+ }
+
+ if (cm->lf.filter_level && !cm->skip_loop_filter) {
+ LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1;
+ // Be sure to sync as we might be resuming after a failed frame decode.
+ winterface->sync(&pbi->lf_worker);
+ av1_loop_filter_data_reset(lf_data, get_frame_new_buffer(cm), cm,
+ pbi->mb.plane);
+ }
+
+ assert(tile_rows <= MAX_TILE_ROWS);
+ assert(tile_cols <= MAX_TILE_COLS);
+
+ get_tile_buffers(pbi, data, data_end, tile_buffers);
+
+ if (pbi->tile_data == NULL || n_tiles != pbi->allocated_tiles) {
+ aom_free(pbi->tile_data);
+ CHECK_MEM_ERROR(cm, pbi->tile_data,
+ aom_memalign(32, n_tiles * (sizeof(*pbi->tile_data))));
+ pbi->allocated_tiles = n_tiles;
+ }
+#if CONFIG_ACCOUNTING
+ if (pbi->acct_enabled) {
+ aom_accounting_reset(&pbi->accounting);
+ }
+#endif
+ // Load all tile information into tile_data.
+ for (tile_row = tile_rows_start; tile_row < tile_rows_end; ++tile_row) {
+ for (tile_col = tile_cols_start; tile_col < tile_cols_end; ++tile_col) {
+ const TileBufferDec *const buf = &tile_buffers[tile_row][tile_col];
+ TileData *const td = pbi->tile_data + tile_cols * tile_row + tile_col;
+
+ td->cm = cm;
+ td->xd = pbi->mb;
+ td->xd.corrupted = 0;
+ td->xd.counts =
+ cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD
+ ? &cm->counts
+ : NULL;
+ av1_zero(td->dqcoeff);
+#if CONFIG_PVQ
+ av1_zero(td->pvq_ref_coeff);
+#endif
+ av1_tile_init(&td->xd.tile, td->cm, tile_row, tile_col);
+ setup_bool_decoder(buf->data, data_end, buf->size, &cm->error,
+ &td->bit_reader,
+#if CONFIG_ANS && ANS_MAX_SYMBOLS
+ 1 << cm->ans_window_size_log2,
+#endif // CONFIG_ANS && ANS_MAX_SYMBOLS
+ pbi->decrypt_cb, pbi->decrypt_state);
+#if CONFIG_ACCOUNTING
+ if (pbi->acct_enabled) {
+ td->bit_reader.accounting = &pbi->accounting;
+ } else {
+ td->bit_reader.accounting = NULL;
+ }
+#endif
+ av1_init_macroblockd(cm, &td->xd,
+#if CONFIG_PVQ
+ td->pvq_ref_coeff,
+#endif
+#if CONFIG_CFL
+ &td->cfl,
+#endif
+ td->dqcoeff);
+
+#if CONFIG_EC_ADAPT
+ // Initialise the tile context from the frame context
+ td->tctx = *cm->fc;
+ td->xd.tile_ctx = &td->tctx;
+#endif
+
+#if CONFIG_PVQ
+ daala_dec_init(cm, &td->xd.daala_dec, &td->bit_reader);
+ td->xd.daala_dec.state.adapt = &td->tctx.pvq_context;
+#endif
+
+#if CONFIG_PALETTE
+ td->xd.plane[0].color_index_map = td->color_index_map[0];
+ td->xd.plane[1].color_index_map = td->color_index_map[1];
+#endif // CONFIG_PALETTE
+ }
+ }
+
+ for (tile_row = tile_rows_start; tile_row < tile_rows_end; ++tile_row) {
+ const int row = inv_row_order ? tile_rows - 1 - tile_row : tile_row;
+ int mi_row = 0;
+ TileInfo tile_info;
+
+ av1_tile_set_row(&tile_info, cm, row);
+
+ for (tile_col = tile_cols_start; tile_col < tile_cols_end; ++tile_col) {
+ const int col = inv_col_order ? tile_cols - 1 - tile_col : tile_col;
+ TileData *const td = pbi->tile_data + tile_cols * row + col;
+#if CONFIG_ACCOUNTING
+ if (pbi->acct_enabled) {
+ td->bit_reader.accounting->last_tell_frac =
+ aom_reader_tell_frac(&td->bit_reader);
+ }
+#endif
+
+ av1_tile_set_col(&tile_info, cm, col);
+
+#if CONFIG_DEPENDENT_HORZTILES
+#if CONFIG_TILE_GROUPS
+ av1_tile_set_tg_boundary(&tile_info, cm, tile_row, tile_col);
+ if (!cm->dependent_horz_tiles || tile_row == 0 ||
+ tile_info.tg_horz_boundary) {
+#else
+ if (!cm->dependent_horz_tiles || tile_row == 0) {
+#endif
+ av1_zero_above_context(cm, tile_info.mi_col_start,
+ tile_info.mi_col_end);
+ }
+#else
+ av1_zero_above_context(cm, tile_info.mi_col_start, tile_info.mi_col_end);
+#endif
+
+ for (mi_row = tile_info.mi_row_start; mi_row < tile_info.mi_row_end;
+ mi_row += cm->mib_size) {
+ int mi_col;
+
+ av1_zero_left_context(&td->xd);
+
+ for (mi_col = tile_info.mi_col_start; mi_col < tile_info.mi_col_end;
+ mi_col += cm->mib_size) {
+ av1_update_boundary_info(cm, &tile_info, mi_row, mi_col);
+ decode_partition(pbi, &td->xd,
+#if CONFIG_SUPERTX
+ 0,
+#endif // CONFIG_SUPERTX
+ mi_row, mi_col, &td->bit_reader, cm->sb_size,
+ b_width_log2_lookup[cm->sb_size]);
+#if CONFIG_NCOBMC && CONFIG_MOTION_VAR
+ detoken_and_recon_sb(pbi, &td->xd, mi_row, mi_col, &td->bit_reader,
+ cm->sb_size);
+#endif
+ }
+ aom_merge_corrupted_flag(&pbi->mb.corrupted, td->xd.corrupted);
+ if (pbi->mb.corrupted)
+ aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
+ "Failed to decode tile data");
+#if CONFIG_SUBFRAME_PROB_UPDATE
+ if (cm->do_subframe_update &&
+ cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) {
+ const int mi_rows_per_update =
+ MI_SIZE * AOMMAX(cm->mi_rows / MI_SIZE / COEF_PROBS_BUFS, 1);
+ if ((mi_row + MI_SIZE) % mi_rows_per_update == 0 &&
+ mi_row + MI_SIZE < cm->mi_rows &&
+ cm->coef_probs_update_idx < COEF_PROBS_BUFS - 1) {
+ av1_partial_adapt_probs(cm, mi_row, mi_col);
+ ++cm->coef_probs_update_idx;
+ }
+ }
+#endif // CONFIG_SUBFRAME_PROB_UPDATE
+ }
+ }
+
+ assert(mi_row > 0);
+
+// when Parallel deblocking is enabled, deblocking should not
+// be interleaved with decoding. Instead, deblocking should be done
+// after the entire frame is decoded.
+#if !CONFIG_VAR_TX && !CONFIG_PARALLEL_DEBLOCKING && !CONFIG_CB4X4
+ // Loopfilter one tile row.
+ // Note: If out-of-order tile decoding is used(for example, inv_row_order
+ // = 1), the loopfiltering has be done after all tile rows are decoded.
+ if (!inv_row_order && cm->lf.filter_level && !cm->skip_loop_filter) {
+ LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1;
+ const int lf_start = AOMMAX(0, tile_info.mi_row_start - cm->mib_size);
+ const int lf_end = tile_info.mi_row_end - cm->mib_size;
+
+ // Delay the loopfilter if the first tile row is only
+ // a single superblock high.
+ if (lf_end <= 0) continue;
+
+ // Decoding has completed. Finish up the loop filter in this thread.
+ if (tile_info.mi_row_end >= cm->mi_rows) continue;
+
+ winterface->sync(&pbi->lf_worker);
+ lf_data->start = lf_start;
+ lf_data->stop = lf_end;
+ if (pbi->max_threads > 1) {
+ winterface->launch(&pbi->lf_worker);
+ } else {
+ winterface->execute(&pbi->lf_worker);
+ }
+ }
+#endif // !CONFIG_VAR_TX && !CONFIG_PARALLEL_DEBLOCKING
+
+ // After loopfiltering, the last 7 row pixels in each superblock row may
+ // still be changed by the longest loopfilter of the next superblock row.
+ if (cm->frame_parallel_decode)
+ av1_frameworker_broadcast(pbi->cur_buf, mi_row << cm->mib_size_log2);
+ }
+
+#if CONFIG_VAR_TX || CONFIG_CB4X4
+ // Loopfilter the whole frame.
+ av1_loop_filter_frame(get_frame_new_buffer(cm), cm, &pbi->mb,
+ cm->lf.filter_level, 0, 0);
+#else
+#if CONFIG_PARALLEL_DEBLOCKING
+ // Loopfilter all rows in the frame in the frame.
+ if (cm->lf.filter_level && !cm->skip_loop_filter) {
+ LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1;
+ winterface->sync(&pbi->lf_worker);
+ lf_data->start = 0;
+ lf_data->stop = cm->mi_rows;
+ winterface->execute(&pbi->lf_worker);
+ }
+#else
+ // Loopfilter remaining rows in the frame.
+ if (cm->lf.filter_level && !cm->skip_loop_filter) {
+ LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1;
+ winterface->sync(&pbi->lf_worker);
+ lf_data->start = lf_data->stop;
+ lf_data->stop = cm->mi_rows;
+ winterface->execute(&pbi->lf_worker);
+ }
+#endif // CONFIG_PARALLEL_DEBLOCKING
+#endif // CONFIG_VAR_TX
+ if (cm->frame_parallel_decode)
+ av1_frameworker_broadcast(pbi->cur_buf, INT_MAX);
+
+#if CONFIG_EXT_TILE
+ if (n_tiles == 1) {
+#if CONFIG_ANS
+ return data_end;
+#else
+ // Find the end of the single tile buffer
+ return aom_reader_find_end(&pbi->tile_data->bit_reader);
+#endif // CONFIG_ANS
+ } else {
+ // Return the end of the last tile buffer
+ return tile_buffers[tile_rows - 1][tile_cols - 1].raw_data_end;
+ }
+#else
+#if CONFIG_ANS
+ return data_end;
+#else
+ {
+ // Get last tile data.
+ TileData *const td = pbi->tile_data + tile_cols * tile_rows - 1;
+ return aom_reader_find_end(&td->bit_reader);
+ }
+#endif // CONFIG_ANS
+#endif // CONFIG_EXT_TILE
+}
+
+static int tile_worker_hook(TileWorkerData *const tile_data,
+ const TileInfo *const tile) {
+ AV1Decoder *const pbi = tile_data->pbi;
+ const AV1_COMMON *const cm = &pbi->common;
+ int mi_row, mi_col;
+
+ if (setjmp(tile_data->error_info.jmp)) {
+ tile_data->error_info.setjmp = 0;
+ aom_merge_corrupted_flag(&tile_data->xd.corrupted, 1);
+ return 0;
+ }
+
+ tile_data->error_info.setjmp = 1;
+ tile_data->xd.error_info = &tile_data->error_info;
+#if CONFIG_DEPENDENT_HORZTILES
+#if CONFIG_TILE_GROUPS
+ if (!cm->dependent_horz_tiles || tile->tg_horz_boundary) {
+#else
+ if (!cm->dependent_horz_tiles) {
+#endif
+ av1_zero_above_context(&pbi->common, tile->mi_col_start, tile->mi_col_end);
+ }
+#else
+ av1_zero_above_context(&pbi->common, tile->mi_col_start, tile->mi_col_end);
+#endif
+
+ for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end;
+ mi_row += cm->mib_size) {
+ av1_zero_left_context(&tile_data->xd);
+
+ for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
+ mi_col += cm->mib_size) {
+ decode_partition(pbi, &tile_data->xd,
+#if CONFIG_SUPERTX
+ 0,
+#endif
+ mi_row, mi_col, &tile_data->bit_reader, cm->sb_size,
+ b_width_log2_lookup[cm->sb_size]);
+#if CONFIG_NCOBMC && CONFIG_MOTION_VAR
+ detoken_and_recon_sb(pbi, &tile_data->xd, mi_row, mi_col,
+ &tile_data->bit_reader, cm->sb_size);
+#endif
+ }
+ }
+ return !tile_data->xd.corrupted;
+}
+
+// sorts in descending order
+static int compare_tile_buffers(const void *a, const void *b) {
+ const TileBufferDec *const buf1 = (const TileBufferDec *)a;
+ const TileBufferDec *const buf2 = (const TileBufferDec *)b;
+ return (int)(buf2->size - buf1->size);
+}
+
+static const uint8_t *decode_tiles_mt(AV1Decoder *pbi, const uint8_t *data,
+ const uint8_t *data_end) {
+ AV1_COMMON *const cm = &pbi->common;
+ const AVxWorkerInterface *const winterface = aom_get_worker_interface();
+ const int tile_cols = cm->tile_cols;
+ const int tile_rows = cm->tile_rows;
+ const int num_workers = AOMMIN(pbi->max_threads & ~1, tile_cols);
+ TileBufferDec(*const tile_buffers)[MAX_TILE_COLS] = pbi->tile_buffers;
+#if CONFIG_EXT_TILE
+ const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows);
+ const int single_row = pbi->dec_tile_row >= 0;
+ const int tile_rows_start = single_row ? dec_tile_row : 0;
+ const int tile_rows_end = single_row ? dec_tile_row + 1 : tile_rows;
+ const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols);
+ const int single_col = pbi->dec_tile_col >= 0;
+ const int tile_cols_start = single_col ? dec_tile_col : 0;
+ const int tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols;
+#else
+ const int tile_rows_start = 0;
+ const int tile_rows_end = tile_rows;
+ const int tile_cols_start = 0;
+ const int tile_cols_end = tile_cols;
+#endif // CONFIG_EXT_TILE
+ int tile_row, tile_col;
+ int i;
+
+#if !(CONFIG_ANS || CONFIG_EXT_TILE)
+ int final_worker = -1;
+#endif // !(CONFIG_ANS || CONFIG_EXT_TILE)
+
+ assert(tile_rows <= MAX_TILE_ROWS);
+ assert(tile_cols <= MAX_TILE_COLS);
+
+ assert(tile_cols * tile_rows > 1);
+
+ // TODO(jzern): See if we can remove the restriction of passing in max
+ // threads to the decoder.
+ if (pbi->num_tile_workers == 0) {
+ const int num_threads = pbi->max_threads & ~1;
+ CHECK_MEM_ERROR(cm, pbi->tile_workers,
+ aom_malloc(num_threads * sizeof(*pbi->tile_workers)));
+ // Ensure tile data offsets will be properly aligned. This may fail on
+ // platforms without DECLARE_ALIGNED().
+ assert((sizeof(*pbi->tile_worker_data) % 16) == 0);
+ CHECK_MEM_ERROR(
+ cm, pbi->tile_worker_data,
+ aom_memalign(32, num_threads * sizeof(*pbi->tile_worker_data)));
+ CHECK_MEM_ERROR(cm, pbi->tile_worker_info,
+ aom_malloc(num_threads * sizeof(*pbi->tile_worker_info)));
+ for (i = 0; i < num_threads; ++i) {
+ AVxWorker *const worker = &pbi->tile_workers[i];
+ ++pbi->num_tile_workers;
+
+ winterface->init(worker);
+ if (i < num_threads - 1 && !winterface->reset(worker)) {
+ aom_internal_error(&cm->error, AOM_CODEC_ERROR,
+ "Tile decoder thread creation failed");
+ }
+ }
+ }
+
+ // Reset tile decoding hook
+ for (i = 0; i < num_workers; ++i) {
+ AVxWorker *const worker = &pbi->tile_workers[i];
+ winterface->sync(worker);
+ worker->hook = (AVxWorkerHook)tile_worker_hook;
+ worker->data1 = &pbi->tile_worker_data[i];
+ worker->data2 = &pbi->tile_worker_info[i];
+ }
+
+ // Initialize thread frame counts.
+ if (cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) {
+ for (i = 0; i < num_workers; ++i) {
+ TileWorkerData *const twd = (TileWorkerData *)pbi->tile_workers[i].data1;
+ av1_zero(twd->counts);
+ }
+ }
+
+ // Load tile data into tile_buffers
+ get_tile_buffers(pbi, data, data_end, tile_buffers);
+
+ for (tile_row = tile_rows_start; tile_row < tile_rows_end; ++tile_row) {
+ // Sort the buffers in this tile row based on size in descending order.
+ qsort(&tile_buffers[tile_row][tile_cols_start],
+ tile_cols_end - tile_cols_start, sizeof(tile_buffers[0][0]),
+ compare_tile_buffers);
+
+ // Rearrange the tile buffers in this tile row such that per-tile group
+ // the largest, and presumably the most difficult tile will be decoded in
+ // the main thread. This should help minimize the number of instances
+ // where the main thread is waiting for a worker to complete.
+ {
+ int group_start;
+ for (group_start = tile_cols_start; group_start < tile_cols_end;
+ group_start += num_workers) {
+ const int group_end = AOMMIN(group_start + num_workers, tile_cols);
+ const TileBufferDec largest = tile_buffers[tile_row][group_start];
+ memmove(&tile_buffers[tile_row][group_start],
+ &tile_buffers[tile_row][group_start + 1],
+ (group_end - group_start - 1) * sizeof(tile_buffers[0][0]));
+ tile_buffers[tile_row][group_end - 1] = largest;
+ }
+ }
+
+ for (tile_col = tile_cols_start; tile_col < tile_cols_end;) {
+ // Launch workers for individual columns
+ for (i = 0; i < num_workers && tile_col < tile_cols_end;
+ ++i, ++tile_col) {
+ TileBufferDec *const buf = &tile_buffers[tile_row][tile_col];
+ AVxWorker *const worker = &pbi->tile_workers[i];
+ TileWorkerData *const twd = (TileWorkerData *)worker->data1;
+ TileInfo *const tile_info = (TileInfo *)worker->data2;
+
+ twd->pbi = pbi;
+ twd->xd = pbi->mb;
+ twd->xd.corrupted = 0;
+ twd->xd.counts =
+ cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD
+ ? &twd->counts
+ : NULL;
+ av1_zero(twd->dqcoeff);
+ av1_tile_init(tile_info, cm, tile_row, buf->col);
+ av1_tile_init(&twd->xd.tile, cm, tile_row, buf->col);
+ setup_bool_decoder(buf->data, data_end, buf->size, &cm->error,
+ &twd->bit_reader,
+#if CONFIG_ANS && ANS_MAX_SYMBOLS
+ 1 << cm->ans_window_size_log2,
+#endif // CONFIG_ANS && ANS_MAX_SYMBOLS
+ pbi->decrypt_cb, pbi->decrypt_state);
+ av1_init_macroblockd(cm, &twd->xd,
+#if CONFIG_PVQ
+ twd->pvq_ref_coeff,
+#endif
+#if CONFIG_CFL
+ &twd->cfl,
+#endif
+ twd->dqcoeff);
+#if CONFIG_PVQ
+ daala_dec_init(cm, &twd->xd.daala_dec, &twd->bit_reader);
+ twd->xd.daala_dec.state.adapt = &twd->tctx.pvq_context;
+#endif
+#if CONFIG_EC_ADAPT
+ // Initialise the tile context from the frame context
+ twd->tctx = *cm->fc;
+ twd->xd.tile_ctx = &twd->tctx;
+#endif
+#if CONFIG_PALETTE
+ twd->xd.plane[0].color_index_map = twd->color_index_map[0];
+ twd->xd.plane[1].color_index_map = twd->color_index_map[1];
+#endif // CONFIG_PALETTE
+
+ worker->had_error = 0;
+ if (i == num_workers - 1 || tile_col == tile_cols_end - 1) {
+ winterface->execute(worker);
+ } else {
+ winterface->launch(worker);
+ }
+
+#if !(CONFIG_ANS || CONFIG_EXT_TILE)
+ if (tile_row == tile_rows - 1 && buf->col == tile_cols - 1) {
+ final_worker = i;
+ }
+#endif // !(CONFIG_ANS || CONFIG_EXT_TILE)
+ }
+
+ // Sync all workers
+ for (; i > 0; --i) {
+ AVxWorker *const worker = &pbi->tile_workers[i - 1];
+ // TODO(jzern): The tile may have specific error data associated with
+ // its aom_internal_error_info which could be propagated to the main
+ // info in cm. Additionally once the threads have been synced and an
+ // error is detected, there's no point in continuing to decode tiles.
+ pbi->mb.corrupted |= !winterface->sync(worker);
+ }
+ }
+ }
+
+ // Accumulate thread frame counts.
+ if (cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) {
+ for (i = 0; i < num_workers; ++i) {
+ TileWorkerData *const twd = (TileWorkerData *)pbi->tile_workers[i].data1;
+ av1_accumulate_frame_counts(&cm->counts, &twd->counts);
+ }
+ }
+
+#if CONFIG_EXT_TILE
+ // Return the end of the last tile buffer
+ return tile_buffers[tile_rows - 1][tile_cols - 1].raw_data_end;
+#else
+#if CONFIG_ANS
+ return data_end;
+#else
+ assert(final_worker != -1);
+ {
+ TileWorkerData *const twd =
+ (TileWorkerData *)pbi->tile_workers[final_worker].data1;
+ return aom_reader_find_end(&twd->bit_reader);
+ }
+#endif // CONFIG_ANS
+#endif // CONFIG_EXT_TILE
+}
+
+static void error_handler(void *data) {
+ AV1_COMMON *const cm = (AV1_COMMON *)data;
+ aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Truncated packet");
+}
+
+static void read_bitdepth_colorspace_sampling(AV1_COMMON *cm,
+ struct aom_read_bit_buffer *rb) {
+ if (cm->profile >= PROFILE_2) {
+ cm->bit_depth = aom_rb_read_bit(rb) ? AOM_BITS_12 : AOM_BITS_10;
+ } else {
+ cm->bit_depth = AOM_BITS_8;
+ }
+
+#if CONFIG_HIGHBITDEPTH
+ if (cm->bit_depth > AOM_BITS_8) {
+ cm->use_highbitdepth = 1;
+ } else {
+#if CONFIG_LOWBITDEPTH
+ cm->use_highbitdepth = 0;
+#else
+ cm->use_highbitdepth = 1;
+#endif
+ }
+#endif
+
+ cm->color_space = aom_rb_read_literal(rb, 3);
+ if (cm->color_space != AOM_CS_SRGB) {
+ // [16,235] (including xvycc) vs [0,255] range
+ cm->color_range = aom_rb_read_bit(rb);
+ if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) {
+ cm->subsampling_x = aom_rb_read_bit(rb);
+ cm->subsampling_y = aom_rb_read_bit(rb);
+ if (cm->subsampling_x == 1 && cm->subsampling_y == 1)
+ aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
+ "4:2:0 color not supported in profile 1 or 3");
+ if (aom_rb_read_bit(rb))
+ aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
+ "Reserved bit set");
+ } else {
+ cm->subsampling_y = cm->subsampling_x = 1;
+ }
+ } else {
+ if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) {
+ // Note if colorspace is SRGB then 4:4:4 chroma sampling is assumed.
+ // 4:2:2 or 4:4:0 chroma sampling is not allowed.
+ cm->subsampling_y = cm->subsampling_x = 0;
+ if (aom_rb_read_bit(rb))
+ aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
+ "Reserved bit set");
+ } else {
+ aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
+ "4:4:4 color not supported in profile 0 or 2");
+ }
+ }
+}
+
+#if CONFIG_REFERENCE_BUFFER
+void read_sequence_header(SequenceHeader *seq_params) {
+ /* Placeholder for actually reading from the bitstream */
+ seq_params->frame_id_numbers_present_flag = FRAME_ID_NUMBERS_PRESENT_FLAG;
+ seq_params->frame_id_length_minus7 = FRAME_ID_LENGTH_MINUS7;
+ seq_params->delta_frame_id_length_minus2 = DELTA_FRAME_ID_LENGTH_MINUS2;
+}
+#endif
+
+static size_t read_uncompressed_header(AV1Decoder *pbi,
+ struct aom_read_bit_buffer *rb) {
+ AV1_COMMON *const cm = &pbi->common;
+ MACROBLOCKD *const xd = &pbi->mb;
+ BufferPool *const pool = cm->buffer_pool;
+ RefCntBuffer *const frame_bufs = pool->frame_bufs;
+ int i, mask, ref_index = 0;
+ size_t sz;
+
+#if CONFIG_REFERENCE_BUFFER
+ /* TODO: Move outside frame loop or inside key-frame branch */
+ read_sequence_header(&pbi->seq_params);
+#endif
+
+ cm->last_frame_type = cm->frame_type;
+ cm->last_intra_only = cm->intra_only;
+
+#if CONFIG_EXT_REFS
+ // NOTE: By default all coded frames to be used as a reference
+ cm->is_reference_frame = 1;
+#endif // CONFIG_EXT_REFS
+
+ if (aom_rb_read_literal(rb, 2) != AOM_FRAME_MARKER)
+ aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
+ "Invalid frame marker");
+
+ cm->profile = av1_read_profile(rb);
+
+ const BITSTREAM_PROFILE MAX_SUPPORTED_PROFILE =
+ CONFIG_HIGHBITDEPTH ? MAX_PROFILES : PROFILE_2;
+
+ if (cm->profile >= MAX_SUPPORTED_PROFILE)
+ aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
+ "Unsupported bitstream profile");
+
+ cm->show_existing_frame = aom_rb_read_bit(rb);
+
+ if (cm->show_existing_frame) {
+ // Show an existing frame directly.
+ const int existing_frame_idx = aom_rb_read_literal(rb, 3);
+ const int frame_to_show = cm->ref_frame_map[existing_frame_idx];
+#if CONFIG_REFERENCE_BUFFER
+ if (pbi->seq_params.frame_id_numbers_present_flag) {
+ int frame_id_length = pbi->seq_params.frame_id_length_minus7 + 7;
+ int display_frame_id = aom_rb_read_literal(rb, frame_id_length);
+ /* Compare display_frame_id with ref_frame_id and check valid for
+ * referencing */
+ if (display_frame_id != cm->ref_frame_id[existing_frame_idx] ||
+ cm->valid_for_referencing[existing_frame_idx] == 0)
+ aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
+ "Reference buffer frame ID mismatch");
+ }
+#endif
+ lock_buffer_pool(pool);
+ if (frame_to_show < 0 || frame_bufs[frame_to_show].ref_count < 1) {
+ unlock_buffer_pool(pool);
+ aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
+ "Buffer %d does not contain a decoded frame",
+ frame_to_show);
+ }
+ ref_cnt_fb(frame_bufs, &cm->new_fb_idx, frame_to_show);
+ unlock_buffer_pool(pool);
+
+ cm->lf.filter_level = 0;
+ cm->show_frame = 1;
+ pbi->refresh_frame_flags = 0;
+
+ if (cm->frame_parallel_decode) {
+ for (i = 0; i < REF_FRAMES; ++i)
+ cm->next_ref_frame_map[i] = cm->ref_frame_map[i];
+ }
+
+ return 0;
+ }
+
+ cm->frame_type = (FRAME_TYPE)aom_rb_read_bit(rb);
+ cm->show_frame = aom_rb_read_bit(rb);
+ cm->error_resilient_mode = aom_rb_read_bit(rb);
+#if CONFIG_REFERENCE_BUFFER
+ if (pbi->seq_params.frame_id_numbers_present_flag) {
+ int frame_id_length = pbi->seq_params.frame_id_length_minus7 + 7;
+ int diff_len = pbi->seq_params.delta_frame_id_length_minus2 + 2;
+ int prev_frame_id = 0;
+ if (cm->frame_type != KEY_FRAME) {
+ prev_frame_id = cm->current_frame_id;
+ }
+ cm->current_frame_id = aom_rb_read_literal(rb, frame_id_length);
+
+ if (cm->frame_type != KEY_FRAME) {
+ int diff_frame_id;
+ if (cm->current_frame_id > prev_frame_id) {
+ diff_frame_id = cm->current_frame_id - prev_frame_id;
+ } else {
+ diff_frame_id =
+ (1 << frame_id_length) + cm->current_frame_id - prev_frame_id;
+ }
+ /* Check current_frame_id for conformance */
+ if (prev_frame_id == cm->current_frame_id ||
+ diff_frame_id >= (1 << (frame_id_length - 1))) {
+ aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
+ "Invalid value of current_frame_id");
+ }
+ }
+ /* Check if some frames need to be marked as not valid for referencing */
+ for (i = 0; i < REF_FRAMES; i++) {
+ if (cm->frame_type == KEY_FRAME) {
+ cm->valid_for_referencing[i] = 0;
+ } else if (cm->current_frame_id - (1 << diff_len) > 0) {
+ if (cm->ref_frame_id[i] > cm->current_frame_id ||
+ cm->ref_frame_id[i] < cm->current_frame_id - (1 << diff_len))
+ cm->valid_for_referencing[i] = 0;
+ } else {
+ if (cm->ref_frame_id[i] > cm->current_frame_id &&
+ cm->ref_frame_id[i] <
+ (1 << frame_id_length) + cm->current_frame_id - (1 << diff_len))
+ cm->valid_for_referencing[i] = 0;
+ }
+ }
+ }
+#endif
+ if (cm->frame_type == KEY_FRAME) {
+ if (!av1_read_sync_code(rb))
+ aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
+ "Invalid frame sync code");
+
+ read_bitdepth_colorspace_sampling(cm, rb);
+ pbi->refresh_frame_flags = (1 << REF_FRAMES) - 1;
+
+ for (i = 0; i < INTER_REFS_PER_FRAME; ++i) {
+ cm->frame_refs[i].idx = INVALID_IDX;
+ cm->frame_refs[i].buf = NULL;
+ }
+
+ setup_frame_size(cm, rb);
+ if (pbi->need_resync) {
+ memset(&cm->ref_frame_map, -1, sizeof(cm->ref_frame_map));
+ pbi->need_resync = 0;
+ }
+#if CONFIG_ANS && ANS_MAX_SYMBOLS
+ cm->ans_window_size_log2 = aom_rb_read_literal(rb, 4) + 8;
+#endif // CONFIG_ANS && ANS_MAX_SYMBOLS
+#if CONFIG_PALETTE
+ cm->allow_screen_content_tools = aom_rb_read_bit(rb);
+#endif // CONFIG_PALETTE
+ } else {
+ cm->intra_only = cm->show_frame ? 0 : aom_rb_read_bit(rb);
+#if CONFIG_PALETTE
+ if (cm->intra_only) cm->allow_screen_content_tools = aom_rb_read_bit(rb);
+#endif // CONFIG_PALETTE
+ if (cm->error_resilient_mode) {
+ cm->reset_frame_context = RESET_FRAME_CONTEXT_ALL;
+ } else {
+ if (cm->intra_only) {
+ cm->reset_frame_context = aom_rb_read_bit(rb)
+ ? RESET_FRAME_CONTEXT_ALL
+ : RESET_FRAME_CONTEXT_CURRENT;
+ } else {
+ cm->reset_frame_context = aom_rb_read_bit(rb)
+ ? RESET_FRAME_CONTEXT_CURRENT
+ : RESET_FRAME_CONTEXT_NONE;
+ if (cm->reset_frame_context == RESET_FRAME_CONTEXT_CURRENT)
+ cm->reset_frame_context = aom_rb_read_bit(rb)
+ ? RESET_FRAME_CONTEXT_ALL
+ : RESET_FRAME_CONTEXT_CURRENT;
+ }
+ }
+
+ if (cm->intra_only) {
+ if (!av1_read_sync_code(rb))
+ aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
+ "Invalid frame sync code");
+
+ read_bitdepth_colorspace_sampling(cm, rb);
+
+ pbi->refresh_frame_flags = aom_rb_read_literal(rb, REF_FRAMES);
+ setup_frame_size(cm, rb);
+ if (pbi->need_resync) {
+ memset(&cm->ref_frame_map, -1, sizeof(cm->ref_frame_map));
+ pbi->need_resync = 0;
+ }
+#if CONFIG_ANS && ANS_MAX_SYMBOLS
+ cm->ans_window_size_log2 = aom_rb_read_literal(rb, 4) + 8;
+#endif
+ } else if (pbi->need_resync != 1) { /* Skip if need resync */
+ pbi->refresh_frame_flags = aom_rb_read_literal(rb, REF_FRAMES);
+
+#if CONFIG_EXT_REFS
+ if (!pbi->refresh_frame_flags) {
+ // NOTE: "pbi->refresh_frame_flags == 0" indicates that the coded frame
+ // will not be used as a reference
+ cm->is_reference_frame = 0;
+ }
+#endif // CONFIG_EXT_REFS
+
+ for (i = 0; i < INTER_REFS_PER_FRAME; ++i) {
+ const int ref = aom_rb_read_literal(rb, REF_FRAMES_LOG2);
+ const int idx = cm->ref_frame_map[ref];
+ RefBuffer *const ref_frame = &cm->frame_refs[i];
+ ref_frame->idx = idx;
+ ref_frame->buf = &frame_bufs[idx].buf;
+ cm->ref_frame_sign_bias[LAST_FRAME + i] = aom_rb_read_bit(rb);
+#if CONFIG_REFERENCE_BUFFER
+ if (pbi->seq_params.frame_id_numbers_present_flag) {
+ int frame_id_length = pbi->seq_params.frame_id_length_minus7 + 7;
+ int diff_len = pbi->seq_params.delta_frame_id_length_minus2 + 2;
+ int delta_frame_id_minus1 = aom_rb_read_literal(rb, diff_len);
+ int ref_frame_id =
+ ((cm->current_frame_id - (delta_frame_id_minus1 + 1) +
+ (1 << frame_id_length)) %
+ (1 << frame_id_length));
+ /* Compare values derived from delta_frame_id_minus1 and
+ * refresh_frame_flags. Also, check valid for referencing */
+ if (ref_frame_id != cm->ref_frame_id[ref] ||
+ cm->valid_for_referencing[ref] == 0)
+ aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
+ "Reference buffer frame ID mismatch");
+ }
+#endif
+ }
+
+#if CONFIG_FRAME_SIZE
+ if (cm->error_resilient_mode == 0) {
+ setup_frame_size_with_refs(cm, rb);
+ } else {
+ setup_frame_size(cm, rb);
+ }
+#else
+ setup_frame_size_with_refs(cm, rb);
+#endif
+
+ cm->allow_high_precision_mv = aom_rb_read_bit(rb);
+ cm->interp_filter = read_frame_interp_filter(rb);
+#if CONFIG_TEMPMV_SIGNALING
+ if (!cm->error_resilient_mode) {
+ cm->use_prev_frame_mvs = aom_rb_read_bit(rb);
+ }
+#endif
+ for (i = 0; i < INTER_REFS_PER_FRAME; ++i) {
+ RefBuffer *const ref_buf = &cm->frame_refs[i];
+#if CONFIG_HIGHBITDEPTH
+ av1_setup_scale_factors_for_frame(
+ &ref_buf->sf, ref_buf->buf->y_crop_width,
+ ref_buf->buf->y_crop_height, cm->width, cm->height,
+ cm->use_highbitdepth);
+#else
+ av1_setup_scale_factors_for_frame(
+ &ref_buf->sf, ref_buf->buf->y_crop_width,
+ ref_buf->buf->y_crop_height, cm->width, cm->height);
+#endif
+ }
+ }
+ }
+#if CONFIG_TEMPMV_SIGNALING
+ cm->cur_frame->intra_only = cm->frame_type == KEY_FRAME || cm->intra_only;
+#endif
+
+#if CONFIG_REFERENCE_BUFFER
+ if (pbi->seq_params.frame_id_numbers_present_flag) {
+ /* If bitmask is set, update reference frame id values and
+ mark frames as valid for reference */
+ int refresh_frame_flags =
+ cm->frame_type == KEY_FRAME ? 0xFF : pbi->refresh_frame_flags;
+ for (i = 0; i < REF_FRAMES; i++) {
+ if ((refresh_frame_flags >> i) & 1) {
+ cm->ref_frame_id[i] = cm->current_frame_id;
+ cm->valid_for_referencing[i] = 1;
+ }
+ }
+ }
+#endif
+
+#if CONFIG_HIGHBITDEPTH
+ get_frame_new_buffer(cm)->bit_depth = cm->bit_depth;
+#endif
+ get_frame_new_buffer(cm)->color_space = cm->color_space;
+ get_frame_new_buffer(cm)->color_range = cm->color_range;
+ get_frame_new_buffer(cm)->render_width = cm->render_width;
+ get_frame_new_buffer(cm)->render_height = cm->render_height;
+
+ if (pbi->need_resync) {
+ aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
+ "Keyframe / intra-only frame required to reset decoder"
+ " state");
+ }
+
+ if (!cm->error_resilient_mode) {
+ cm->refresh_frame_context = aom_rb_read_bit(rb)
+ ? REFRESH_FRAME_CONTEXT_FORWARD
+ : REFRESH_FRAME_CONTEXT_BACKWARD;
+ } else {
+ cm->refresh_frame_context = REFRESH_FRAME_CONTEXT_FORWARD;
+ }
+
+ // This flag will be overridden by the call to av1_setup_past_independence
+ // below, forcing the use of context 0 for those frame types.
+ cm->frame_context_idx = aom_rb_read_literal(rb, FRAME_CONTEXTS_LOG2);
+
+ // Generate next_ref_frame_map.
+ lock_buffer_pool(pool);
+ for (mask = pbi->refresh_frame_flags; mask; mask >>= 1) {
+ if (mask & 1) {
+ cm->next_ref_frame_map[ref_index] = cm->new_fb_idx;
+ ++frame_bufs[cm->new_fb_idx].ref_count;
+ } else {
+ cm->next_ref_frame_map[ref_index] = cm->ref_frame_map[ref_index];
+ }
+ // Current thread holds the reference frame.
+ if (cm->ref_frame_map[ref_index] >= 0)
+ ++frame_bufs[cm->ref_frame_map[ref_index]].ref_count;
+ ++ref_index;
+ }
+
+ for (; ref_index < REF_FRAMES; ++ref_index) {
+ cm->next_ref_frame_map[ref_index] = cm->ref_frame_map[ref_index];
+
+ // Current thread holds the reference frame.
+ if (cm->ref_frame_map[ref_index] >= 0)
+ ++frame_bufs[cm->ref_frame_map[ref_index]].ref_count;
+ }
+ unlock_buffer_pool(pool);
+ pbi->hold_ref_buf = 1;
+
+ if (frame_is_intra_only(cm) || cm->error_resilient_mode)
+ av1_setup_past_independence(cm);
+
+#if CONFIG_EXT_PARTITION
+ set_sb_size(cm, aom_rb_read_bit(rb) ? BLOCK_128X128 : BLOCK_64X64);
+#else
+ set_sb_size(cm, BLOCK_64X64);
+#endif // CONFIG_EXT_PARTITION
+
+ setup_loopfilter(cm, rb);
+#if CONFIG_CDEF
+ setup_cdef(cm, rb);
+#endif
+#if CONFIG_LOOP_RESTORATION
+ decode_restoration_mode(cm, rb);
+#endif // CONFIG_LOOP_RESTORATION
+ setup_quantization(cm, rb);
+#if CONFIG_HIGHBITDEPTH
+ xd->bd = (int)cm->bit_depth;
+#endif
+
+#if CONFIG_Q_ADAPT_PROBS
+ av1_default_coef_probs(cm);
+ if (cm->frame_type == KEY_FRAME || cm->error_resilient_mode ||
+ cm->reset_frame_context == RESET_FRAME_CONTEXT_ALL) {
+ for (i = 0; i < FRAME_CONTEXTS; ++i) cm->frame_contexts[i] = *cm->fc;
+ } else if (cm->reset_frame_context == RESET_FRAME_CONTEXT_CURRENT) {
+ cm->frame_contexts[cm->frame_context_idx] = *cm->fc;
+ }
+#endif // CONFIG_Q_ADAPT_PROBS
+
+ setup_segmentation(cm, rb);
+
+#if CONFIG_DELTA_Q
+ {
+ struct segmentation *const seg = &cm->seg;
+ int segment_quantizer_active = 0;
+ for (i = 0; i < MAX_SEGMENTS; i++) {
+ if (segfeature_active(seg, i, SEG_LVL_ALT_Q)) {
+ segment_quantizer_active = 1;
+ }
+ }
+
+ cm->delta_q_res = 1;
+#if CONFIG_EXT_DELTA_Q
+ cm->delta_lf_res = 1;
+#endif
+ if (segment_quantizer_active == 0 && cm->base_qindex > 0) {
+ cm->delta_q_present_flag = aom_rb_read_bit(rb);
+ } else {
+ cm->delta_q_present_flag = 0;
+ }
+ if (cm->delta_q_present_flag) {
+ xd->prev_qindex = cm->base_qindex;
+ cm->delta_q_res = 1 << aom_rb_read_literal(rb, 2);
+#if CONFIG_EXT_DELTA_Q
+ if (segment_quantizer_active) {
+ assert(seg->abs_delta == SEGMENT_DELTADATA);
+ }
+ cm->delta_lf_present_flag = aom_rb_read_bit(rb);
+ if (cm->delta_lf_present_flag) {
+ xd->prev_delta_lf_from_base = 0;
+ cm->delta_lf_res = 1 << aom_rb_read_literal(rb, 2);
+ } else {
+ cm->delta_lf_present_flag = 0;
+ }
+#endif // CONFIG_EXT_DELTA_Q
+ }
+ }
+#endif
+
+ for (i = 0; i < MAX_SEGMENTS; ++i) {
+ const int qindex = cm->seg.enabled
+ ? av1_get_qindex(&cm->seg, i, cm->base_qindex)
+ : cm->base_qindex;
+ xd->lossless[i] = qindex == 0 && cm->y_dc_delta_q == 0 &&
+ cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0;
+ xd->qindex[i] = qindex;
+ }
+
+ setup_segmentation_dequant(cm);
+ cm->tx_mode = read_tx_mode(cm, xd, rb);
+ cm->reference_mode = read_frame_reference_mode(cm, rb);
+
+#if CONFIG_EXT_TX
+ cm->reduced_tx_set_used = aom_rb_read_bit(rb);
+#endif // CONFIG_EXT_TX
+
+ read_tile_info(pbi, rb);
+ sz = aom_rb_read_literal(rb, 16);
+
+ if (sz == 0)
+ aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
+ "Invalid header size");
+ return sz;
+}
+
+#if CONFIG_EXT_TX
+#if !CONFIG_EC_ADAPT
+static void read_ext_tx_probs(FRAME_CONTEXT *fc, aom_reader *r) {
+ int i, j, k;
+ int s;
+ for (s = 1; s < EXT_TX_SETS_INTER; ++s) {
+ if (aom_read(r, GROUP_DIFF_UPDATE_PROB, ACCT_STR)) {
+ for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
+ if (!use_inter_ext_tx_for_txsize[s][i]) continue;
+ for (j = 0; j < num_ext_tx_set[ext_tx_set_type_inter[s]] - 1; ++j)
+ av1_diff_update_prob(r, &fc->inter_ext_tx_prob[s][i][j], ACCT_STR);
+ }
+ }
+ }
+
+ for (s = 1; s < EXT_TX_SETS_INTRA; ++s) {
+ if (aom_read(r, GROUP_DIFF_UPDATE_PROB, ACCT_STR)) {
+ for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
+ if (!use_intra_ext_tx_for_txsize[s][i]) continue;
+ for (j = 0; j < INTRA_MODES; ++j)
+ for (k = 0; k < num_ext_tx_set[ext_tx_set_type_intra[s]] - 1; ++k)
+ av1_diff_update_prob(r, &fc->intra_ext_tx_prob[s][i][j][k],
+ ACCT_STR);
+ }
+ }
+ }
+}
+#endif // !CONFIG_EC_ADAPT
+#else
+
+#endif // CONFIG_EXT_TX
+#if CONFIG_SUPERTX
+static void read_supertx_probs(FRAME_CONTEXT *fc, aom_reader *r) {
+ int i, j;
+ if (aom_read(r, GROUP_DIFF_UPDATE_PROB, ACCT_STR)) {
+ for (i = 0; i < PARTITION_SUPERTX_CONTEXTS; ++i) {
+ for (j = TX_8X8; j < TX_SIZES; ++j) {
+ av1_diff_update_prob(r, &fc->supertx_prob[i][j], ACCT_STR);
+ }
+ }
+ }
+}
+#endif // CONFIG_SUPERTX
+
+#if CONFIG_GLOBAL_MOTION
+static void read_global_motion_params(WarpedMotionParams *params,
+ WarpedMotionParams *ref_params,
+ aom_prob *probs, aom_reader *r,
+ int allow_hp) {
+ TransformationType type =
+ aom_read_tree(r, av1_global_motion_types_tree, probs, ACCT_STR);
+ int trans_bits;
+ int trans_dec_factor;
+ int trans_prec_diff;
+ set_default_warp_params(params);
+ params->wmtype = type;
+ switch (type) {
+ case HOMOGRAPHY:
+ case HORTRAPEZOID:
+ case VERTRAPEZOID:
+ if (type != HORTRAPEZOID)
+ params->wmmat[6] =
+ aom_read_signed_primitive_refsubexpfin(
+ r, GM_ROW3HOMO_MAX + 1, SUBEXPFIN_K,
+ (ref_params->wmmat[6] >> GM_ROW3HOMO_PREC_DIFF)) *
+ GM_ROW3HOMO_DECODE_FACTOR;
+ if (type != VERTRAPEZOID)
+ params->wmmat[7] =
+ aom_read_signed_primitive_refsubexpfin(
+ r, GM_ROW3HOMO_MAX + 1, SUBEXPFIN_K,
+ (ref_params->wmmat[7] >> GM_ROW3HOMO_PREC_DIFF)) *
+ GM_ROW3HOMO_DECODE_FACTOR;
+ case AFFINE:
+ case ROTZOOM:
+ params->wmmat[2] = aom_read_signed_primitive_refsubexpfin(
+ r, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
+ (ref_params->wmmat[2] >> GM_ALPHA_PREC_DIFF) -
+ (1 << GM_ALPHA_PREC_BITS)) *
+ GM_ALPHA_DECODE_FACTOR +
+ (1 << WARPEDMODEL_PREC_BITS);
+ if (type != VERTRAPEZOID)
+ params->wmmat[3] = aom_read_signed_primitive_refsubexpfin(
+ r, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
+ (ref_params->wmmat[3] >> GM_ALPHA_PREC_DIFF)) *
+ GM_ALPHA_DECODE_FACTOR;
+ if (type >= AFFINE) {
+ if (type != HORTRAPEZOID)
+ params->wmmat[4] = aom_read_signed_primitive_refsubexpfin(
+ r, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
+ (ref_params->wmmat[4] >> GM_ALPHA_PREC_DIFF)) *
+ GM_ALPHA_DECODE_FACTOR;
+ params->wmmat[5] = aom_read_signed_primitive_refsubexpfin(
+ r, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
+ (ref_params->wmmat[5] >> GM_ALPHA_PREC_DIFF) -
+ (1 << GM_ALPHA_PREC_BITS)) *
+ GM_ALPHA_DECODE_FACTOR +
+ (1 << WARPEDMODEL_PREC_BITS);
+ } else {
+ params->wmmat[4] = -params->wmmat[3];
+ params->wmmat[5] = params->wmmat[2];
+ }
+ // fallthrough intended
+ case TRANSLATION:
+ trans_bits = (type == TRANSLATION) ? GM_ABS_TRANS_ONLY_BITS - !allow_hp
+ : GM_ABS_TRANS_BITS;
+ trans_dec_factor = (type == TRANSLATION)
+ ? GM_TRANS_ONLY_DECODE_FACTOR * (1 << !allow_hp)
+ : GM_TRANS_DECODE_FACTOR;
+ trans_prec_diff = (type == TRANSLATION)
+ ? GM_TRANS_ONLY_PREC_DIFF + !allow_hp
+ : GM_TRANS_PREC_DIFF;
+ params->wmmat[0] = aom_read_signed_primitive_refsubexpfin(
+ r, (1 << trans_bits) + 1, SUBEXPFIN_K,
+ (ref_params->wmmat[0] >> trans_prec_diff)) *
+ trans_dec_factor;
+ params->wmmat[1] = aom_read_signed_primitive_refsubexpfin(
+ r, (1 << trans_bits) + 1, SUBEXPFIN_K,
+ (ref_params->wmmat[1] >> trans_prec_diff)) *
+ trans_dec_factor;
+ case IDENTITY: break;
+ default: assert(0);
+ }
+ if (params->wmtype <= AFFINE)
+ if (!get_shear_params(params)) assert(0);
+}
+
+static void read_global_motion(AV1_COMMON *cm, aom_reader *r) {
+ int frame;
+ for (frame = LAST_FRAME; frame <= ALTREF_FRAME; ++frame) {
+ read_global_motion_params(
+ &cm->global_motion[frame], &cm->prev_frame->global_motion[frame],
+ cm->fc->global_motion_types_prob, r, cm->allow_high_precision_mv);
+ /*
+ printf("Dec Ref %d [%d/%d]: %d %d %d %d\n",
+ frame, cm->current_video_frame, cm->show_frame,
+ cm->global_motion[frame].wmmat[0],
+ cm->global_motion[frame].wmmat[1],
+ cm->global_motion[frame].wmmat[2],
+ cm->global_motion[frame].wmmat[3]);
+ */
+ }
+ memcpy(cm->cur_frame->global_motion, cm->global_motion,
+ TOTAL_REFS_PER_FRAME * sizeof(WarpedMotionParams));
+}
+#endif // CONFIG_GLOBAL_MOTION
+
+static int read_compressed_header(AV1Decoder *pbi, const uint8_t *data,
+ size_t partition_size) {
+ AV1_COMMON *const cm = &pbi->common;
+#if CONFIG_SUPERTX
+ MACROBLOCKD *const xd = &pbi->mb;
+#endif
+ FRAME_CONTEXT *const fc = cm->fc;
+ aom_reader r;
+ int k, i;
+#if !CONFIG_EC_ADAPT || \
+ (CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION || CONFIG_EXT_INTER)
+ int j;
+#endif
+
+#if CONFIG_ANS && ANS_MAX_SYMBOLS
+ r.window_size = 1 << cm->ans_window_size_log2;
+#endif
+ if (aom_reader_init(&r, data, partition_size, pbi->decrypt_cb,
+ pbi->decrypt_state))
+ aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
+ "Failed to allocate bool decoder 0");
+
+#if CONFIG_LOOP_RESTORATION
+ if (cm->rst_info[0].frame_restoration_type != RESTORE_NONE ||
+ cm->rst_info[1].frame_restoration_type != RESTORE_NONE ||
+ cm->rst_info[2].frame_restoration_type != RESTORE_NONE) {
+ av1_alloc_restoration_buffers(cm);
+ decode_restoration(cm, &r);
+ }
+#endif
+
+#if !CONFIG_EC_ADAPT
+ if (cm->tx_mode == TX_MODE_SELECT) read_tx_size_probs(fc, &r);
+#endif
+
+#if CONFIG_LV_MAP
+ av1_read_txb_probs(fc, cm->tx_mode, &r);
+#else // CONFIG_LV_MAP
+#if !CONFIG_PVQ
+#if !(CONFIG_EC_ADAPT && CONFIG_NEW_TOKENSET)
+ read_coef_probs(fc, cm->tx_mode, &r);
+#endif // !(CONFIG_EC_ADAPT && CONFIG_NEW_TOKENSET)
+#endif // !CONFIG_PVQ
+#endif // CONFIG_LV_MAP
+
+#if CONFIG_VAR_TX
+ for (k = 0; k < TXFM_PARTITION_CONTEXTS; ++k)
+ av1_diff_update_prob(&r, &fc->txfm_partition_prob[k], ACCT_STR);
+#endif // CONFIG_VAR_TX
+ for (k = 0; k < SKIP_CONTEXTS; ++k)
+ av1_diff_update_prob(&r, &fc->skip_probs[k], ACCT_STR);
+
+#if CONFIG_DELTA_Q && !CONFIG_EC_ADAPT
+#if CONFIG_EXT_DELTA_Q
+ if (cm->delta_q_present_flag) {
+ for (k = 0; k < DELTA_Q_PROBS; ++k)
+ av1_diff_update_prob(&r, &fc->delta_q_prob[k], ACCT_STR);
+ }
+ if (cm->delta_lf_present_flag) {
+ for (k = 0; k < DELTA_LF_PROBS; ++k)
+ av1_diff_update_prob(&r, &fc->delta_lf_prob[k], ACCT_STR);
+ }
+#else
+ for (k = 0; k < DELTA_Q_PROBS; ++k)
+ av1_diff_update_prob(&r, &fc->delta_q_prob[k], ACCT_STR);
+#endif
+#endif
+
+#if !CONFIG_EC_ADAPT
+ if (cm->seg.enabled && cm->seg.update_map) {
+ if (cm->seg.temporal_update) {
+ for (k = 0; k < PREDICTION_PROBS; k++)
+ av1_diff_update_prob(&r, &cm->fc->seg.pred_probs[k], ACCT_STR);
+ }
+ for (k = 0; k < MAX_SEGMENTS - 1; k++)
+ av1_diff_update_prob(&r, &cm->fc->seg.tree_probs[k], ACCT_STR);
+ }
+
+ for (j = 0; j < INTRA_MODES; j++) {
+ for (i = 0; i < INTRA_MODES - 1; ++i)
+ av1_diff_update_prob(&r, &fc->uv_mode_prob[j][i], ACCT_STR);
+ }
+
+#if CONFIG_EXT_PARTITION_TYPES
+ for (j = 0; j < PARTITION_PLOFFSET; ++j)
+ for (i = 0; i < PARTITION_TYPES - 1; ++i)
+ av1_diff_update_prob(&r, &fc->partition_prob[j][i], ACCT_STR);
+ for (; j < PARTITION_CONTEXTS_PRIMARY; ++j)
+ for (i = 0; i < EXT_PARTITION_TYPES - 1; ++i)
+ av1_diff_update_prob(&r, &fc->partition_prob[j][i], ACCT_STR);
+#else
+ for (j = 0; j < PARTITION_CONTEXTS_PRIMARY; ++j)
+ for (i = 0; i < PARTITION_TYPES - 1; ++i)
+ av1_diff_update_prob(&r, &fc->partition_prob[j][i], ACCT_STR);
+#endif // CONFIG_EXT_PARTITION_TYPES
+
+#if CONFIG_UNPOISON_PARTITION_CTX
+ for (; j < PARTITION_CONTEXTS_PRIMARY + PARTITION_BLOCK_SIZES; ++j)
+ av1_diff_update_prob(&r, &fc->partition_prob[j][PARTITION_VERT], ACCT_STR);
+ for (; j < PARTITION_CONTEXTS_PRIMARY + 2 * PARTITION_BLOCK_SIZES; ++j)
+ av1_diff_update_prob(&r, &fc->partition_prob[j][PARTITION_HORZ], ACCT_STR);
+#endif // CONFIG_UNPOISON_PARTITION_CTX
+
+#if CONFIG_EXT_INTRA && CONFIG_INTRA_INTERP
+ for (i = 0; i < INTRA_FILTERS + 1; ++i)
+ for (j = 0; j < INTRA_FILTERS - 1; ++j)
+ av1_diff_update_prob(&r, &fc->intra_filter_probs[i][j], ACCT_STR);
+#endif // CONFIG_EXT_INTRA && CONFIG_INTRA_INTERP
+#endif // !CONFIG_EC_ADAPT
+
+ if (frame_is_intra_only(cm)) {
+ av1_copy(cm->kf_y_prob, av1_kf_y_mode_prob);
+#if CONFIG_EC_MULTISYMBOL
+ av1_copy(cm->fc->kf_y_cdf, av1_kf_y_mode_cdf);
+#endif
+#if !CONFIG_EC_ADAPT
+ for (k = 0; k < INTRA_MODES; k++)
+ for (j = 0; j < INTRA_MODES; j++)
+ for (i = 0; i < INTRA_MODES - 1; ++i)
+ av1_diff_update_prob(&r, &cm->kf_y_prob[k][j][i], ACCT_STR);
+#endif
+ } else {
+#if !CONFIG_REF_MV
+ nmv_context *const nmvc = &fc->nmvc;
+#endif
+ read_inter_mode_probs(fc, &r);
+
+#if CONFIG_EXT_INTER
+ read_inter_compound_mode_probs(fc, &r);
+ if (cm->reference_mode != COMPOUND_REFERENCE) {
+ for (i = 0; i < BLOCK_SIZE_GROUPS; i++) {
+ if (is_interintra_allowed_bsize_group(i)) {
+ av1_diff_update_prob(&r, &fc->interintra_prob[i], ACCT_STR);
+ }
+ }
+ for (i = 0; i < BLOCK_SIZE_GROUPS; i++) {
+ for (j = 0; j < INTERINTRA_MODES - 1; j++)
+ av1_diff_update_prob(&r, &fc->interintra_mode_prob[i][j], ACCT_STR);
+ }
+ for (i = 0; i < BLOCK_SIZES; i++) {
+ if (is_interintra_allowed_bsize(i) && is_interintra_wedge_used(i)) {
+ av1_diff_update_prob(&r, &fc->wedge_interintra_prob[i], ACCT_STR);
+ }
+ }
+ }
+#if CONFIG_COMPOUND_SEGMENT || CONFIG_WEDGE
+ if (cm->reference_mode != SINGLE_REFERENCE) {
+ for (i = 0; i < BLOCK_SIZES; i++) {
+ for (j = 0; j < COMPOUND_TYPES - 1; j++) {
+ av1_diff_update_prob(&r, &fc->compound_type_prob[i][j], ACCT_STR);
+ }
+ }
+ }
+#endif // CONFIG_COMPOUND_SEGMENT || CONFIG_WEDGE
+#endif // CONFIG_EXT_INTER
+
+#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
+ for (i = BLOCK_8X8; i < BLOCK_SIZES; ++i) {
+ for (j = 0; j < MOTION_MODES - 1; ++j)
+ av1_diff_update_prob(&r, &fc->motion_mode_prob[i][j], ACCT_STR);
+ }
+#endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
+
+#if !CONFIG_EC_ADAPT
+ if (cm->interp_filter == SWITCHABLE) read_switchable_interp_probs(fc, &r);
+#endif
+
+ for (i = 0; i < INTRA_INTER_CONTEXTS; i++)
+ av1_diff_update_prob(&r, &fc->intra_inter_prob[i], ACCT_STR);
+
+ if (cm->reference_mode != SINGLE_REFERENCE)
+ setup_compound_reference_mode(cm);
+ read_frame_reference_mode_probs(cm, &r);
+
+#if !CONFIG_EC_ADAPT
+ for (j = 0; j < BLOCK_SIZE_GROUPS; j++) {
+ for (i = 0; i < INTRA_MODES - 1; ++i)
+ av1_diff_update_prob(&r, &fc->y_mode_prob[j][i], ACCT_STR);
+ }
+#endif
+
+#if CONFIG_REF_MV
+ for (i = 0; i < NMV_CONTEXTS; ++i)
+ read_mv_probs(&fc->nmvc[i], cm->allow_high_precision_mv, &r);
+#else
+ read_mv_probs(nmvc, cm->allow_high_precision_mv, &r);
+#endif
+#if !CONFIG_EC_ADAPT
+ read_ext_tx_probs(fc, &r);
+#endif // EC_ADAPT
+#if CONFIG_SUPERTX
+ if (!xd->lossless[0]) read_supertx_probs(fc, &r);
+#endif
+#if CONFIG_GLOBAL_MOTION
+ read_global_motion(cm, &r);
+#endif // EC_ADAPT, DAALA_EC
+ }
+#if CONFIG_EC_MULTISYMBOL && !CONFIG_EC_ADAPT
+#if CONFIG_NEW_TOKENSET
+ av1_coef_head_cdfs(fc);
+#endif
+ /* Make tail distribution from head */
+ av1_coef_pareto_cdfs(fc);
+#if CONFIG_REF_MV
+ for (i = 0; i < NMV_CONTEXTS; ++i) av1_set_mv_cdfs(&fc->nmvc[i]);
+#else
+ av1_set_mv_cdfs(&fc->nmvc);
+#endif
+ av1_set_mode_cdfs(cm);
+#endif // CONFIG_EC_MULTISYMBOL && !CONFIG_EC_ADAPT
+
+ return aom_reader_has_error(&r);
+}
+
+#ifdef NDEBUG
+#define debug_check_frame_counts(cm) (void)0
+#else // !NDEBUG
+// Counts should only be incremented when frame_parallel_decoding_mode and
+// error_resilient_mode are disabled.
+static void debug_check_frame_counts(const AV1_COMMON *const cm) {
+ FRAME_COUNTS zero_counts;
+ av1_zero(zero_counts);
+ assert(cm->refresh_frame_context != REFRESH_FRAME_CONTEXT_BACKWARD ||
+ cm->error_resilient_mode);
+ assert(!memcmp(cm->counts.y_mode, zero_counts.y_mode,
+ sizeof(cm->counts.y_mode)));
+ assert(!memcmp(cm->counts.uv_mode, zero_counts.uv_mode,
+ sizeof(cm->counts.uv_mode)));
+ assert(!memcmp(cm->counts.partition, zero_counts.partition,
+ sizeof(cm->counts.partition)));
+ assert(!memcmp(cm->counts.coef, zero_counts.coef, sizeof(cm->counts.coef)));
+ assert(!memcmp(cm->counts.eob_branch, zero_counts.eob_branch,
+ sizeof(cm->counts.eob_branch)));
+#if CONFIG_EC_MULTISYMBOL
+ assert(!memcmp(cm->counts.blockz_count, zero_counts.blockz_count,
+ sizeof(cm->counts.blockz_count)));
+#endif
+ assert(!memcmp(cm->counts.switchable_interp, zero_counts.switchable_interp,
+ sizeof(cm->counts.switchable_interp)));
+ assert(!memcmp(cm->counts.inter_mode, zero_counts.inter_mode,
+ sizeof(cm->counts.inter_mode)));
+#if CONFIG_EXT_INTER
+ assert(!memcmp(cm->counts.inter_compound_mode,
+ zero_counts.inter_compound_mode,
+ sizeof(cm->counts.inter_compound_mode)));
+ assert(!memcmp(cm->counts.interintra, zero_counts.interintra,
+ sizeof(cm->counts.interintra)));
+ assert(!memcmp(cm->counts.wedge_interintra, zero_counts.wedge_interintra,
+ sizeof(cm->counts.wedge_interintra)));
+ assert(!memcmp(cm->counts.compound_interinter,
+ zero_counts.compound_interinter,
+ sizeof(cm->counts.compound_interinter)));
+#endif // CONFIG_EXT_INTER
+#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
+ assert(!memcmp(cm->counts.motion_mode, zero_counts.motion_mode,
+ sizeof(cm->counts.motion_mode)));
+#endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
+ assert(!memcmp(cm->counts.intra_inter, zero_counts.intra_inter,
+ sizeof(cm->counts.intra_inter)));
+ assert(!memcmp(cm->counts.comp_inter, zero_counts.comp_inter,
+ sizeof(cm->counts.comp_inter)));
+ assert(!memcmp(cm->counts.single_ref, zero_counts.single_ref,
+ sizeof(cm->counts.single_ref)));
+ assert(!memcmp(cm->counts.comp_ref, zero_counts.comp_ref,
+ sizeof(cm->counts.comp_ref)));
+#if CONFIG_EXT_REFS
+ assert(!memcmp(cm->counts.comp_bwdref, zero_counts.comp_bwdref,
+ sizeof(cm->counts.comp_bwdref)));
+#endif // CONFIG_EXT_REFS
+ assert(!memcmp(&cm->counts.tx_size, &zero_counts.tx_size,
+ sizeof(cm->counts.tx_size)));
+ assert(!memcmp(cm->counts.skip, zero_counts.skip, sizeof(cm->counts.skip)));
+#if CONFIG_REF_MV
+ assert(
+ !memcmp(&cm->counts.mv[0], &zero_counts.mv[0], sizeof(cm->counts.mv[0])));
+ assert(
+ !memcmp(&cm->counts.mv[1], &zero_counts.mv[1], sizeof(cm->counts.mv[0])));
+#else
+ assert(!memcmp(&cm->counts.mv, &zero_counts.mv, sizeof(cm->counts.mv)));
+#endif
+ assert(!memcmp(cm->counts.inter_ext_tx, zero_counts.inter_ext_tx,
+ sizeof(cm->counts.inter_ext_tx)));
+ assert(!memcmp(cm->counts.intra_ext_tx, zero_counts.intra_ext_tx,
+ sizeof(cm->counts.intra_ext_tx)));
+}
+#endif // NDEBUG
+
+static struct aom_read_bit_buffer *init_read_bit_buffer(
+ AV1Decoder *pbi, struct aom_read_bit_buffer *rb, const uint8_t *data,
+ const uint8_t *data_end, uint8_t clear_data[MAX_AV1_HEADER_SIZE]) {
+ rb->bit_offset = 0;
+ rb->error_handler = error_handler;
+ rb->error_handler_data = &pbi->common;
+ if (pbi->decrypt_cb) {
+ const int n = (int)AOMMIN(MAX_AV1_HEADER_SIZE, data_end - data);
+ pbi->decrypt_cb(pbi->decrypt_state, data, clear_data, n);
+ rb->bit_buffer = clear_data;
+ rb->bit_buffer_end = clear_data + n;
+ } else {
+ rb->bit_buffer = data;
+ rb->bit_buffer_end = data_end;
+ }
+ return rb;
+}
+
+//------------------------------------------------------------------------------
+
+int av1_read_sync_code(struct aom_read_bit_buffer *const rb) {
+ return aom_rb_read_literal(rb, 8) == AV1_SYNC_CODE_0 &&
+ aom_rb_read_literal(rb, 8) == AV1_SYNC_CODE_1 &&
+ aom_rb_read_literal(rb, 8) == AV1_SYNC_CODE_2;
+}
+
+void av1_read_frame_size(struct aom_read_bit_buffer *rb, int *width,
+ int *height) {
+ *width = aom_rb_read_literal(rb, 16) + 1;
+ *height = aom_rb_read_literal(rb, 16) + 1;
+}
+
+BITSTREAM_PROFILE av1_read_profile(struct aom_read_bit_buffer *rb) {
+ int profile = aom_rb_read_bit(rb);
+ profile |= aom_rb_read_bit(rb) << 1;
+ if (profile > 2) profile += aom_rb_read_bit(rb);
+ return (BITSTREAM_PROFILE)profile;
+}
+
+#if CONFIG_EC_ADAPT
+static void make_update_tile_list_dec(AV1Decoder *pbi, int tile_rows,
+ int tile_cols, FRAME_CONTEXT *ec_ctxs[]) {
+ int i;
+ for (i = 0; i < tile_rows * tile_cols; ++i)
+ ec_ctxs[i] = &pbi->tile_data[i].tctx;
+}
+#endif
+
+void av1_decode_frame(AV1Decoder *pbi, const uint8_t *data,
+ const uint8_t *data_end, const uint8_t **p_data_end) {
+ AV1_COMMON *const cm = &pbi->common;
+ MACROBLOCKD *const xd = &pbi->mb;
+ struct aom_read_bit_buffer rb;
+ int context_updated = 0;
+ uint8_t clear_data[MAX_AV1_HEADER_SIZE];
+ size_t first_partition_size;
+ YV12_BUFFER_CONFIG *new_fb;
+
+#if CONFIG_ADAPT_SCAN
+ av1_deliver_eob_threshold(cm, xd);
+#endif
+#if CONFIG_BITSTREAM_DEBUG
+ bitstream_queue_set_frame_read(cm->current_video_frame * 2 + cm->show_frame);
+#endif
+
+ first_partition_size = read_uncompressed_header(
+ pbi, init_read_bit_buffer(pbi, &rb, data, data_end, clear_data));
+
+#if CONFIG_EXT_TILE
+ // If cm->tile_encoding_mode == TILE_NORMAL, the independent decoding of a
+ // single tile or a section of a frame is not allowed.
+ if (!cm->tile_encoding_mode &&
+ (pbi->dec_tile_row >= 0 || pbi->dec_tile_col >= 0)) {
+ pbi->dec_tile_row = -1;
+ pbi->dec_tile_col = -1;
+ }
+#endif // CONFIG_EXT_TILE
+
+#if CONFIG_TILE_GROUPS
+ pbi->first_partition_size = first_partition_size;
+ pbi->uncomp_hdr_size = aom_rb_bytes_read(&rb);
+#endif
+ new_fb = get_frame_new_buffer(cm);
+ xd->cur_buf = new_fb;
+#if CONFIG_GLOBAL_MOTION
+ int i;
+ for (i = LAST_FRAME; i <= ALTREF_FRAME; ++i) {
+ set_default_warp_params(&cm->global_motion[i]);
+ set_default_warp_params(&cm->cur_frame->global_motion[i]);
+ }
+ xd->global_motion = cm->global_motion;
+#endif // CONFIG_GLOBAL_MOTION
+
+ if (!first_partition_size) {
+ // showing a frame directly
+ *p_data_end = data + aom_rb_bytes_read(&rb);
+ return;
+ }
+
+ data += aom_rb_bytes_read(&rb);
+ if (!read_is_valid(data, first_partition_size, data_end))
+ aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
+ "Truncated packet or corrupt header length");
+
+#if CONFIG_REF_MV
+ cm->setup_mi(cm);
+#endif
+
+#if CONFIG_TEMPMV_SIGNALING
+ if (cm->use_prev_frame_mvs) {
+ RefBuffer *last_fb_ref_buf = &cm->frame_refs[LAST_FRAME - LAST_FRAME];
+ cm->prev_frame = &cm->buffer_pool->frame_bufs[last_fb_ref_buf->idx];
+ assert(!cm->error_resilient_mode &&
+ cm->width == last_fb_ref_buf->buf->y_width &&
+ cm->height == last_fb_ref_buf->buf->y_height &&
+ !cm->prev_frame->intra_only);
+ }
+#else
+ cm->use_prev_frame_mvs =
+ !cm->error_resilient_mode && cm->width == cm->last_width &&
+ cm->height == cm->last_height && !cm->last_intra_only &&
+ cm->last_show_frame && (cm->last_frame_type != KEY_FRAME);
+#endif
+#if CONFIG_EXT_REFS
+ // NOTE(zoeliu): As cm->prev_frame can take neither a frame of
+ // show_exisiting_frame=1, nor can it take a frame not used as
+ // a reference, it is probable that by the time it is being
+ // referred to, the frame buffer it originally points to may
+ // already get expired and have been reassigned to the current
+ // newly coded frame. Hence, we need to check whether this is
+ // the case, and if yes, we have 2 choices:
+ // (1) Simply disable the use of previous frame mvs; or
+ // (2) Have cm->prev_frame point to one reference frame buffer,
+ // e.g. LAST_FRAME.
+ if (cm->use_prev_frame_mvs && !dec_is_ref_frame_buf(pbi, cm->prev_frame)) {
+ // Reassign the LAST_FRAME buffer to cm->prev_frame.
+ RefBuffer *last_fb_ref_buf = &cm->frame_refs[LAST_FRAME - LAST_FRAME];
+ cm->prev_frame = &cm->buffer_pool->frame_bufs[last_fb_ref_buf->idx];
+ }
+#endif // CONFIG_EXT_REFS
+
+ av1_setup_block_planes(xd, cm->subsampling_x, cm->subsampling_y);
+
+ *cm->fc = cm->frame_contexts[cm->frame_context_idx];
+ if (!cm->fc->initialized)
+ aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
+ "Uninitialized entropy context.");
+
+ av1_zero(cm->counts);
+
+ xd->corrupted = 0;
+ new_fb->corrupted = read_compressed_header(pbi, data, first_partition_size);
+ if (new_fb->corrupted)
+ aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
+ "Decode failed. Frame data header is corrupted.");
+
+ if (cm->lf.filter_level && !cm->skip_loop_filter) {
+ av1_loop_filter_frame_init(cm, cm->lf.filter_level);
+ }
+
+ // If encoded in frame parallel mode, frame context is ready after decoding
+ // the frame header.
+ if (cm->frame_parallel_decode &&
+ cm->refresh_frame_context != REFRESH_FRAME_CONTEXT_BACKWARD) {
+ AVxWorker *const worker = pbi->frame_worker_owner;
+ FrameWorkerData *const frame_worker_data = worker->data1;
+ if (cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_FORWARD) {
+ context_updated = 1;
+ cm->frame_contexts[cm->frame_context_idx] = *cm->fc;
+ }
+ av1_frameworker_lock_stats(worker);
+ pbi->cur_buf->row = -1;
+ pbi->cur_buf->col = -1;
+ frame_worker_data->frame_context_ready = 1;
+ // Signal the main thread that context is ready.
+ av1_frameworker_signal_stats(worker);
+ av1_frameworker_unlock_stats(worker);
+ }
+
+#if CONFIG_SUBFRAME_PROB_UPDATE
+ av1_copy(cm->starting_coef_probs, cm->fc->coef_probs);
+ cm->coef_probs_update_idx = 0;
+#endif // CONFIG_SUBFRAME_PROB_UPDATE
+
+ if (pbi->max_threads > 1 && !CONFIG_CB4X4 &&
+#if CONFIG_EXT_TILE
+ pbi->dec_tile_col < 0 && // Decoding all columns
+#endif // CONFIG_EXT_TILE
+ cm->tile_cols > 1) {
+ // Multi-threaded tile decoder
+ *p_data_end = decode_tiles_mt(pbi, data + first_partition_size, data_end);
+ if (!xd->corrupted) {
+ if (!cm->skip_loop_filter) {
+ // If multiple threads are used to decode tiles, then we use those
+ // threads to do parallel loopfiltering.
+ av1_loop_filter_frame_mt(new_fb, cm, pbi->mb.plane, cm->lf.filter_level,
+ 0, 0, pbi->tile_workers, pbi->num_tile_workers,
+ &pbi->lf_row_sync);
+ }
+ } else {
+ aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
+ "Decode failed. Frame data is corrupted.");
+ }
+ } else {
+ *p_data_end = decode_tiles(pbi, data + first_partition_size, data_end);
+ }
+
+#if CONFIG_CDEF
+ if (!cm->skip_loop_filter) {
+ av1_cdef_frame(&pbi->cur_buf->buf, cm, &pbi->mb);
+ }
+#endif // CONFIG_CDEF
+
+#if CONFIG_LOOP_RESTORATION
+ if (cm->rst_info[0].frame_restoration_type != RESTORE_NONE ||
+ cm->rst_info[1].frame_restoration_type != RESTORE_NONE ||
+ cm->rst_info[2].frame_restoration_type != RESTORE_NONE) {
+ av1_loop_restoration_frame(new_fb, cm, cm->rst_info, 7, 0, NULL);
+ }
+#endif // CONFIG_LOOP_RESTORATION
+
+ if (!xd->corrupted) {
+ if (cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) {
+#if CONFIG_EC_ADAPT
+ FRAME_CONTEXT **tile_ctxs = aom_malloc(cm->tile_rows * cm->tile_cols *
+ sizeof(&pbi->tile_data[0].tctx));
+ aom_cdf_prob **cdf_ptrs =
+ aom_malloc(cm->tile_rows * cm->tile_cols *
+ sizeof(&pbi->tile_data[0].tctx.partition_cdf[0][0]));
+ make_update_tile_list_dec(pbi, cm->tile_rows, cm->tile_cols, tile_ctxs);
+#endif
+
+#if CONFIG_SUBFRAME_PROB_UPDATE
+ cm->partial_prob_update = 0;
+#endif // CONFIG_SUBFRAME_PROB_UPDATE
+ av1_adapt_coef_probs(cm);
+ av1_adapt_intra_frame_probs(cm);
+#if CONFIG_EC_ADAPT
+ av1_average_tile_coef_cdfs(pbi->common.fc, tile_ctxs, cdf_ptrs,
+ cm->tile_rows * cm->tile_cols);
+ av1_average_tile_intra_cdfs(pbi->common.fc, tile_ctxs, cdf_ptrs,
+ cm->tile_rows * cm->tile_cols);
+#if CONFIG_PVQ
+ av1_average_tile_pvq_cdfs(pbi->common.fc, tile_ctxs,
+ cm->tile_rows * cm->tile_cols);
+#endif // CONFIG_PVQ
+#endif // CONFIG_EC_ADAPT
+#if CONFIG_ADAPT_SCAN
+ av1_adapt_scan_order(cm);
+#endif // CONFIG_ADAPT_SCAN
+
+ if (!frame_is_intra_only(cm)) {
+ av1_adapt_inter_frame_probs(cm);
+ av1_adapt_mv_probs(cm, cm->allow_high_precision_mv);
+#if CONFIG_EC_ADAPT
+ av1_average_tile_inter_cdfs(&pbi->common, pbi->common.fc, tile_ctxs,
+ cdf_ptrs, cm->tile_rows * cm->tile_cols);
+ av1_average_tile_mv_cdfs(pbi->common.fc, tile_ctxs, cdf_ptrs,
+ cm->tile_rows * cm->tile_cols);
+#endif
+ }
+#if CONFIG_EC_ADAPT
+ aom_free(tile_ctxs);
+ aom_free(cdf_ptrs);
+#endif
+ } else {
+ debug_check_frame_counts(cm);
+ }
+ } else {
+ aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
+ "Decode failed. Frame data is corrupted.");
+ }
+
+#if CONFIG_INSPECTION
+ if (pbi->inspect_cb != NULL) {
+ (*pbi->inspect_cb)(pbi, pbi->inspect_ctx);
+ }
+#endif
+
+ // Non frame parallel update frame context here.
+ if (!cm->error_resilient_mode && !context_updated)
+ cm->frame_contexts[cm->frame_context_idx] = *cm->fc;
+}