summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/common/x86/selfguided_avx2.c
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/aom/av1/common/x86/selfguided_avx2.c')
-rw-r--r--third_party/aom/av1/common/x86/selfguided_avx2.c719
1 files changed, 719 insertions, 0 deletions
diff --git a/third_party/aom/av1/common/x86/selfguided_avx2.c b/third_party/aom/av1/common/x86/selfguided_avx2.c
new file mode 100644
index 000000000..375def62e
--- /dev/null
+++ b/third_party/aom/av1/common/x86/selfguided_avx2.c
@@ -0,0 +1,719 @@
+/*
+ * Copyright (c) 2018, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#include <immintrin.h>
+
+#include "config/aom_config.h"
+#include "config/av1_rtcd.h"
+
+#include "av1/common/restoration.h"
+#include "aom_dsp/x86/synonyms.h"
+#include "aom_dsp/x86/synonyms_avx2.h"
+
+// Load 8 bytes from the possibly-misaligned pointer p, extend each byte to
+// 32-bit precision and return them in an AVX2 register.
+static __m256i yy256_load_extend_8_32(const void *p) {
+ return _mm256_cvtepu8_epi32(xx_loadl_64(p));
+}
+
+// Load 8 halfwords from the possibly-misaligned pointer p, extend each
+// halfword to 32-bit precision and return them in an AVX2 register.
+static __m256i yy256_load_extend_16_32(const void *p) {
+ return _mm256_cvtepu16_epi32(xx_loadu_128(p));
+}
+
+// Compute the scan of an AVX2 register holding 8 32-bit integers. If the
+// register holds x0..x7 then the scan will hold x0, x0+x1, x0+x1+x2, ...,
+// x0+x1+...+x7
+//
+// Let [...] represent a 128-bit block, and let a, ..., h be 32-bit integers
+// (assumed small enough to be able to add them without overflow).
+//
+// Use -> as shorthand for summing, i.e. h->a = h + g + f + e + d + c + b + a.
+//
+// x = [h g f e][d c b a]
+// x01 = [g f e 0][c b a 0]
+// x02 = [g+h f+g e+f e][c+d b+c a+b a]
+// x03 = [e+f e 0 0][a+b a 0 0]
+// x04 = [e->h e->g e->f e][a->d a->c a->b a]
+// s = a->d
+// s01 = [a->d a->d a->d a->d]
+// s02 = [a->d a->d a->d a->d][0 0 0 0]
+// ret = [a->h a->g a->f a->e][a->d a->c a->b a]
+static __m256i scan_32(__m256i x) {
+ const __m256i x01 = _mm256_slli_si256(x, 4);
+ const __m256i x02 = _mm256_add_epi32(x, x01);
+ const __m256i x03 = _mm256_slli_si256(x02, 8);
+ const __m256i x04 = _mm256_add_epi32(x02, x03);
+ const int32_t s = _mm256_extract_epi32(x04, 3);
+ const __m128i s01 = _mm_set1_epi32(s);
+ const __m256i s02 = _mm256_insertf128_si256(_mm256_setzero_si256(), s01, 1);
+ return _mm256_add_epi32(x04, s02);
+}
+
+// Compute two integral images from src. B sums elements; A sums their
+// squares. The images are offset by one pixel, so will have width and height
+// equal to width + 1, height + 1 and the first row and column will be zero.
+//
+// A+1 and B+1 should be aligned to 32 bytes. buf_stride should be a multiple
+// of 8.
+
+static void *memset_zero_avx(int32_t *dest, const __m256i *zero, size_t count) {
+ unsigned int i = 0;
+ for (i = 0; i < (count & 0xffffffe0); i += 32) {
+ _mm256_storeu_si256((__m256i *)(dest + i), *zero);
+ _mm256_storeu_si256((__m256i *)(dest + i + 8), *zero);
+ _mm256_storeu_si256((__m256i *)(dest + i + 16), *zero);
+ _mm256_storeu_si256((__m256i *)(dest + i + 24), *zero);
+ }
+ for (; i < (count & 0xfffffff8); i += 8) {
+ _mm256_storeu_si256((__m256i *)(dest + i), *zero);
+ }
+ for (; i < count; i++) {
+ dest[i] = 0;
+ }
+ return dest;
+}
+
+static void integral_images(const uint8_t *src, int src_stride, int width,
+ int height, int32_t *A, int32_t *B,
+ int buf_stride) {
+ const __m256i zero = _mm256_setzero_si256();
+ // Write out the zero top row
+ memset_zero_avx(A, &zero, (width + 8));
+ memset_zero_avx(B, &zero, (width + 8));
+ for (int i = 0; i < height; ++i) {
+ // Zero the left column.
+ A[(i + 1) * buf_stride] = B[(i + 1) * buf_stride] = 0;
+
+ // ldiff is the difference H - D where H is the output sample immediately
+ // to the left and D is the output sample above it. These are scalars,
+ // replicated across the eight lanes.
+ __m256i ldiff1 = zero, ldiff2 = zero;
+ for (int j = 0; j < width; j += 8) {
+ const int ABj = 1 + j;
+
+ const __m256i above1 = yy_load_256(B + ABj + i * buf_stride);
+ const __m256i above2 = yy_load_256(A + ABj + i * buf_stride);
+
+ const __m256i x1 = yy256_load_extend_8_32(src + j + i * src_stride);
+ const __m256i x2 = _mm256_madd_epi16(x1, x1);
+
+ const __m256i sc1 = scan_32(x1);
+ const __m256i sc2 = scan_32(x2);
+
+ const __m256i row1 =
+ _mm256_add_epi32(_mm256_add_epi32(sc1, above1), ldiff1);
+ const __m256i row2 =
+ _mm256_add_epi32(_mm256_add_epi32(sc2, above2), ldiff2);
+
+ yy_store_256(B + ABj + (i + 1) * buf_stride, row1);
+ yy_store_256(A + ABj + (i + 1) * buf_stride, row2);
+
+ // Calculate the new H - D.
+ ldiff1 = _mm256_set1_epi32(
+ _mm256_extract_epi32(_mm256_sub_epi32(row1, above1), 7));
+ ldiff2 = _mm256_set1_epi32(
+ _mm256_extract_epi32(_mm256_sub_epi32(row2, above2), 7));
+ }
+ }
+}
+
+// Compute two integral images from src. B sums elements; A sums their squares
+//
+// A and B should be aligned to 32 bytes. buf_stride should be a multiple of 8.
+static void integral_images_highbd(const uint16_t *src, int src_stride,
+ int width, int height, int32_t *A,
+ int32_t *B, int buf_stride) {
+ const __m256i zero = _mm256_setzero_si256();
+ // Write out the zero top row
+ memset_zero_avx(A, &zero, (width + 8));
+ memset_zero_avx(B, &zero, (width + 8));
+
+ for (int i = 0; i < height; ++i) {
+ // Zero the left column.
+ A[(i + 1) * buf_stride] = B[(i + 1) * buf_stride] = 0;
+
+ // ldiff is the difference H - D where H is the output sample immediately
+ // to the left and D is the output sample above it. These are scalars,
+ // replicated across the eight lanes.
+ __m256i ldiff1 = zero, ldiff2 = zero;
+ for (int j = 0; j < width; j += 8) {
+ const int ABj = 1 + j;
+
+ const __m256i above1 = yy_load_256(B + ABj + i * buf_stride);
+ const __m256i above2 = yy_load_256(A + ABj + i * buf_stride);
+
+ const __m256i x1 = yy256_load_extend_16_32(src + j + i * src_stride);
+ const __m256i x2 = _mm256_madd_epi16(x1, x1);
+
+ const __m256i sc1 = scan_32(x1);
+ const __m256i sc2 = scan_32(x2);
+
+ const __m256i row1 =
+ _mm256_add_epi32(_mm256_add_epi32(sc1, above1), ldiff1);
+ const __m256i row2 =
+ _mm256_add_epi32(_mm256_add_epi32(sc2, above2), ldiff2);
+
+ yy_store_256(B + ABj + (i + 1) * buf_stride, row1);
+ yy_store_256(A + ABj + (i + 1) * buf_stride, row2);
+
+ // Calculate the new H - D.
+ ldiff1 = _mm256_set1_epi32(
+ _mm256_extract_epi32(_mm256_sub_epi32(row1, above1), 7));
+ ldiff2 = _mm256_set1_epi32(
+ _mm256_extract_epi32(_mm256_sub_epi32(row2, above2), 7));
+ }
+ }
+}
+
+// Compute 8 values of boxsum from the given integral image. ii should point
+// at the middle of the box (for the first value). r is the box radius.
+static INLINE __m256i boxsum_from_ii(const int32_t *ii, int stride, int r) {
+ const __m256i tl = yy_loadu_256(ii - (r + 1) - (r + 1) * stride);
+ const __m256i tr = yy_loadu_256(ii + (r + 0) - (r + 1) * stride);
+ const __m256i bl = yy_loadu_256(ii - (r + 1) + r * stride);
+ const __m256i br = yy_loadu_256(ii + (r + 0) + r * stride);
+ const __m256i u = _mm256_sub_epi32(tr, tl);
+ const __m256i v = _mm256_sub_epi32(br, bl);
+ return _mm256_sub_epi32(v, u);
+}
+
+static __m256i round_for_shift(unsigned shift) {
+ return _mm256_set1_epi32((1 << shift) >> 1);
+}
+
+static __m256i compute_p(__m256i sum1, __m256i sum2, int bit_depth, int n) {
+ __m256i an, bb;
+ if (bit_depth > 8) {
+ const __m256i rounding_a = round_for_shift(2 * (bit_depth - 8));
+ const __m256i rounding_b = round_for_shift(bit_depth - 8);
+ const __m128i shift_a = _mm_cvtsi32_si128(2 * (bit_depth - 8));
+ const __m128i shift_b = _mm_cvtsi32_si128(bit_depth - 8);
+ const __m256i a =
+ _mm256_srl_epi32(_mm256_add_epi32(sum2, rounding_a), shift_a);
+ const __m256i b =
+ _mm256_srl_epi32(_mm256_add_epi32(sum1, rounding_b), shift_b);
+ // b < 2^14, so we can use a 16-bit madd rather than a 32-bit
+ // mullo to square it
+ bb = _mm256_madd_epi16(b, b);
+ an = _mm256_max_epi32(_mm256_mullo_epi32(a, _mm256_set1_epi32(n)), bb);
+ } else {
+ bb = _mm256_madd_epi16(sum1, sum1);
+ an = _mm256_mullo_epi32(sum2, _mm256_set1_epi32(n));
+ }
+ return _mm256_sub_epi32(an, bb);
+}
+
+// Assumes that C, D are integral images for the original buffer which has been
+// extended to have a padding of SGRPROJ_BORDER_VERT/SGRPROJ_BORDER_HORZ pixels
+// on the sides. A, B, C, D point at logical position (0, 0).
+static void calc_ab(int32_t *A, int32_t *B, const int32_t *C, const int32_t *D,
+ int width, int height, int buf_stride, int bit_depth,
+ int sgr_params_idx, int radius_idx) {
+ const sgr_params_type *const params = &sgr_params[sgr_params_idx];
+ const int r = params->r[radius_idx];
+ const int n = (2 * r + 1) * (2 * r + 1);
+ const __m256i s = _mm256_set1_epi32(params->s[radius_idx]);
+ // one_over_n[n-1] is 2^12/n, so easily fits in an int16
+ const __m256i one_over_n = _mm256_set1_epi32(one_by_x[n - 1]);
+
+ const __m256i rnd_z = round_for_shift(SGRPROJ_MTABLE_BITS);
+ const __m256i rnd_res = round_for_shift(SGRPROJ_RECIP_BITS);
+
+ // Set up masks
+ const __m128i ones32 = _mm_set_epi32(0, 0, 0xffffffff, 0xffffffff);
+ __m256i mask[8];
+ for (int idx = 0; idx < 8; idx++) {
+ const __m128i shift = _mm_cvtsi32_si128(8 * (8 - idx));
+ mask[idx] = _mm256_cvtepi8_epi32(_mm_srl_epi64(ones32, shift));
+ }
+
+ for (int i = -1; i < height + 1; ++i) {
+ for (int j = -1; j < width + 1; j += 8) {
+ const int32_t *Cij = C + i * buf_stride + j;
+ const int32_t *Dij = D + i * buf_stride + j;
+
+ __m256i sum1 = boxsum_from_ii(Dij, buf_stride, r);
+ __m256i sum2 = boxsum_from_ii(Cij, buf_stride, r);
+
+ // When width + 2 isn't a multiple of 8, sum1 and sum2 will contain
+ // some uninitialised data in their upper words. We use a mask to
+ // ensure that these bits are set to 0.
+ int idx = AOMMIN(8, width + 1 - j);
+ assert(idx >= 1);
+
+ if (idx < 8) {
+ sum1 = _mm256_and_si256(mask[idx], sum1);
+ sum2 = _mm256_and_si256(mask[idx], sum2);
+ }
+
+ const __m256i p = compute_p(sum1, sum2, bit_depth, n);
+
+ const __m256i z = _mm256_min_epi32(
+ _mm256_srli_epi32(_mm256_add_epi32(_mm256_mullo_epi32(p, s), rnd_z),
+ SGRPROJ_MTABLE_BITS),
+ _mm256_set1_epi32(255));
+
+ const __m256i a_res = _mm256_i32gather_epi32(x_by_xplus1, z, 4);
+
+ yy_storeu_256(A + i * buf_stride + j, a_res);
+
+ const __m256i a_complement =
+ _mm256_sub_epi32(_mm256_set1_epi32(SGRPROJ_SGR), a_res);
+
+ // sum1 might have lanes greater than 2^15, so we can't use madd to do
+ // multiplication involving sum1. However, a_complement and one_over_n
+ // are both less than 256, so we can multiply them first.
+ const __m256i a_comp_over_n = _mm256_madd_epi16(a_complement, one_over_n);
+ const __m256i b_int = _mm256_mullo_epi32(a_comp_over_n, sum1);
+ const __m256i b_res = _mm256_srli_epi32(_mm256_add_epi32(b_int, rnd_res),
+ SGRPROJ_RECIP_BITS);
+
+ yy_storeu_256(B + i * buf_stride + j, b_res);
+ }
+ }
+}
+
+// Calculate 8 values of the "cross sum" starting at buf. This is a 3x3 filter
+// where the outer four corners have weight 3 and all other pixels have weight
+// 4.
+//
+// Pixels are indexed as follows:
+// xtl xt xtr
+// xl x xr
+// xbl xb xbr
+//
+// buf points to x
+//
+// fours = xl + xt + xr + xb + x
+// threes = xtl + xtr + xbr + xbl
+// cross_sum = 4 * fours + 3 * threes
+// = 4 * (fours + threes) - threes
+// = (fours + threes) << 2 - threes
+static INLINE __m256i cross_sum(const int32_t *buf, int stride) {
+ const __m256i xtl = yy_loadu_256(buf - 1 - stride);
+ const __m256i xt = yy_loadu_256(buf - stride);
+ const __m256i xtr = yy_loadu_256(buf + 1 - stride);
+ const __m256i xl = yy_loadu_256(buf - 1);
+ const __m256i x = yy_loadu_256(buf);
+ const __m256i xr = yy_loadu_256(buf + 1);
+ const __m256i xbl = yy_loadu_256(buf - 1 + stride);
+ const __m256i xb = yy_loadu_256(buf + stride);
+ const __m256i xbr = yy_loadu_256(buf + 1 + stride);
+
+ const __m256i fours = _mm256_add_epi32(
+ xl, _mm256_add_epi32(xt, _mm256_add_epi32(xr, _mm256_add_epi32(xb, x))));
+ const __m256i threes =
+ _mm256_add_epi32(xtl, _mm256_add_epi32(xtr, _mm256_add_epi32(xbr, xbl)));
+
+ return _mm256_sub_epi32(_mm256_slli_epi32(_mm256_add_epi32(fours, threes), 2),
+ threes);
+}
+
+// The final filter for self-guided restoration. Computes a weighted average
+// across A, B with "cross sums" (see cross_sum implementation above).
+static void final_filter(int32_t *dst, int dst_stride, const int32_t *A,
+ const int32_t *B, int buf_stride, const void *dgd8,
+ int dgd_stride, int width, int height, int highbd) {
+ const int nb = 5;
+ const __m256i rounding =
+ round_for_shift(SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
+ const uint8_t *dgd_real =
+ highbd ? (const uint8_t *)CONVERT_TO_SHORTPTR(dgd8) : dgd8;
+
+ for (int i = 0; i < height; ++i) {
+ for (int j = 0; j < width; j += 8) {
+ const __m256i a = cross_sum(A + i * buf_stride + j, buf_stride);
+ const __m256i b = cross_sum(B + i * buf_stride + j, buf_stride);
+
+ const __m128i raw =
+ xx_loadu_128(dgd_real + ((i * dgd_stride + j) << highbd));
+ const __m256i src =
+ highbd ? _mm256_cvtepu16_epi32(raw) : _mm256_cvtepu8_epi32(raw);
+
+ __m256i v = _mm256_add_epi32(_mm256_madd_epi16(a, src), b);
+ __m256i w = _mm256_srai_epi32(_mm256_add_epi32(v, rounding),
+ SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
+
+ yy_storeu_256(dst + i * dst_stride + j, w);
+ }
+ }
+}
+
+// Assumes that C, D are integral images for the original buffer which has been
+// extended to have a padding of SGRPROJ_BORDER_VERT/SGRPROJ_BORDER_HORZ pixels
+// on the sides. A, B, C, D point at logical position (0, 0).
+static void calc_ab_fast(int32_t *A, int32_t *B, const int32_t *C,
+ const int32_t *D, int width, int height,
+ int buf_stride, int bit_depth, int sgr_params_idx,
+ int radius_idx) {
+ const sgr_params_type *const params = &sgr_params[sgr_params_idx];
+ const int r = params->r[radius_idx];
+ const int n = (2 * r + 1) * (2 * r + 1);
+ const __m256i s = _mm256_set1_epi32(params->s[radius_idx]);
+ // one_over_n[n-1] is 2^12/n, so easily fits in an int16
+ const __m256i one_over_n = _mm256_set1_epi32(one_by_x[n - 1]);
+
+ const __m256i rnd_z = round_for_shift(SGRPROJ_MTABLE_BITS);
+ const __m256i rnd_res = round_for_shift(SGRPROJ_RECIP_BITS);
+
+ // Set up masks
+ const __m128i ones32 = _mm_set_epi32(0, 0, 0xffffffff, 0xffffffff);
+ __m256i mask[8];
+ for (int idx = 0; idx < 8; idx++) {
+ const __m128i shift = _mm_cvtsi32_si128(8 * (8 - idx));
+ mask[idx] = _mm256_cvtepi8_epi32(_mm_srl_epi64(ones32, shift));
+ }
+
+ for (int i = -1; i < height + 1; i += 2) {
+ for (int j = -1; j < width + 1; j += 8) {
+ const int32_t *Cij = C + i * buf_stride + j;
+ const int32_t *Dij = D + i * buf_stride + j;
+
+ __m256i sum1 = boxsum_from_ii(Dij, buf_stride, r);
+ __m256i sum2 = boxsum_from_ii(Cij, buf_stride, r);
+
+ // When width + 2 isn't a multiple of 8, sum1 and sum2 will contain
+ // some uninitialised data in their upper words. We use a mask to
+ // ensure that these bits are set to 0.
+ int idx = AOMMIN(8, width + 1 - j);
+ assert(idx >= 1);
+
+ if (idx < 8) {
+ sum1 = _mm256_and_si256(mask[idx], sum1);
+ sum2 = _mm256_and_si256(mask[idx], sum2);
+ }
+
+ const __m256i p = compute_p(sum1, sum2, bit_depth, n);
+
+ const __m256i z = _mm256_min_epi32(
+ _mm256_srli_epi32(_mm256_add_epi32(_mm256_mullo_epi32(p, s), rnd_z),
+ SGRPROJ_MTABLE_BITS),
+ _mm256_set1_epi32(255));
+
+ const __m256i a_res = _mm256_i32gather_epi32(x_by_xplus1, z, 4);
+
+ yy_storeu_256(A + i * buf_stride + j, a_res);
+
+ const __m256i a_complement =
+ _mm256_sub_epi32(_mm256_set1_epi32(SGRPROJ_SGR), a_res);
+
+ // sum1 might have lanes greater than 2^15, so we can't use madd to do
+ // multiplication involving sum1. However, a_complement and one_over_n
+ // are both less than 256, so we can multiply them first.
+ const __m256i a_comp_over_n = _mm256_madd_epi16(a_complement, one_over_n);
+ const __m256i b_int = _mm256_mullo_epi32(a_comp_over_n, sum1);
+ const __m256i b_res = _mm256_srli_epi32(_mm256_add_epi32(b_int, rnd_res),
+ SGRPROJ_RECIP_BITS);
+
+ yy_storeu_256(B + i * buf_stride + j, b_res);
+ }
+ }
+}
+
+// Calculate 8 values of the "cross sum" starting at buf.
+//
+// Pixels are indexed like this:
+// xtl xt xtr
+// - buf -
+// xbl xb xbr
+//
+// Pixels are weighted like this:
+// 5 6 5
+// 0 0 0
+// 5 6 5
+//
+// fives = xtl + xtr + xbl + xbr
+// sixes = xt + xb
+// cross_sum = 6 * sixes + 5 * fives
+// = 5 * (fives + sixes) - sixes
+// = (fives + sixes) << 2 + (fives + sixes) + sixes
+static INLINE __m256i cross_sum_fast_even_row(const int32_t *buf, int stride) {
+ const __m256i xtl = yy_loadu_256(buf - 1 - stride);
+ const __m256i xt = yy_loadu_256(buf - stride);
+ const __m256i xtr = yy_loadu_256(buf + 1 - stride);
+ const __m256i xbl = yy_loadu_256(buf - 1 + stride);
+ const __m256i xb = yy_loadu_256(buf + stride);
+ const __m256i xbr = yy_loadu_256(buf + 1 + stride);
+
+ const __m256i fives =
+ _mm256_add_epi32(xtl, _mm256_add_epi32(xtr, _mm256_add_epi32(xbr, xbl)));
+ const __m256i sixes = _mm256_add_epi32(xt, xb);
+ const __m256i fives_plus_sixes = _mm256_add_epi32(fives, sixes);
+
+ return _mm256_add_epi32(
+ _mm256_add_epi32(_mm256_slli_epi32(fives_plus_sixes, 2),
+ fives_plus_sixes),
+ sixes);
+}
+
+// Calculate 8 values of the "cross sum" starting at buf.
+//
+// Pixels are indexed like this:
+// xl x xr
+//
+// Pixels are weighted like this:
+// 5 6 5
+//
+// buf points to x
+//
+// fives = xl + xr
+// sixes = x
+// cross_sum = 5 * fives + 6 * sixes
+// = 4 * (fives + sixes) + (fives + sixes) + sixes
+// = (fives + sixes) << 2 + (fives + sixes) + sixes
+static INLINE __m256i cross_sum_fast_odd_row(const int32_t *buf) {
+ const __m256i xl = yy_loadu_256(buf - 1);
+ const __m256i x = yy_loadu_256(buf);
+ const __m256i xr = yy_loadu_256(buf + 1);
+
+ const __m256i fives = _mm256_add_epi32(xl, xr);
+ const __m256i sixes = x;
+
+ const __m256i fives_plus_sixes = _mm256_add_epi32(fives, sixes);
+
+ return _mm256_add_epi32(
+ _mm256_add_epi32(_mm256_slli_epi32(fives_plus_sixes, 2),
+ fives_plus_sixes),
+ sixes);
+}
+
+// The final filter for the self-guided restoration. Computes a
+// weighted average across A, B with "cross sums" (see cross_sum_...
+// implementations above).
+static void final_filter_fast(int32_t *dst, int dst_stride, const int32_t *A,
+ const int32_t *B, int buf_stride,
+ const void *dgd8, int dgd_stride, int width,
+ int height, int highbd) {
+ const int nb0 = 5;
+ const int nb1 = 4;
+
+ const __m256i rounding0 =
+ round_for_shift(SGRPROJ_SGR_BITS + nb0 - SGRPROJ_RST_BITS);
+ const __m256i rounding1 =
+ round_for_shift(SGRPROJ_SGR_BITS + nb1 - SGRPROJ_RST_BITS);
+
+ const uint8_t *dgd_real =
+ highbd ? (const uint8_t *)CONVERT_TO_SHORTPTR(dgd8) : dgd8;
+
+ for (int i = 0; i < height; ++i) {
+ if (!(i & 1)) { // even row
+ for (int j = 0; j < width; j += 8) {
+ const __m256i a =
+ cross_sum_fast_even_row(A + i * buf_stride + j, buf_stride);
+ const __m256i b =
+ cross_sum_fast_even_row(B + i * buf_stride + j, buf_stride);
+
+ const __m128i raw =
+ xx_loadu_128(dgd_real + ((i * dgd_stride + j) << highbd));
+ const __m256i src =
+ highbd ? _mm256_cvtepu16_epi32(raw) : _mm256_cvtepu8_epi32(raw);
+
+ __m256i v = _mm256_add_epi32(_mm256_madd_epi16(a, src), b);
+ __m256i w =
+ _mm256_srai_epi32(_mm256_add_epi32(v, rounding0),
+ SGRPROJ_SGR_BITS + nb0 - SGRPROJ_RST_BITS);
+
+ yy_storeu_256(dst + i * dst_stride + j, w);
+ }
+ } else { // odd row
+ for (int j = 0; j < width; j += 8) {
+ const __m256i a = cross_sum_fast_odd_row(A + i * buf_stride + j);
+ const __m256i b = cross_sum_fast_odd_row(B + i * buf_stride + j);
+
+ const __m128i raw =
+ xx_loadu_128(dgd_real + ((i * dgd_stride + j) << highbd));
+ const __m256i src =
+ highbd ? _mm256_cvtepu16_epi32(raw) : _mm256_cvtepu8_epi32(raw);
+
+ __m256i v = _mm256_add_epi32(_mm256_madd_epi16(a, src), b);
+ __m256i w =
+ _mm256_srai_epi32(_mm256_add_epi32(v, rounding1),
+ SGRPROJ_SGR_BITS + nb1 - SGRPROJ_RST_BITS);
+
+ yy_storeu_256(dst + i * dst_stride + j, w);
+ }
+ }
+ }
+}
+
+void av1_selfguided_restoration_avx2(const uint8_t *dgd8, int width, int height,
+ int dgd_stride, int32_t *flt0,
+ int32_t *flt1, int flt_stride,
+ int sgr_params_idx, int bit_depth,
+ int highbd) {
+ // The ALIGN_POWER_OF_TWO macro here ensures that column 1 of Atl, Btl,
+ // Ctl and Dtl is 32-byte aligned.
+ const int buf_elts = ALIGN_POWER_OF_TWO(RESTORATION_PROC_UNIT_PELS, 3);
+
+ DECLARE_ALIGNED(32, int32_t,
+ buf[4 * ALIGN_POWER_OF_TWO(RESTORATION_PROC_UNIT_PELS, 3)]);
+
+ const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ;
+ const int height_ext = height + 2 * SGRPROJ_BORDER_VERT;
+
+ // Adjusting the stride of A and B here appears to avoid bad cache effects,
+ // leading to a significant speed improvement.
+ // We also align the stride to a multiple of 32 bytes for efficiency.
+ int buf_stride = ALIGN_POWER_OF_TWO(width_ext + 16, 3);
+
+ // The "tl" pointers point at the top-left of the initialised data for the
+ // array.
+ int32_t *Atl = buf + 0 * buf_elts + 7;
+ int32_t *Btl = buf + 1 * buf_elts + 7;
+ int32_t *Ctl = buf + 2 * buf_elts + 7;
+ int32_t *Dtl = buf + 3 * buf_elts + 7;
+
+ // The "0" pointers are (- SGRPROJ_BORDER_VERT, -SGRPROJ_BORDER_HORZ). Note
+ // there's a zero row and column in A, B (integral images), so we move down
+ // and right one for them.
+ const int buf_diag_border =
+ SGRPROJ_BORDER_HORZ + buf_stride * SGRPROJ_BORDER_VERT;
+
+ int32_t *A0 = Atl + 1 + buf_stride;
+ int32_t *B0 = Btl + 1 + buf_stride;
+ int32_t *C0 = Ctl + 1 + buf_stride;
+ int32_t *D0 = Dtl + 1 + buf_stride;
+
+ // Finally, A, B, C, D point at position (0, 0).
+ int32_t *A = A0 + buf_diag_border;
+ int32_t *B = B0 + buf_diag_border;
+ int32_t *C = C0 + buf_diag_border;
+ int32_t *D = D0 + buf_diag_border;
+
+ const int dgd_diag_border =
+ SGRPROJ_BORDER_HORZ + dgd_stride * SGRPROJ_BORDER_VERT;
+ const uint8_t *dgd0 = dgd8 - dgd_diag_border;
+
+ // Generate integral images from the input. C will contain sums of squares; D
+ // will contain just sums
+ if (highbd)
+ integral_images_highbd(CONVERT_TO_SHORTPTR(dgd0), dgd_stride, width_ext,
+ height_ext, Ctl, Dtl, buf_stride);
+ else
+ integral_images(dgd0, dgd_stride, width_ext, height_ext, Ctl, Dtl,
+ buf_stride);
+
+ const sgr_params_type *const params = &sgr_params[sgr_params_idx];
+ // Write to flt0 and flt1
+ // If params->r == 0 we skip the corresponding filter. We only allow one of
+ // the radii to be 0, as having both equal to 0 would be equivalent to
+ // skipping SGR entirely.
+ assert(!(params->r[0] == 0 && params->r[1] == 0));
+ assert(params->r[0] < AOMMIN(SGRPROJ_BORDER_VERT, SGRPROJ_BORDER_HORZ));
+ assert(params->r[1] < AOMMIN(SGRPROJ_BORDER_VERT, SGRPROJ_BORDER_HORZ));
+
+ if (params->r[0] > 0) {
+ calc_ab_fast(A, B, C, D, width, height, buf_stride, bit_depth,
+ sgr_params_idx, 0);
+ final_filter_fast(flt0, flt_stride, A, B, buf_stride, dgd8, dgd_stride,
+ width, height, highbd);
+ }
+
+ if (params->r[1] > 0) {
+ calc_ab(A, B, C, D, width, height, buf_stride, bit_depth, sgr_params_idx,
+ 1);
+ final_filter(flt1, flt_stride, A, B, buf_stride, dgd8, dgd_stride, width,
+ height, highbd);
+ }
+}
+
+void apply_selfguided_restoration_avx2(const uint8_t *dat8, int width,
+ int height, int stride, int eps,
+ const int *xqd, uint8_t *dst8,
+ int dst_stride, int32_t *tmpbuf,
+ int bit_depth, int highbd) {
+ int32_t *flt0 = tmpbuf;
+ int32_t *flt1 = flt0 + RESTORATION_UNITPELS_MAX;
+ assert(width * height <= RESTORATION_UNITPELS_MAX);
+ av1_selfguided_restoration_avx2(dat8, width, height, stride, flt0, flt1,
+ width, eps, bit_depth, highbd);
+ const sgr_params_type *const params = &sgr_params[eps];
+ int xq[2];
+ decode_xq(xqd, xq, params);
+
+ __m256i xq0 = _mm256_set1_epi32(xq[0]);
+ __m256i xq1 = _mm256_set1_epi32(xq[1]);
+
+ for (int i = 0; i < height; ++i) {
+ // Calculate output in batches of 16 pixels
+ for (int j = 0; j < width; j += 16) {
+ const int k = i * width + j;
+ const int m = i * dst_stride + j;
+
+ const uint8_t *dat8ij = dat8 + i * stride + j;
+ __m256i ep_0, ep_1;
+ __m128i src_0, src_1;
+ if (highbd) {
+ src_0 = xx_loadu_128(CONVERT_TO_SHORTPTR(dat8ij));
+ src_1 = xx_loadu_128(CONVERT_TO_SHORTPTR(dat8ij + 8));
+ ep_0 = _mm256_cvtepu16_epi32(src_0);
+ ep_1 = _mm256_cvtepu16_epi32(src_1);
+ } else {
+ src_0 = xx_loadu_128(dat8ij);
+ ep_0 = _mm256_cvtepu8_epi32(src_0);
+ ep_1 = _mm256_cvtepu8_epi32(_mm_srli_si128(src_0, 8));
+ }
+
+ const __m256i u_0 = _mm256_slli_epi32(ep_0, SGRPROJ_RST_BITS);
+ const __m256i u_1 = _mm256_slli_epi32(ep_1, SGRPROJ_RST_BITS);
+
+ __m256i v_0 = _mm256_slli_epi32(u_0, SGRPROJ_PRJ_BITS);
+ __m256i v_1 = _mm256_slli_epi32(u_1, SGRPROJ_PRJ_BITS);
+
+ if (params->r[0] > 0) {
+ const __m256i f1_0 = _mm256_sub_epi32(yy_loadu_256(&flt0[k]), u_0);
+ v_0 = _mm256_add_epi32(v_0, _mm256_mullo_epi32(xq0, f1_0));
+
+ const __m256i f1_1 = _mm256_sub_epi32(yy_loadu_256(&flt0[k + 8]), u_1);
+ v_1 = _mm256_add_epi32(v_1, _mm256_mullo_epi32(xq0, f1_1));
+ }
+
+ if (params->r[1] > 0) {
+ const __m256i f2_0 = _mm256_sub_epi32(yy_loadu_256(&flt1[k]), u_0);
+ v_0 = _mm256_add_epi32(v_0, _mm256_mullo_epi32(xq1, f2_0));
+
+ const __m256i f2_1 = _mm256_sub_epi32(yy_loadu_256(&flt1[k + 8]), u_1);
+ v_1 = _mm256_add_epi32(v_1, _mm256_mullo_epi32(xq1, f2_1));
+ }
+
+ const __m256i rounding =
+ round_for_shift(SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS);
+ const __m256i w_0 = _mm256_srai_epi32(
+ _mm256_add_epi32(v_0, rounding), SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS);
+ const __m256i w_1 = _mm256_srai_epi32(
+ _mm256_add_epi32(v_1, rounding), SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS);
+
+ if (highbd) {
+ // Pack into 16 bits and clamp to [0, 2^bit_depth)
+ // Note that packing into 16 bits messes up the order of the bits,
+ // so we use a permute function to correct this
+ const __m256i tmp = _mm256_packus_epi32(w_0, w_1);
+ const __m256i tmp2 = _mm256_permute4x64_epi64(tmp, 0xd8);
+ const __m256i max = _mm256_set1_epi16((1 << bit_depth) - 1);
+ const __m256i res = _mm256_min_epi16(tmp2, max);
+ yy_storeu_256(CONVERT_TO_SHORTPTR(dst8 + m), res);
+ } else {
+ // Pack into 8 bits and clamp to [0, 256)
+ // Note that each pack messes up the order of the bits,
+ // so we use a permute function to correct this
+ const __m256i tmp = _mm256_packs_epi32(w_0, w_1);
+ const __m256i tmp2 = _mm256_permute4x64_epi64(tmp, 0xd8);
+ const __m256i res =
+ _mm256_packus_epi16(tmp2, tmp2 /* "don't care" value */);
+ const __m128i res2 =
+ _mm256_castsi256_si128(_mm256_permute4x64_epi64(res, 0xd8));
+ xx_storeu_128(dst8 + m, res2);
+ }
+ }
+ }
+}