diff options
Diffstat (limited to 'third_party/aom/av1/common/restoration.c')
-rw-r--r-- | third_party/aom/av1/common/restoration.c | 131 |
1 files changed, 41 insertions, 90 deletions
diff --git a/third_party/aom/av1/common/restoration.c b/third_party/aom/av1/common/restoration.c index 632967957..d276a915b 100644 --- a/third_party/aom/av1/common/restoration.c +++ b/third_party/aom/av1/common/restoration.c @@ -661,9 +661,10 @@ const int32_t one_by_x[MAX_NELEM] = { 293, 273, 256, 241, 228, 216, 205, 195, 186, 178, 171, 164, }; -static void selfguided_restoration_fast_internal( - int32_t *dgd, int width, int height, int dgd_stride, int32_t *dst, - int dst_stride, int bit_depth, int sgr_params_idx, int radius_idx) { +static void calculate_intermediate_result(int32_t *dgd, int width, int height, + int dgd_stride, int bit_depth, + int sgr_params_idx, int radius_idx, + int pass, int32_t *A, int32_t *B) { const sgr_params_type *const params = &sgr_params[sgr_params_idx]; const int r = params->r[radius_idx]; const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ; @@ -673,10 +674,7 @@ static void selfguided_restoration_fast_internal( // We also align the stride to a multiple of 16 bytes, for consistency // with the SIMD version of this function. int buf_stride = ((width_ext + 3) & ~3) + 16; - int32_t A_[RESTORATION_PROC_UNIT_PELS]; - int32_t B_[RESTORATION_PROC_UNIT_PELS]; - int32_t *A = A_; - int32_t *B = B_; + const int step = pass == 0 ? 1 : 2; int i, j; assert(r <= MAX_RADIUS && "Need MAX_RADIUS >= r"); @@ -691,7 +689,7 @@ static void selfguided_restoration_fast_internal( B += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ; // Calculate the eventual A[] and B[] arrays. Include a 1-pixel border - ie, // for a 64x64 processing unit, we calculate 66x66 pixels of A[] and B[]. - for (i = -1; i < height + 1; i += 2) { + for (i = -1; i < height + 1; i += step) { for (j = -1; j < width + 1; ++j) { const int k = i * buf_stride + j; const int n = (2 * r + 1) * (2 * r + 1); @@ -754,7 +752,31 @@ static void selfguided_restoration_fast_internal( SGRPROJ_RECIP_BITS); } } +} + +static void selfguided_restoration_fast_internal( + int32_t *dgd, int width, int height, int dgd_stride, int32_t *dst, + int dst_stride, int bit_depth, int sgr_params_idx, int radius_idx) { + const sgr_params_type *const params = &sgr_params[sgr_params_idx]; + const int r = params->r[radius_idx]; + const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ; + // Adjusting the stride of A and B here appears to avoid bad cache effects, + // leading to a significant speed improvement. + // We also align the stride to a multiple of 16 bytes, for consistency + // with the SIMD version of this function. + int buf_stride = ((width_ext + 3) & ~3) + 16; + int32_t A_[RESTORATION_PROC_UNIT_PELS]; + int32_t B_[RESTORATION_PROC_UNIT_PELS]; + int32_t *A = A_; + int32_t *B = B_; + int i, j; + calculate_intermediate_result(dgd, width, height, dgd_stride, bit_depth, + sgr_params_idx, radius_idx, 1, A, B); + A += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ; + B += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ; + // Use the A[] and B[] arrays to calculate the filtered image + (void)r; assert(r == 2); for (i = 0; i < height; ++i) { if (!(i & 1)) { // even row @@ -796,10 +818,7 @@ static void selfguided_restoration_internal(int32_t *dgd, int width, int height, int dst_stride, int bit_depth, int sgr_params_idx, int radius_idx) { - const sgr_params_type *const params = &sgr_params[sgr_params_idx]; - const int r = params->r[radius_idx]; const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ; - const int height_ext = height + 2 * SGRPROJ_BORDER_VERT; // Adjusting the stride of A and B here appears to avoid bad cache effects, // leading to a significant speed improvement. // We also align the stride to a multiple of 16 bytes, for consistency @@ -810,82 +829,11 @@ static void selfguided_restoration_internal(int32_t *dgd, int width, int height, int32_t *A = A_; int32_t *B = B_; int i, j; - - assert(r <= MAX_RADIUS && "Need MAX_RADIUS >= r"); - assert(r <= SGRPROJ_BORDER_VERT - 1 && r <= SGRPROJ_BORDER_HORZ - 1 && - "Need SGRPROJ_BORDER_* >= r+1"); - - boxsum(dgd - dgd_stride * SGRPROJ_BORDER_VERT - SGRPROJ_BORDER_HORZ, - width_ext, height_ext, dgd_stride, r, 0, B, buf_stride); - boxsum(dgd - dgd_stride * SGRPROJ_BORDER_VERT - SGRPROJ_BORDER_HORZ, - width_ext, height_ext, dgd_stride, r, 1, A, buf_stride); + calculate_intermediate_result(dgd, width, height, dgd_stride, bit_depth, + sgr_params_idx, radius_idx, 0, A, B); A += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ; B += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ; - // Calculate the eventual A[] and B[] arrays. Include a 1-pixel border - ie, - // for a 64x64 processing unit, we calculate 66x66 pixels of A[] and B[]. - for (i = -1; i < height + 1; ++i) { - for (j = -1; j < width + 1; ++j) { - const int k = i * buf_stride + j; - const int n = (2 * r + 1) * (2 * r + 1); - - // a < 2^16 * n < 2^22 regardless of bit depth - uint32_t a = ROUND_POWER_OF_TWO(A[k], 2 * (bit_depth - 8)); - // b < 2^8 * n < 2^14 regardless of bit depth - uint32_t b = ROUND_POWER_OF_TWO(B[k], bit_depth - 8); - - // Each term in calculating p = a * n - b * b is < 2^16 * n^2 < 2^28, - // and p itself satisfies p < 2^14 * n^2 < 2^26. - // This bound on p is due to: - // https://en.wikipedia.org/wiki/Popoviciu's_inequality_on_variances - // - // Note: Sometimes, in high bit depth, we can end up with a*n < b*b. - // This is an artefact of rounding, and can only happen if all pixels - // are (almost) identical, so in this case we saturate to p=0. - uint32_t p = (a * n < b * b) ? 0 : a * n - b * b; - - const uint32_t s = params->s[radius_idx]; - - // p * s < (2^14 * n^2) * round(2^20 / n^2 eps) < 2^34 / eps < 2^32 - // as long as eps >= 4. So p * s fits into a uint32_t, and z < 2^12 - // (this holds even after accounting for the rounding in s) - const uint32_t z = ROUND_POWER_OF_TWO(p * s, SGRPROJ_MTABLE_BITS); - - // Note: We have to be quite careful about the value of A[k]. - // This is used as a blend factor between individual pixel values and the - // local mean. So it logically has a range of [0, 256], including both - // endpoints. - // - // This is a pain for hardware, as we'd like something which can be stored - // in exactly 8 bits. - // Further, in the calculation of B[k] below, if z == 0 and r == 2, - // then A[k] "should be" 0. But then we can end up setting B[k] to a value - // slightly above 2^(8 + bit depth), due to rounding in the value of - // one_by_x[25-1]. - // - // Thus we saturate so that, when z == 0, A[k] is set to 1 instead of 0. - // This fixes the above issues (256 - A[k] fits in a uint8, and we can't - // overflow), without significantly affecting the final result: z == 0 - // implies that the image is essentially "flat", so the local mean and - // individual pixel values are very similar. - // - // Note that saturating on the other side, ie. requring A[k] <= 255, - // would be a bad idea, as that corresponds to the case where the image - // is very variable, when we want to preserve the local pixel value as - // much as possible. - A[k] = x_by_xplus1[AOMMIN(z, 255)]; // in range [1, 256] - // SGRPROJ_SGR - A[k] < 2^8 (from above), B[k] < 2^(bit_depth) * n, - // one_by_x[n - 1] = round(2^12 / n) - // => the product here is < 2^(20 + bit_depth) <= 2^32, - // and B[k] is set to a value < 2^(8 + bit depth) - // This holds even with the rounding in one_by_x and in the overall - // result, as long as SGRPROJ_SGR - A[k] is strictly less than 2^8. - B[k] = (int32_t)ROUND_POWER_OF_TWO((uint32_t)(SGRPROJ_SGR - A[k]) * - (uint32_t)B[k] * - (uint32_t)one_by_x[n - 1], - SGRPROJ_RECIP_BITS); - } - } // Use the A[] and B[] arrays to calculate the filtered image for (i = 0; i < height; ++i) { for (j = 0; j < width; ++j) { @@ -911,10 +859,10 @@ static void selfguided_restoration_internal(int32_t *dgd, int width, int height, } } -void av1_selfguided_restoration_c(const uint8_t *dgd8, int width, int height, - int dgd_stride, int32_t *flt0, int32_t *flt1, - int flt_stride, int sgr_params_idx, - int bit_depth, int highbd) { +int av1_selfguided_restoration_c(const uint8_t *dgd8, int width, int height, + int dgd_stride, int32_t *flt0, int32_t *flt1, + int flt_stride, int sgr_params_idx, + int bit_depth, int highbd) { int32_t dgd32_[RESTORATION_PROC_UNIT_PELS]; const int dgd32_stride = width + 2 * SGRPROJ_BORDER_HORZ; int32_t *dgd32 = @@ -948,6 +896,7 @@ void av1_selfguided_restoration_c(const uint8_t *dgd8, int width, int height, if (params->r[1] > 0) selfguided_restoration_internal(dgd32, width, height, dgd32_stride, flt1, flt_stride, bit_depth, sgr_params_idx, 1); + return 0; } void apply_selfguided_restoration_c(const uint8_t *dat8, int width, int height, @@ -959,8 +908,10 @@ void apply_selfguided_restoration_c(const uint8_t *dat8, int width, int height, int32_t *flt1 = flt0 + RESTORATION_UNITPELS_MAX; assert(width * height <= RESTORATION_UNITPELS_MAX); - av1_selfguided_restoration_c(dat8, width, height, stride, flt0, flt1, width, - eps, bit_depth, highbd); + const int ret = av1_selfguided_restoration_c( + dat8, width, height, stride, flt0, flt1, width, eps, bit_depth, highbd); + (void)ret; + assert(!ret); const sgr_params_type *const params = &sgr_params[eps]; int xq[2]; decode_xq(xqd, xq, params); |