diff options
Diffstat (limited to 'third_party/aom/av1/common/pvq.c')
-rw-r--r-- | third_party/aom/av1/common/pvq.c | 1007 |
1 files changed, 0 insertions, 1007 deletions
diff --git a/third_party/aom/av1/common/pvq.c b/third_party/aom/av1/common/pvq.c deleted file mode 100644 index 221c90c04..000000000 --- a/third_party/aom/av1/common/pvq.c +++ /dev/null @@ -1,1007 +0,0 @@ -/* - * Copyright (c) 2001-2016, Alliance for Open Media. All rights reserved - * - * This source code is subject to the terms of the BSD 2 Clause License and - * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License - * was not distributed with this source code in the LICENSE file, you can - * obtain it at www.aomedia.org/license/software. If the Alliance for Open - * Media Patent License 1.0 was not distributed with this source code in the - * PATENTS file, you can obtain it at www.aomedia.org/license/patent. - */ - -/* clang-format off */ - -#ifdef HAVE_CONFIG_H -# include "config.h" -#endif - -#include "odintrin.h" -#include "partition.h" -#include "pvq.h" -#include <math.h> -#include <stdio.h> -#include <stdlib.h> -#include <string.h> - -/* Imported from encode.c in daala */ -/* These are the PVQ equivalent of quantization matrices, except that - the values are per-band. */ -#define OD_MASKING_DISABLED 0 -#define OD_MASKING_ENABLED 1 - -const unsigned char OD_LUMA_QM_Q4[2][OD_QM_SIZE] = { -/* Flat quantization for PSNR. The DC component isn't 16 because the DC - magnitude compensation is done here for inter (Haar DC doesn't need it). - Masking disabled: */ - { - 16, 16, - 16, 16, 16, 16, - 16, 16, 16, 16, 16, 16, - 16, 16, 16, 16, 16, 16, 16, 16 - }, -/* The non-flat AC coefficients compensate for the non-linear scaling caused - by activity masking. The values are currently hand-tuned so that the rate - of each band remains roughly constant when enabling activity masking - on intra. - Masking enabled: */ - { - 16, 16, - 16, 18, 28, 32, - 16, 14, 20, 20, 28, 32, - 16, 11, 14, 14, 17, 17, 22, 28 - } -}; - -const unsigned char OD_CHROMA_QM_Q4[2][OD_QM_SIZE] = { -/* Chroma quantization is different because of the reduced lapping. - FIXME: Use the same matrix as luma for 4:4:4. - Masking disabled: */ - { - 16, 16, - 16, 16, 16, 16, - 16, 16, 16, 16, 16, 16, - 16, 16, 16, 16, 16, 16, 16, 16 - }, -/* The AC part is flat for chroma because it has no activity masking. - Masking enabled: */ - { - 16, 16, - 16, 16, 16, 16, - 16, 16, 16, 16, 16, 16, - 16, 16, 16, 16, 16, 16, 16, 16 - } -}; - -/* No interpolation, always use od_flat_qm_q4, but use a different scale for - each plane. - FIXME: Add interpolation and properly tune chroma. */ -const od_qm_entry OD_DEFAULT_QMS[2][2][OD_NPLANES_MAX] = { - /* Masking disabled */ - { { { 4, 256, OD_LUMA_QM_Q4[OD_MASKING_DISABLED] }, - { 4, 256, OD_CHROMA_QM_Q4[OD_MASKING_DISABLED] }, - { 4, 256, OD_CHROMA_QM_Q4[OD_MASKING_DISABLED] } }, - { { 0, 0, NULL}, - { 0, 0, NULL}, - { 0, 0, NULL} } }, - /* Masking enabled */ - { { { 4, 256, OD_LUMA_QM_Q4[OD_MASKING_ENABLED] }, - { 4, 256, OD_CHROMA_QM_Q4[OD_MASKING_ENABLED] }, - { 4, 256, OD_CHROMA_QM_Q4[OD_MASKING_ENABLED] } }, - { { 0, 0, NULL}, - { 0, 0, NULL}, - { 0, 0, NULL} } } -}; - -/* Constants for the beta parameter, which controls how activity masking is - used. - beta = 1 / (1 - alpha), so when beta is 1, alpha is 0 and activity - masking is disabled. When beta is 1.5, activity masking is used. Note that - activity masking is neither used for 4x4 blocks nor for chroma. */ -#define OD_BETA(b) OD_QCONST32(b, OD_BETA_SHIFT) -static const od_val16 OD_PVQ_BETA4_LUMA[1] = {OD_BETA(1.)}; -static const od_val16 OD_PVQ_BETA8_LUMA[4] = {OD_BETA(1.), OD_BETA(1.), - OD_BETA(1.), OD_BETA(1.)}; -static const od_val16 OD_PVQ_BETA16_LUMA[7] = {OD_BETA(1.), OD_BETA(1.), - OD_BETA(1.), OD_BETA(1.), OD_BETA(1.), OD_BETA(1.), OD_BETA(1.)}; -static const od_val16 OD_PVQ_BETA32_LUMA[10] = {OD_BETA(1.), OD_BETA(1.), - OD_BETA(1.), OD_BETA(1.), OD_BETA(1.), OD_BETA(1.), OD_BETA(1.), OD_BETA(1.), - OD_BETA(1.), OD_BETA(1.)}; - -static const od_val16 OD_PVQ_BETA4_LUMA_MASKING[1] = {OD_BETA(1.)}; -static const od_val16 OD_PVQ_BETA8_LUMA_MASKING[4] = {OD_BETA(1.5), - OD_BETA(1.5), OD_BETA(1.5), OD_BETA(1.5)}; -static const od_val16 OD_PVQ_BETA16_LUMA_MASKING[7] = {OD_BETA(1.5), - OD_BETA(1.5), OD_BETA(1.5), OD_BETA(1.5), OD_BETA(1.5), OD_BETA(1.5), - OD_BETA(1.5)}; -static const od_val16 OD_PVQ_BETA32_LUMA_MASKING[10] = {OD_BETA(1.5), - OD_BETA(1.5), OD_BETA(1.5), OD_BETA(1.5), OD_BETA(1.5), OD_BETA(1.5), - OD_BETA(1.5), OD_BETA(1.5), OD_BETA(1.5), OD_BETA(1.5)}; - -static const od_val16 OD_PVQ_BETA4_CHROMA[1] = {OD_BETA(1.)}; -static const od_val16 OD_PVQ_BETA8_CHROMA[4] = {OD_BETA(1.), OD_BETA(1.), - OD_BETA(1.), OD_BETA(1.)}; -static const od_val16 OD_PVQ_BETA16_CHROMA[7] = {OD_BETA(1.), OD_BETA(1.), - OD_BETA(1.), OD_BETA(1.), OD_BETA(1.), OD_BETA(1.), OD_BETA(1.)}; -static const od_val16 OD_PVQ_BETA32_CHROMA[10] = {OD_BETA(1.), OD_BETA(1.), - OD_BETA(1.), OD_BETA(1.), OD_BETA(1.), OD_BETA(1.), OD_BETA(1.), OD_BETA(1.), - OD_BETA(1.), OD_BETA(1.)}; - -const od_val16 *const OD_PVQ_BETA[2][OD_NPLANES_MAX][OD_TXSIZES + 1] = { - {{OD_PVQ_BETA4_LUMA, OD_PVQ_BETA8_LUMA, - OD_PVQ_BETA16_LUMA, OD_PVQ_BETA32_LUMA}, - {OD_PVQ_BETA4_CHROMA, OD_PVQ_BETA8_CHROMA, - OD_PVQ_BETA16_CHROMA, OD_PVQ_BETA32_CHROMA}, - {OD_PVQ_BETA4_CHROMA, OD_PVQ_BETA8_CHROMA, - OD_PVQ_BETA16_CHROMA, OD_PVQ_BETA32_CHROMA}}, - {{OD_PVQ_BETA4_LUMA_MASKING, OD_PVQ_BETA8_LUMA_MASKING, - OD_PVQ_BETA16_LUMA_MASKING, OD_PVQ_BETA32_LUMA_MASKING}, - {OD_PVQ_BETA4_CHROMA, OD_PVQ_BETA8_CHROMA, - OD_PVQ_BETA16_CHROMA, OD_PVQ_BETA32_CHROMA}, - {OD_PVQ_BETA4_CHROMA, OD_PVQ_BETA8_CHROMA, - OD_PVQ_BETA16_CHROMA, OD_PVQ_BETA32_CHROMA}} -}; - - -void od_interp_qm(unsigned char *out, int q, const od_qm_entry *entry1, - const od_qm_entry *entry2) { - int i; - if (entry2 == NULL || entry2->qm_q4 == NULL - || q < entry1->interp_q << OD_COEFF_SHIFT) { - /* Use entry1. */ - for (i = 0; i < OD_QM_SIZE; i++) { - out[i] = OD_MINI(255, entry1->qm_q4[i]*entry1->scale_q8 >> 8); - } - } - else if (entry1 == NULL || entry1->qm_q4 == NULL - || q > entry2->interp_q << OD_COEFF_SHIFT) { - /* Use entry2. */ - for (i = 0; i < OD_QM_SIZE; i++) { - out[i] = OD_MINI(255, entry2->qm_q4[i]*entry2->scale_q8 >> 8); - } - } - else { - /* Interpolate between entry1 and entry2. The interpolation is linear - in terms of log(q) vs log(m*scale). Considering that we're ultimately - multiplying the result it makes sense, but we haven't tried other - interpolation methods. */ - double x; - const unsigned char *m1; - const unsigned char *m2; - int q1; - int q2; - m1 = entry1->qm_q4; - m2 = entry2->qm_q4; - q1 = entry1->interp_q << OD_COEFF_SHIFT; - q2 = entry2->interp_q << OD_COEFF_SHIFT; - x = (log(q)-log(q1))/(log(q2)-log(q1)); - for (i = 0; i < OD_QM_SIZE; i++) { - out[i] = OD_MINI(255, (int)floor(.5 + (1./256)*exp( - x*log(m2[i]*entry2->scale_q8) + (1 - x)*log(m1[i]*entry1->scale_q8)))); - } - } -} - -void od_adapt_pvq_ctx_reset(od_pvq_adapt_ctx *state, int is_keyframe) { - od_pvq_codeword_ctx *ctx; - int i; - int pli; - int bs; - ctx = &state->pvq_codeword_ctx; - OD_CDFS_INIT_DYNAMIC(state->pvq_param_model[0].cdf); - OD_CDFS_INIT_DYNAMIC(state->pvq_param_model[1].cdf); - OD_CDFS_INIT_DYNAMIC(state->pvq_param_model[2].cdf); - for (i = 0; i < 2*OD_TXSIZES; i++) { - ctx->pvq_adapt[4*i + OD_ADAPT_K_Q8] = 384; - ctx->pvq_adapt[4*i + OD_ADAPT_SUM_EX_Q8] = 256; - ctx->pvq_adapt[4*i + OD_ADAPT_COUNT_Q8] = 104; - ctx->pvq_adapt[4*i + OD_ADAPT_COUNT_EX_Q8] = 128; - } - OD_CDFS_INIT_DYNAMIC(ctx->pvq_k1_cdf); - for (pli = 0; pli < OD_NPLANES_MAX; pli++) { - for (bs = 0; bs < OD_TXSIZES; bs++) - for (i = 0; i < PVQ_MAX_PARTITIONS; i++) { - state->pvq_exg[pli][bs][i] = 2 << 16; - } - } - for (i = 0; i < OD_TXSIZES*PVQ_MAX_PARTITIONS; i++) { - state->pvq_ext[i] = is_keyframe ? 24576 : 2 << 16; - } - OD_CDFS_INIT_DYNAMIC(state->pvq_gaintheta_cdf); - OD_CDFS_INIT_Q15(state->pvq_skip_dir_cdf); - OD_CDFS_INIT_DYNAMIC(ctx->pvq_split_cdf); -} - -/* QMs are arranged from smallest to largest blocksizes, first for - blocks with decimation=0, followed by blocks with decimation=1.*/ -int od_qm_offset(int bs, int xydec) -{ - return xydec*OD_QM_STRIDE + OD_QM_OFFSET(bs); -} - -#if defined(OD_FLOAT_PVQ) -#define OD_DEFAULT_MAG 1.0 -#else -#define OD_DEFAULT_MAG OD_QM_SCALE -#endif - -/* Initialize the quantization matrix. */ -// Note: When hybrid transform and corresponding scan order is used by PVQ, -// we don't need seperate qm and qm_inv for each transform type, -// because AOM does not do magnitude compensation (i.e. simplay x16 for all coeffs). -void od_init_qm(int16_t *x, int16_t *x_inv, const int *qm) { - int i; - int j; - int16_t y[OD_TXSIZE_MAX*OD_TXSIZE_MAX]; - int16_t y_inv[OD_TXSIZE_MAX*OD_TXSIZE_MAX]; - int16_t *x1; - int16_t *x1_inv; - int off; - int bs; - int xydec; - for (bs = 0; bs < OD_TXSIZES; bs++) { - for (xydec = 0; xydec < 2; xydec++) { - off = od_qm_offset(bs, xydec); - x1 = x + off; - x1_inv = x_inv + off; - for (i = 0; i < 4 << bs; i++) { - for (j = 0; j < 4 << bs; j++) { - /*This will ultimately be clamped to fit in 16 bits.*/ - od_val32 mag; - int16_t ytmp; - mag = OD_DEFAULT_MAG; - if (i != 0 || j != 0) { -#if defined(OD_FLOAT_PVQ) - mag /= 0.0625*qm[(i << 1 >> bs)*8 + (j << 1 >> bs)]; -#else - int qmv; - qmv = qm[(i << 1 >> bs)*8 + (j << 1 >> bs)]; - mag *= 16; - mag = (mag + (qmv >> 1))/qmv; -#endif - OD_ASSERT(mag > 0.0); - } - /*Convert to fit in 16 bits.*/ -#if defined(OD_FLOAT_PVQ) - y[i*(4 << bs) + j] = (int16_t)OD_MINI(OD_QM_SCALE_MAX, - (int32_t)floor(.5 + mag*OD_QM_SCALE)); - y_inv[i*(4 << bs) + j] = (int16_t)floor(.5 - + OD_QM_SCALE*OD_QM_INV_SCALE/(double)y[i*(4 << bs) + j]); -#else - y[i*(4 << bs) + j] = (int16_t)OD_MINI(OD_QM_SCALE_MAX, mag); - ytmp = y[i*(4 << bs) + j]; - y_inv[i*(4 << bs) + j] = (int16_t)((OD_QM_SCALE*OD_QM_INV_SCALE - + (ytmp >> 1))/ytmp); -#endif - } - } - od_raster_to_coding_order_16(x1, 4 << bs, y, 4 << bs); - od_raster_to_coding_order_16(x1_inv, 4 << bs, y_inv, 4 << bs); - } - } -} - -/* Maps each possible size (n) in the split k-tokenizer to a different value. - Possible values of n are: - 2, 3, 4, 7, 8, 14, 15, 16, 31, 32, 63, 64, 127, 128 - Since we don't care about the order (even in the bit-stream) the simplest - ordering (implemented here) is: - 14, 2, 3, 4, 7, 8, 15, 16, 31, 32, 63, 64, 127, 128 */ -int od_pvq_size_ctx(int n) { - int logn; - int odd; - logn = OD_ILOG(n - 1); - odd = n & 1; - return 2*logn - 1 - odd - 7*(n == 14); -} - -/* Maps a length n to a context for the (k=1, n<=16) coder, with a special - case when n is the original length (orig_length=1) of the vector (i.e. we - haven't split it yet). For orig_length=0, we use the same mapping as - od_pvq_size_ctx() up to n=16. When orig_length=1, we map lengths - 7, 8, 14, 15 to contexts 8 to 11. */ -int od_pvq_k1_ctx(int n, int orig_length) { - if (orig_length) return 8 + 2*(n > 8) + (n & 1); - else return od_pvq_size_ctx(n); -} - -/* Indexing for the packed quantization matrices. */ -int od_qm_get_index(int bs, int band) { - /* The -band/3 term is due to the fact that we force corresponding horizontal - and vertical bands to have the same quantization. */ - OD_ASSERT(bs >= 0 && bs < OD_TXSIZES); - return bs*(bs + 1) + band - band/3; -} - -#if !defined(OD_FLOAT_PVQ) -/*See celt/mathops.c in Opus and tools/cos_search.c.*/ -static int16_t od_pvq_cos_pi_2(int16_t x) -{ - int16_t x2; - x2 = OD_MULT16_16_Q15(x, x); - return OD_MINI(32767, (1073758164 - x*x + x2*(-7654 + OD_MULT16_16_Q16(x2, - 16573 + OD_MULT16_16_Q16(-2529, x2)))) >> 15); -} -#endif - -/*Approximates cos(x) for -pi < x < pi. - Input is in OD_THETA_SCALE.*/ -od_val16 od_pvq_cos(od_val32 x) { -#if defined(OD_FLOAT_PVQ) - return cos(x); -#else - /*Wrap x around by masking, since cos is periodic.*/ - x = x & 0x0001ffff; - if (x > (1 << 16)) { - x = (1 << 17) - x; - } - if (x & 0x00007fff) { - if (x < (1 << 15)) { - return od_pvq_cos_pi_2((int16_t)x); - } - else { - return -od_pvq_cos_pi_2((int16_t)(65536 - x)); - } - } - else { - if (x & 0x0000ffff) { - return 0; - } - else if (x & 0x0001ffff) { - return -32767; - } - else { - return 32767; - } - } -#endif -} - -/*Approximates sin(x) for 0 <= x < pi. - Input is in OD_THETA_SCALE.*/ -od_val16 od_pvq_sin(od_val32 x) { -#if defined(OD_FLOAT_PVQ) - return sin(x); -#else - return od_pvq_cos(32768 - x); -#endif -} - -#if !defined(OD_FLOAT_PVQ) -/* Computes an upper-bound on the number of bits required to store the L2 norm - of a vector (excluding sign). */ -int od_vector_log_mag(const od_coeff *x, int n) { - int i; - int32_t sum; - sum = 0; - for (i = 0; i < n; i++) { - int16_t tmp; - tmp = x[i] >> 8; - sum += tmp*(int32_t)tmp; - } - /* We add one full bit (instead of rounding OD_ILOG() up) for safety because - the >> 8 above causes the sum to be slightly underestimated. */ - return 8 + 1 + OD_ILOG(n + sum)/2; -} -#endif - -/** Computes Householder reflection that aligns the reference r to the - * dimension in r with the greatest absolute value. The reflection - * vector is returned in r. - * - * @param [in,out] r reference vector to be reflected, reflection - * also returned in r - * @param [in] n number of dimensions in r - * @param [in] gr gain of reference vector - * @param [out] sign sign of reflection - * @return dimension number to which reflection aligns - **/ -int od_compute_householder(od_val16 *r, int n, od_val32 gr, int *sign, - int shift) { - int m; - int i; - int s; - od_val16 maxr; - OD_UNUSED(shift); - /* Pick component with largest magnitude. Not strictly - * necessary, but it helps numerical stability */ - m = 0; - maxr = 0; - for (i = 0; i < n; i++) { - if (OD_ABS(r[i]) > maxr) { - maxr = OD_ABS(r[i]); - m = i; - } - } - s = r[m] > 0 ? 1 : -1; - /* This turns r into a Householder reflection vector that would reflect - * the original r[] to e_m */ - r[m] += OD_SHR_ROUND(gr*s, shift); - *sign = s; - return m; -} - -#if !defined(OD_FLOAT_PVQ) -#define OD_RCP_INSHIFT 15 -#define OD_RCP_OUTSHIFT 14 -static od_val16 od_rcp(od_val16 x) -{ - int i; - od_val16 n; - od_val16 r; - i = OD_ILOG(x) - 1; - /*n is Q15 with range [0,1).*/ - n = OD_VSHR_ROUND(x, i - OD_RCP_INSHIFT) - (1 << OD_RCP_INSHIFT); - /*Start with a linear approximation: - r = 1.8823529411764706-0.9411764705882353*n. - The coefficients and the result are Q14 in the range [15420,30840].*/ - r = 30840 + OD_MULT16_16_Q15(-15420, n); - /*Perform two Newton iterations: - r -= r*((r*n)-1.Q15) - = r*((r*n)+(r-1.Q15)).*/ - r = r - OD_MULT16_16_Q15(r, (OD_MULT16_16_Q15(r, n) + r - 32768)); - /*We subtract an extra 1 in the second iteration to avoid overflow; it also - neatly compensates for truncation error in the rest of the process.*/ - r = r - (1 + OD_MULT16_16_Q15(r, OD_MULT16_16_Q15(r, n) + r - 32768)); - /*r is now the Q15 solution to 2/(n+1), with a maximum relative error - of 7.05346E-5, a (relative) RMSE of 2.14418E-5, and a peak absolute - error of 1.24665/32768.*/ - return OD_VSHR_ROUND(r, i - OD_RCP_OUTSHIFT); -} -#endif - -/** Applies Householder reflection from compute_householder(). The - * reflection is its own inverse. - * - * @param [out] out reflected vector - * @param [in] x vector to be reflected - * @param [in] r reflection - * @param [in] n number of dimensions in x,r - */ -void od_apply_householder(od_val16 *out, const od_val16 *x, const od_val16 *r, - int n) { - int i; - od_val32 proj; - od_val16 proj_1; - od_val32 l2r; -#if !defined(OD_FLOAT_PVQ) - od_val16 proj_norm; - od_val16 l2r_norm; - od_val16 rcp; - int proj_shift; - int l2r_shift; - int outshift; -#endif - /*FIXME: Can we get l2r and/or l2r_shift from an earlier computation?*/ - l2r = 0; - for (i = 0; i < n; i++) { - l2r += OD_MULT16_16(r[i], r[i]); - } - /* Apply Householder reflection */ - proj = 0; - for (i = 0; i < n; i++) { - proj += OD_MULT16_16(r[i], x[i]); - } -#if defined(OD_FLOAT_PVQ) - proj_1 = proj*2./(1e-100 + l2r); - for (i = 0; i < n; i++) { - out[i] = x[i] - r[i]*proj_1; - } -#else - /*l2r_norm is [0.5, 1.0[ in Q15.*/ - l2r_shift = (OD_ILOG(l2r) - 1) - 14; - l2r_norm = OD_VSHR_ROUND(l2r, l2r_shift); - rcp = od_rcp(l2r_norm); - proj_shift = (OD_ILOG(abs(proj)) - 1) - 14; - /*proj_norm is [0.5, 1.0[ in Q15.*/ - proj_norm = OD_VSHR_ROUND(proj, proj_shift); - proj_1 = OD_MULT16_16_Q15(proj_norm, rcp); - /*The proj*2. in the float code becomes -1 in the final outshift. - The sign of l2r_shift is positive since we're taking the reciprocal of - l2r_norm and this is a right shift.*/ - outshift = OD_MINI(30, OD_RCP_OUTSHIFT - proj_shift - 1 + l2r_shift); - if (outshift >= 0) { - for (i = 0; i < n; i++) { - int32_t tmp; - tmp = OD_MULT16_16(r[i], proj_1); - tmp = OD_SHR_ROUND(tmp, outshift); - out[i] = x[i] - tmp; - } - } - else { - /*FIXME: Can we make this case impossible? - Right now, if r[] is all zeros except for 1, 2, or 3 ones, and - if x[] is all zeros except for large values at the same position as the - ones in r[], then we can end up with a shift of -1.*/ - for (i = 0; i < n; i++) { - int32_t tmp; - tmp = OD_MULT16_16(r[i], proj_1); - tmp = OD_SHL(tmp, -outshift); - out[i] = x[i] - tmp; - } - } -#endif -} - -#if !defined(OD_FLOAT_PVQ) -static od_val16 od_beta_rcp(od_val16 beta){ - if (beta == OD_BETA(1.)) - return OD_BETA(1.); - else if (beta == OD_BETA(1.5)) - return OD_BETA(1./1.5); - else { - od_val16 rcp_beta; - /*Shift by 1 less, transposing beta to range [.5, .75] and thus < 32768.*/ - rcp_beta = od_rcp(beta << (OD_RCP_INSHIFT - 1 - OD_BETA_SHIFT)); - return OD_SHR_ROUND(rcp_beta, OD_RCP_OUTSHIFT + 1 - OD_BETA_SHIFT); - } -} - -#define OD_EXP2_INSHIFT 15 -#define OD_EXP2_FRACSHIFT 15 -#define OD_EXP2_OUTSHIFT 15 -static const int32_t OD_EXP2_C[5] = {32768, 22709, 7913, 1704, 443}; -/*Output is [1.0, 2.0) in Q(OD_EXP2_FRACSHIFT). - It does not include the integer offset, which is added in od_exp2 after the - final shift).*/ -static int32_t od_exp2_frac(int32_t x) -{ - return OD_MULT16_16_Q15(x, (OD_EXP2_C[1] + OD_MULT16_16_Q15(x, - (OD_EXP2_C[2] + OD_MULT16_16_Q15(x, (OD_EXP2_C[3] - + OD_MULT16_16_Q15(x, OD_EXP2_C[4]))))))); -} - -/** Base-2 exponential approximation (2^x) with Q15 input and output.*/ -static int32_t od_exp2(int32_t x) -{ - int integer; - int32_t frac; - integer = x >> OD_EXP2_INSHIFT; - if (integer > 14) - return 0x7f000000; - else if (integer < -15) - return 0; - frac = od_exp2_frac(x - OD_SHL(integer, OD_EXP2_INSHIFT)); - return OD_VSHR_ROUND(OD_EXP2_C[0] + frac, -integer) + 1; -} - -#define OD_LOG2_INSHIFT 15 -#define OD_LOG2_OUTSHIFT 15 -#define OD_LOG2_INSCALE_1 (1./(1 << OD_LOG2_INSHIFT)) -#define OD_LOG2_OUTSCALE (1 << OD_LOG2_OUTSHIFT) -static int16_t od_log2(int16_t x) -{ - return x + OD_MULT16_16_Q15(x, (14482 + OD_MULT16_16_Q15(x, (-23234 - + OD_MULT16_16_Q15(x, (13643 + OD_MULT16_16_Q15(x, (-6403 - + OD_MULT16_16_Q15(x, 1515))))))))); -} - -static int32_t od_pow(int32_t x, od_val16 beta) -{ - int16_t t; - int xshift; - int log2_x; - od_val32 logr; - /*FIXME: this conditional is to avoid doing log2(0).*/ - if (x == 0) - return 0; - log2_x = (OD_ILOG(x) - 1); - xshift = log2_x - OD_LOG2_INSHIFT; - /*t should be in range [0.0, 1.0[ in Q(OD_LOG2_INSHIFT).*/ - t = OD_VSHR(x, xshift) - (1 << OD_LOG2_INSHIFT); - /*log2(g/OD_COMPAND_SCALE) = log2(x) - OD_COMPAND_SHIFT in - Q(OD_LOG2_OUTSHIFT).*/ - logr = od_log2(t) + (log2_x - OD_COMPAND_SHIFT)*OD_LOG2_OUTSCALE; - logr = (od_val32)OD_MULT16_32_QBETA(beta, logr); - return od_exp2(logr); -} -#endif - -/** Gain companding: raises gain to the power 1/beta for activity masking. - * - * @param [in] g real (uncompanded) gain - * @param [in] q0 uncompanded quality parameter - * @param [in] beta activity masking beta param (exponent) - * @return g^(1/beta) - */ -static od_val32 od_gain_compand(od_val32 g, int q0, od_val16 beta) { -#if defined(OD_FLOAT_PVQ) - if (beta == 1) return OD_CGAIN_SCALE*g/(double)q0; - else { - return OD_CGAIN_SCALE*OD_COMPAND_SCALE*pow(g*OD_COMPAND_SCALE_1, - 1./beta)/(double)q0; - } -#else - if (beta == OD_BETA(1)) return (OD_CGAIN_SCALE*g + (q0 >> 1))/q0; - else { - int32_t expr; - expr = od_pow(g, od_beta_rcp(beta)); - expr <<= OD_CGAIN_SHIFT + OD_COMPAND_SHIFT - OD_EXP2_OUTSHIFT; - return (expr + (q0 >> 1))/q0; - } -#endif -} - -#if !defined(OD_FLOAT_PVQ) -#define OD_SQRT_INSHIFT 16 -#define OD_SQRT_OUTSHIFT 15 -static int16_t od_rsqrt_norm(int16_t x); - -static int16_t od_sqrt_norm(int32_t x) -{ - OD_ASSERT(x < 65536); - return OD_MINI(OD_SHR_ROUND(x*od_rsqrt_norm(x), OD_SQRT_OUTSHIFT), 32767); -} - -static int16_t od_sqrt(int32_t x, int *sqrt_shift) -{ - int k; - int s; - int32_t t; - if (x == 0) { - *sqrt_shift = 0; - return 0; - } - OD_ASSERT(x < (1 << 30)); - k = ((OD_ILOG(x) - 1) >> 1); - /*t is x in the range [0.25, 1) in QINSHIFT, or x*2^(-s). - Shift by log2(x) - log2(0.25*(1 << INSHIFT)) to ensure 0.25 lower bound.*/ - s = 2*k - (OD_SQRT_INSHIFT - 2); - t = OD_VSHR(x, s); - /*We want to express od_sqrt() in terms of od_sqrt_norm(), which is - defined as (2^OUTSHIFT)*sqrt(t*(2^-INSHIFT)) with t=x*(2^-s). - This simplifies to 2^(OUTSHIFT-(INSHIFT/2)-(s/2))*sqrt(x), so the caller - needs to shift right by OUTSHIFT - INSHIFT/2 - s/2.*/ - *sqrt_shift = OD_SQRT_OUTSHIFT - ((s + OD_SQRT_INSHIFT) >> 1); - return od_sqrt_norm(t); -} -#endif - -/** Gain expanding: raises gain to the power beta for activity masking. - * - * @param [in] cg companded gain - * @param [in] q0 uncompanded quality parameter - * @param [in] beta activity masking beta param (exponent) - * @return g^beta - */ -od_val32 od_gain_expand(od_val32 cg0, int q0, od_val16 beta) { - if (beta == OD_BETA(1)) { - /*The multiply fits into 28 bits because the expanded gain has a range from - 0 to 2^20.*/ - return OD_SHR_ROUND(cg0*q0, OD_CGAIN_SHIFT); - } - else if (beta == OD_BETA(1.5)) { -#if defined(OD_FLOAT_PVQ) - double cg; - cg = cg0*OD_CGAIN_SCALE_1; - cg *= q0*OD_COMPAND_SCALE_1; - return OD_COMPAND_SCALE*cg*sqrt(cg); -#else - int32_t irt; - int64_t tmp; - int sqrt_inshift; - int sqrt_outshift; - /*cg0 is in Q(OD_CGAIN_SHIFT) and we need to divide it by - 2^OD_COMPAND_SHIFT.*/ - irt = od_sqrt(cg0*q0, &sqrt_outshift); - sqrt_inshift = (OD_CGAIN_SHIFT + OD_COMPAND_SHIFT) >> 1; - /*tmp is in Q(OD_CGAIN_SHIFT + OD_COMPAND_SHIFT).*/ - tmp = cg0*q0*(int64_t)irt; - /*Expanded gain must be in Q(OD_COMPAND_SHIFT), thus OD_COMPAND_SHIFT is - not included here.*/ - return OD_MAXI(1, - OD_VSHR_ROUND(tmp, OD_CGAIN_SHIFT + sqrt_outshift + sqrt_inshift)); -#endif - } - else { -#if defined(OD_FLOAT_PVQ) - /*Expanded gain must be in Q(OD_COMPAND_SHIFT), hence the multiply by - OD_COMPAND_SCALE.*/ - double cg; - cg = cg0*OD_CGAIN_SCALE_1; - return OD_COMPAND_SCALE*pow(cg*q0*OD_COMPAND_SCALE_1, beta); -#else - int32_t expr; - int32_t cg; - cg = OD_SHR_ROUND(cg0*q0, OD_CGAIN_SHIFT); - expr = od_pow(cg, beta); - /*Expanded gain must be in Q(OD_COMPAND_SHIFT), hence the subtraction by - OD_COMPAND_SHIFT.*/ - return OD_MAXI(1, OD_SHR_ROUND(expr, OD_EXP2_OUTSHIFT - OD_COMPAND_SHIFT)); -#endif - } -} - -/** Computes the raw and quantized/companded gain of a given input - * vector - * - * @param [in] x vector of input data - * @param [in] n number of elements in vector x - * @param [in] q0 quantizer - * @param [out] g raw gain - * @param [in] beta activity masking beta param - * @param [in] bshift shift to be applied to raw gain - * @return quantized/companded gain - */ -od_val32 od_pvq_compute_gain(const od_val16 *x, int n, int q0, od_val32 *g, - od_val16 beta, int bshift) { - int i; - od_val32 acc; -#if !defined(OD_FLOAT_PVQ) - od_val32 irt; - int sqrt_shift; -#else - OD_UNUSED(bshift); -#endif - acc = 0; - for (i = 0; i < n; i++) { - acc += x[i]*(od_val32)x[i]; - } -#if defined(OD_FLOAT_PVQ) - *g = sqrt(acc); -#else - irt = od_sqrt(acc, &sqrt_shift); - *g = OD_VSHR_ROUND(irt, sqrt_shift - bshift); -#endif - /* Normalize gain by quantization step size and apply companding - (if ACTIVITY != 1). */ - return od_gain_compand(*g, q0, beta); -} - -/** Compute theta quantization range from quantized/companded gain - * - * @param [in] qcg quantized companded gain value - * @param [in] beta activity masking beta param - * @return max theta value - */ -int od_pvq_compute_max_theta(od_val32 qcg, od_val16 beta){ - /* Set angular resolution (in ra) to match the encoded gain */ -#if defined(OD_FLOAT_PVQ) - int ts = (int)floor(.5 + qcg*OD_CGAIN_SCALE_1*M_PI/(2*beta)); -#else - int ts = OD_SHR_ROUND(qcg*OD_MULT16_16_QBETA(OD_QCONST32(M_PI/2, - OD_CGAIN_SHIFT), od_beta_rcp(beta)), OD_CGAIN_SHIFT*2); -#endif - /* Special case for low gains -- will need to be tuned anyway */ - if (qcg < OD_QCONST32(1.4, OD_CGAIN_SHIFT)) ts = 1; - return ts; -} - -/** Decode quantized theta value from coded value - * - * @param [in] t quantized companded gain value - * @param [in] max_theta maximum theta value - * @return decoded theta value - */ -od_val32 od_pvq_compute_theta(int t, int max_theta) { - if (max_theta != 0) { -#if defined(OD_FLOAT_PVQ) - return OD_MINI(t, max_theta - 1)*.5*M_PI/max_theta; -#else - return (OD_MAX_THETA_SCALE*OD_MINI(t, max_theta - 1) - + (max_theta >> 1))/max_theta; -#endif - } - else return 0; -} - -#define OD_SQRT_TBL_SHIFT (10) - -#define OD_ITHETA_SHIFT 15 -/** Compute the number of pulses used for PVQ encoding a vector from - * available metrics (encode and decode side) - * - * @param [in] qcg quantized companded gain value - * @param [in] itheta quantized PVQ error angle theta - * @param [in] noref indicates present or lack of reference - * (prediction) - * @param [in] n number of elements to be coded - * @param [in] beta activity masking beta param - * @return number of pulses to use for coding - */ -int od_pvq_compute_k(od_val32 qcg, int itheta, int noref, int n, - od_val16 beta) { -#if !defined(OD_FLOAT_PVQ) - /*Lookup table for sqrt(n+3/2) and sqrt(n+2/2) in Q10. - Real max values are 32792 and 32784, but clamped to stay within 16 bits. - Update with tools/gen_sqrt_tbl if needed.*/ - static const od_val16 od_sqrt_table[2][13] = { - {0, 0, 0, 0, 2290, 2985, 4222, 0, 8256, 0, 16416, 0, 32767}, - {0, 0, 0, 0, 2401, 3072, 4284, 0, 8287, 0, 16432, 0, 32767}}; -#endif - if (noref) { - if (qcg == 0) return 0; - if (n == 15 && qcg == OD_CGAIN_SCALE && beta > OD_BETA(1.25)) { - return 1; - } - else { -#if defined(OD_FLOAT_PVQ) - return OD_MAXI(1, (int)floor(.5 + (qcg*OD_CGAIN_SCALE_1 - .2)* - sqrt((n + 3)/2)/beta)); -#else - od_val16 rt; - OD_ASSERT(OD_ILOG(n + 1) < 13); - rt = od_sqrt_table[1][OD_ILOG(n + 1)]; - /*FIXME: get rid of 64-bit mul.*/ - return OD_MAXI(1, OD_SHR_ROUND((int64_t)((qcg - - (int64_t)OD_QCONST32(.2, OD_CGAIN_SHIFT))* - OD_MULT16_16_QBETA(od_beta_rcp(beta), rt)), OD_CGAIN_SHIFT - + OD_SQRT_TBL_SHIFT)); -#endif - } - } - else { - if (itheta == 0) return 0; - /* Sets K according to gain and theta, based on the high-rate - PVQ distortion curves (see PVQ document). Low-rate will have to be - perceptually tuned anyway. We subtract 0.2 from the radius as an - approximation for the fact that the coefficients aren't identically - distributed within a band so at low gain the number of dimensions that - are likely to have a pulse is less than n. */ -#if defined(OD_FLOAT_PVQ) - return OD_MAXI(1, (int)floor(.5 + (itheta - .2)*sqrt((n + 2)/2))); -#else - od_val16 rt; - OD_ASSERT(OD_ILOG(n + 1) < 13); - rt = od_sqrt_table[0][OD_ILOG(n + 1)]; - /*FIXME: get rid of 64-bit mul.*/ - return OD_MAXI(1, OD_VSHR_ROUND(((OD_SHL(itheta, OD_ITHETA_SHIFT) - - OD_QCONST32(.2, OD_ITHETA_SHIFT)))*(int64_t)rt, - OD_SQRT_TBL_SHIFT + OD_ITHETA_SHIFT)); -#endif - } -} - -#if !defined(OD_FLOAT_PVQ) -#define OD_RSQRT_INSHIFT 16 -#define OD_RSQRT_OUTSHIFT 14 -/** Reciprocal sqrt approximation where the input is in the range [0.25,1) in - Q16 and the output is in the range (1.0, 2.0] in Q14). - Error is always within +/1 of round(1/sqrt(t))*/ -static int16_t od_rsqrt_norm(int16_t t) -{ - int16_t n; - int32_t r; - int32_t r2; - int32_t ry; - int32_t y; - int32_t ret; - /* Range of n is [-16384,32767] ([-0.5,1) in Q15).*/ - n = t - 32768; - OD_ASSERT(n >= -16384); - /*Get a rough initial guess for the root. - The optimal minimax quadratic approximation (using relative error) is - r = 1.437799046117536+n*(-0.823394375837328+n*0.4096419668459485). - Coefficients here, and the final result r, are Q14.*/ - r = (23565 + OD_MULT16_16_Q15(n, (-13481 + OD_MULT16_16_Q15(n, 6711)))); - /*We want y = t*r*r-1 in Q15, but t is 32-bit Q16 and r is Q14. - We can compute the result from n and r using Q15 multiplies with some - adjustment, carefully done to avoid overflow.*/ - r2 = r*r; - y = (((r2 >> 15)*n + r2) >> 12) - 131077; - ry = r*y; - /*Apply a 2nd-order Householder iteration: r += r*y*(y*0.375-0.5). - This yields the Q14 reciprocal square root of the Q16 t, with a maximum - relative error of 1.04956E-4, a (relative) RMSE of 2.80979E-5, and a peak - absolute error of 2.26591/16384.*/ - ret = r + ((((ry >> 16)*(3*y) >> 3) - ry) >> 18); - OD_ASSERT(ret >= 16384 && ret < 32768); - return (int16_t)ret; -} - -static int16_t od_rsqrt(int32_t x, int *rsqrt_shift) -{ - int k; - int s; - int16_t t; - k = (OD_ILOG(x) - 1) >> 1; - /*t is x in the range [0.25, 1) in QINSHIFT, or x*2^(-s). - Shift by log2(x) - log2(0.25*(1 << INSHIFT)) to ensure 0.25 lower bound.*/ - s = 2*k - (OD_RSQRT_INSHIFT - 2); - t = OD_VSHR(x, s); - /*We want to express od_rsqrt() in terms of od_rsqrt_norm(), which is - defined as (2^OUTSHIFT)/sqrt(t*(2^-INSHIFT)) with t=x*(2^-s). - This simplifies to 2^(OUTSHIFT+(INSHIFT/2)+(s/2))/sqrt(x), so the caller - needs to shift right by OUTSHIFT + INSHIFT/2 + s/2.*/ - *rsqrt_shift = OD_RSQRT_OUTSHIFT + ((s + OD_RSQRT_INSHIFT) >> 1); - return od_rsqrt_norm(t); -} -#endif - -/** Synthesizes one parition of coefficient values from a PVQ-encoded - * vector. This 'partial' version is called by the encode loop where - * the Householder reflection has already been computed and there's no - * need to recompute it. - * - * @param [out] xcoeff output coefficient partition (x in math doc) - * @param [in] ypulse PVQ-encoded values (y in the math doc); in - * the noref case, this vector has n entries, - * in the reference case it contains n-1 entries - * (the m-th entry is not included) - * @param [in] r reference vector (prediction) - * @param [in] n number of elements in this partition - * @param [in] noref indicates presence or lack of prediction - * @param [in] g decoded quantized vector gain - * @param [in] theta decoded theta (prediction error) - * @param [in] m alignment dimension of Householder reflection - * @param [in] s sign of Householder reflection - * @param [in] qm_inv inverse of the QM with magnitude compensation - */ -void od_pvq_synthesis_partial(od_coeff *xcoeff, const od_coeff *ypulse, - const od_val16 *r16, int n, int noref, od_val32 g, od_val32 theta, int m, int s, - const int16_t *qm_inv) { - int i; - int yy; - od_val32 scale; - int nn; -#if !defined(OD_FLOAT_PVQ) - int gshift; - int qshift; -#endif - OD_ASSERT(g != 0); - nn = n-(!noref); /* when noref==0, vector in is sized n-1 */ - yy = 0; - for (i = 0; i < nn; i++) - yy += ypulse[i]*(int32_t)ypulse[i]; -#if !defined(OD_FLOAT_PVQ) - /* Shift required for the magnitude of the pre-qm synthesis to be guaranteed - to fit in 16 bits. In practice, the range will be 8192-16384 after scaling - most of the time. */ - gshift = OD_MAXI(0, OD_ILOG(g) - 14); -#endif - /*scale is g/sqrt(yy) in Q(16-gshift) so that x[]*scale has a norm that fits - in 16 bits.*/ - if (yy == 0) scale = 0; -#if defined(OD_FLOAT_PVQ) - else { - scale = g/sqrt(yy); - } -#else - else { - int rsqrt_shift; - int16_t rsqrt; - /*FIXME: should be < int64_t*/ - int64_t tmp; - rsqrt = od_rsqrt(yy, &rsqrt_shift); - tmp = rsqrt*(int64_t)g; - scale = OD_VSHR_ROUND(tmp, rsqrt_shift + gshift - 16); - } - /* Shift to apply after multiplying by the inverse QM, taking into account - gshift. */ - qshift = OD_QM_INV_SHIFT - gshift; -#endif - if (noref) { - for (i = 0; i < n; i++) { - od_val32 x; - /* This multiply doesn't round, so it introduces some bias. - It would be nice (but not critical) to fix this. */ - x = (od_val32)OD_MULT16_32_Q16(ypulse[i], scale); -#if defined(OD_FLOAT_PVQ) - xcoeff[i] = (od_coeff)floor(.5 - + x*(qm_inv[i]*OD_QM_INV_SCALE_1)); -#else - xcoeff[i] = OD_SHR_ROUND(x*qm_inv[i], qshift); -#endif - } - } - else{ - od_val16 x[MAXN]; - scale = OD_ROUND32(scale*OD_TRIG_SCALE_1*od_pvq_sin(theta)); - /* The following multiply doesn't round, but it's probably OK since - the Householder reflection is likely to undo most of the resulting - bias. */ - for (i = 0; i < m; i++) - x[i] = OD_MULT16_32_Q16(ypulse[i], scale); - x[m] = OD_ROUND16(-s*(OD_SHR_ROUND(g, gshift))*OD_TRIG_SCALE_1* - od_pvq_cos(theta)); - for (i = m; i < nn; i++) - x[i+1] = OD_MULT16_32_Q16(ypulse[i], scale); - od_apply_householder(x, x, r16, n); - for (i = 0; i < n; i++) { -#if defined(OD_FLOAT_PVQ) - xcoeff[i] = (od_coeff)floor(.5 + (x[i]*(qm_inv[i]*OD_QM_INV_SCALE_1))); -#else - xcoeff[i] = OD_SHR_ROUND(x[i]*qm_inv[i], qshift); -#endif - } - } -} |