summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/common/onyxc_int.h
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/aom/av1/common/onyxc_int.h')
-rw-r--r--third_party/aom/av1/common/onyxc_int.h1342
1 files changed, 1342 insertions, 0 deletions
diff --git a/third_party/aom/av1/common/onyxc_int.h b/third_party/aom/av1/common/onyxc_int.h
new file mode 100644
index 000000000..ff011c89e
--- /dev/null
+++ b/third_party/aom/av1/common/onyxc_int.h
@@ -0,0 +1,1342 @@
+/*
+ * Copyright (c) 2016, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#ifndef AOM_AV1_COMMON_ONYXC_INT_H_
+#define AOM_AV1_COMMON_ONYXC_INT_H_
+
+#include "config/aom_config.h"
+#include "config/av1_rtcd.h"
+
+#include "aom/internal/aom_codec_internal.h"
+#include "aom_util/aom_thread.h"
+#include "av1/common/alloccommon.h"
+#include "av1/common/av1_loopfilter.h"
+#include "av1/common/entropy.h"
+#include "av1/common/entropymode.h"
+#include "av1/common/entropymv.h"
+#include "av1/common/enums.h"
+#include "av1/common/frame_buffers.h"
+#include "av1/common/mv.h"
+#include "av1/common/quant_common.h"
+#include "av1/common/restoration.h"
+#include "av1/common/tile_common.h"
+#include "av1/common/timing.h"
+#include "av1/common/odintrin.h"
+#include "av1/encoder/hash_motion.h"
+#include "aom_dsp/grain_synthesis.h"
+#include "aom_dsp/grain_table.h"
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#if defined(__clang__) && defined(__has_warning)
+#if __has_feature(cxx_attributes) && __has_warning("-Wimplicit-fallthrough")
+#define AOM_FALLTHROUGH_INTENDED [[clang::fallthrough]] // NOLINT
+#endif
+#elif defined(__GNUC__) && __GNUC__ >= 7
+#define AOM_FALLTHROUGH_INTENDED __attribute__((fallthrough)) // NOLINT
+#endif
+
+#ifndef AOM_FALLTHROUGH_INTENDED
+#define AOM_FALLTHROUGH_INTENDED \
+ do { \
+ } while (0)
+#endif
+
+#define CDEF_MAX_STRENGTHS 16
+
+/* Constant values while waiting for the sequence header */
+#define FRAME_ID_LENGTH 15
+#define DELTA_FRAME_ID_LENGTH 14
+
+#define FRAME_CONTEXTS (FRAME_BUFFERS + 1)
+// Extra frame context which is always kept at default values
+#define FRAME_CONTEXT_DEFAULTS (FRAME_CONTEXTS - 1)
+#define PRIMARY_REF_BITS 3
+#define PRIMARY_REF_NONE 7
+
+#define NUM_PING_PONG_BUFFERS 2
+
+#define MAX_NUM_TEMPORAL_LAYERS 8
+#define MAX_NUM_SPATIAL_LAYERS 4
+/* clang-format off */
+// clang-format seems to think this is a pointer dereference and not a
+// multiplication.
+#define MAX_NUM_OPERATING_POINTS \
+ MAX_NUM_TEMPORAL_LAYERS * MAX_NUM_SPATIAL_LAYERS
+/* clang-format on*/
+
+// TODO(jingning): Turning this on to set up transform coefficient
+// processing timer.
+#define TXCOEFF_TIMER 0
+#define TXCOEFF_COST_TIMER 0
+
+typedef enum {
+ SINGLE_REFERENCE = 0,
+ COMPOUND_REFERENCE = 1,
+ REFERENCE_MODE_SELECT = 2,
+ REFERENCE_MODES = 3,
+} REFERENCE_MODE;
+
+typedef enum {
+ /**
+ * Frame context updates are disabled
+ */
+ REFRESH_FRAME_CONTEXT_DISABLED,
+ /**
+ * Update frame context to values resulting from backward probability
+ * updates based on entropy/counts in the decoded frame
+ */
+ REFRESH_FRAME_CONTEXT_BACKWARD,
+} REFRESH_FRAME_CONTEXT_MODE;
+
+#define MFMV_STACK_SIZE 3
+typedef struct {
+ int_mv mfmv0;
+ uint8_t ref_frame_offset;
+} TPL_MV_REF;
+
+typedef struct {
+ int_mv mv;
+ MV_REFERENCE_FRAME ref_frame;
+} MV_REF;
+
+typedef struct {
+ int ref_count;
+
+ unsigned int cur_frame_offset;
+ unsigned int ref_frame_offset[INTER_REFS_PER_FRAME];
+
+ MV_REF *mvs;
+ uint8_t *seg_map;
+ struct segmentation seg;
+ int mi_rows;
+ int mi_cols;
+ // Width and height give the size of the buffer (before any upscaling, unlike
+ // the sizes that can be derived from the buf structure)
+ int width;
+ int height;
+ WarpedMotionParams global_motion[REF_FRAMES];
+ int showable_frame; // frame can be used as show existing frame in future
+ int film_grain_params_present;
+ aom_film_grain_t film_grain_params;
+ aom_codec_frame_buffer_t raw_frame_buffer;
+ YV12_BUFFER_CONFIG buf;
+ hash_table hash_table;
+ uint8_t intra_only;
+ FRAME_TYPE frame_type;
+ // The Following variables will only be used in frame parallel decode.
+
+ // frame_worker_owner indicates which FrameWorker owns this buffer. NULL means
+ // that no FrameWorker owns, or is decoding, this buffer.
+ AVxWorker *frame_worker_owner;
+
+ // row and col indicate which position frame has been decoded to in real
+ // pixel unit. They are reset to -1 when decoding begins and set to INT_MAX
+ // when the frame is fully decoded.
+ int row;
+ int col;
+
+ // Inter frame reference frame delta for loop filter
+ int8_t ref_deltas[REF_FRAMES];
+
+ // 0 = ZERO_MV, MV
+ int8_t mode_deltas[MAX_MODE_LF_DELTAS];
+} RefCntBuffer;
+
+typedef struct BufferPool {
+// Protect BufferPool from being accessed by several FrameWorkers at
+// the same time during frame parallel decode.
+// TODO(hkuang): Try to use atomic variable instead of locking the whole pool.
+#if CONFIG_MULTITHREAD
+ pthread_mutex_t pool_mutex;
+#endif
+
+ // Private data associated with the frame buffer callbacks.
+ void *cb_priv;
+
+ aom_get_frame_buffer_cb_fn_t get_fb_cb;
+ aom_release_frame_buffer_cb_fn_t release_fb_cb;
+
+ RefCntBuffer frame_bufs[FRAME_BUFFERS];
+
+ // Frame buffers allocated internally by the codec.
+ InternalFrameBufferList int_frame_buffers;
+} BufferPool;
+
+typedef struct {
+ int base_ctx_table[2 /*row*/][2 /*col*/][3 /*sig_map*/]
+ [BASE_CONTEXT_POSITION_NUM + 1];
+} LV_MAP_CTX_TABLE;
+typedef int BASE_CTX_TABLE[2 /*col*/][3 /*sig_map*/]
+ [BASE_CONTEXT_POSITION_NUM + 1];
+
+typedef struct BitstreamLevel {
+ uint8_t major;
+ uint8_t minor;
+} BitstreamLevel;
+
+// Sequence header structure.
+// Note: All syntax elements of sequence_header_obu that need to be
+// bit-identical across multiple sequence headers must be part of this struct,
+// so that consistency is checked by are_seq_headers_consistent() function.
+typedef struct SequenceHeader {
+ int num_bits_width;
+ int num_bits_height;
+ int max_frame_width;
+ int max_frame_height;
+ int frame_id_numbers_present_flag;
+ int frame_id_length;
+ int delta_frame_id_length;
+ BLOCK_SIZE sb_size; // Size of the superblock used for this frame
+ int mib_size; // Size of the superblock in units of MI blocks
+ int mib_size_log2; // Log 2 of above.
+ int order_hint_bits_minus_1;
+ int force_screen_content_tools; // 0 - force off
+ // 1 - force on
+ // 2 - adaptive
+ int force_integer_mv; // 0 - Not to force. MV can be in 1/4 or 1/8
+ // 1 - force to integer
+ // 2 - adaptive
+ int still_picture; // Video is a single frame still picture
+ int reduced_still_picture_hdr; // Use reduced header for still picture
+ int enable_filter_intra; // enables/disables filterintra
+ int enable_intra_edge_filter; // enables/disables corner/edge/upsampling
+ int enable_interintra_compound; // enables/disables interintra_compound
+ int enable_masked_compound; // enables/disables masked compound
+ int enable_dual_filter; // 0 - disable dual interpolation filter
+ // 1 - enable vert/horiz filter selection
+ int enable_order_hint; // 0 - disable order hint, and related tools
+ // jnt_comp, ref_frame_mvs, frame_sign_bias
+ // if 0, enable_jnt_comp and
+ // enable_ref_frame_mvs must be set zs 0.
+ int enable_jnt_comp; // 0 - disable joint compound modes
+ // 1 - enable it
+ int enable_ref_frame_mvs; // 0 - disable ref frame mvs
+ // 1 - enable it
+ int enable_warped_motion; // 0 - disable warped motion for sequence
+ // 1 - enable it for the sequence
+ int enable_superres; // 0 - Disable superres for the sequence, and disable
+ // transmitting per-frame superres enabled flag.
+ // 1 - Enable superres for the sequence, and also
+ // enable per-frame flag to denote if superres is
+ // enabled for that frame.
+ int enable_cdef; // To turn on/off CDEF
+ int enable_restoration; // To turn on/off loop restoration
+ BITSTREAM_PROFILE profile;
+
+ // Operating point info.
+ int operating_points_cnt_minus_1;
+ int operating_point_idc[MAX_NUM_OPERATING_POINTS];
+ int display_model_info_present_flag;
+ int decoder_model_info_present_flag;
+ BitstreamLevel level[MAX_NUM_OPERATING_POINTS];
+ uint8_t tier[MAX_NUM_OPERATING_POINTS]; // seq_tier in the spec. One bit: 0
+ // or 1.
+
+ // Color config.
+ aom_bit_depth_t bit_depth; // AOM_BITS_8 in profile 0 or 1,
+ // AOM_BITS_10 or AOM_BITS_12 in profile 2 or 3.
+ int use_highbitdepth; // If true, we need to use 16bit frame buffers.
+ int monochrome; // Monochorme video
+ aom_color_primaries_t color_primaries;
+ aom_transfer_characteristics_t transfer_characteristics;
+ aom_matrix_coefficients_t matrix_coefficients;
+ int color_range;
+ int subsampling_x; // Chroma subsampling for x
+ int subsampling_y; // Chroma subsampling for y
+ aom_chroma_sample_position_t chroma_sample_position;
+ int separate_uv_delta_q;
+
+ int film_grain_params_present;
+} SequenceHeader;
+
+typedef struct AV1Common {
+ struct aom_internal_error_info error;
+ int width;
+ int height;
+ int render_width;
+ int render_height;
+ int last_width;
+ int last_height;
+ int timing_info_present;
+ aom_timing_info_t timing_info;
+ int buffer_removal_time_present;
+ aom_dec_model_info_t buffer_model;
+ aom_dec_model_op_parameters_t op_params[MAX_NUM_OPERATING_POINTS + 1];
+ aom_op_timing_info_t op_frame_timing[MAX_NUM_OPERATING_POINTS + 1];
+ uint32_t frame_presentation_time;
+
+ int largest_tile_id;
+ size_t largest_tile_size;
+ int context_update_tile_id;
+
+ // Scale of the current frame with respect to itself.
+ struct scale_factors sf_identity;
+
+ YV12_BUFFER_CONFIG *frame_to_show;
+ RefCntBuffer *prev_frame;
+
+ // TODO(hkuang): Combine this with cur_buf in macroblockd.
+ RefCntBuffer *cur_frame;
+
+ int ref_frame_map[REF_FRAMES]; /* maps fb_idx to reference slot */
+
+ // Prepare ref_frame_map for the next frame.
+ // Only used in frame parallel decode.
+ int next_ref_frame_map[REF_FRAMES];
+
+ // TODO(jkoleszar): could expand active_ref_idx to 4, with 0 as intra, and
+ // roll new_fb_idx into it.
+
+ // Each Inter frame can reference INTER_REFS_PER_FRAME buffers
+ RefBuffer frame_refs[INTER_REFS_PER_FRAME];
+ int is_skip_mode_allowed;
+ int skip_mode_flag;
+ int ref_frame_idx_0;
+ int ref_frame_idx_1;
+
+ int new_fb_idx;
+
+ FRAME_TYPE last_frame_type; /* last frame's frame type for motion search.*/
+ FRAME_TYPE frame_type;
+
+ int show_frame;
+ int showable_frame; // frame can be used as show existing frame in future
+ int last_show_frame;
+ int show_existing_frame;
+ // Flag for a frame used as a reference - not written to the bitstream
+ int is_reference_frame;
+ int reset_decoder_state;
+
+ // Flag signaling that the frame is encoded using only INTRA modes.
+ uint8_t intra_only;
+ uint8_t last_intra_only;
+ uint8_t disable_cdf_update;
+ int allow_high_precision_mv;
+ int cur_frame_force_integer_mv; // 0 the default in AOM, 1 only integer
+
+ int allow_screen_content_tools;
+ int allow_intrabc;
+ int allow_warped_motion;
+
+ // MBs, mb_rows/cols is in 16-pixel units; mi_rows/cols is in
+ // MB_MODE_INFO (8-pixel) units.
+ int MBs;
+ int mb_rows, mi_rows;
+ int mb_cols, mi_cols;
+ int mi_stride;
+
+ /* profile settings */
+ TX_MODE tx_mode;
+
+#if CONFIG_ENTROPY_STATS
+ int coef_cdf_category;
+#endif
+
+ int base_qindex;
+ int y_dc_delta_q;
+ int u_dc_delta_q;
+ int v_dc_delta_q;
+ int u_ac_delta_q;
+ int v_ac_delta_q;
+
+ // The dequantizers below are true dequntizers used only in the
+ // dequantization process. They have the same coefficient
+ // shift/scale as TX.
+ int16_t y_dequant_QTX[MAX_SEGMENTS][2];
+ int16_t u_dequant_QTX[MAX_SEGMENTS][2];
+ int16_t v_dequant_QTX[MAX_SEGMENTS][2];
+
+ // Global quant matrix tables
+ const qm_val_t *giqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL];
+ const qm_val_t *gqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL];
+
+ // Local quant matrix tables for each frame
+ const qm_val_t *y_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
+ const qm_val_t *u_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
+ const qm_val_t *v_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
+
+ // Encoder
+ int using_qmatrix;
+ int qm_y;
+ int qm_u;
+ int qm_v;
+ int min_qmlevel;
+ int max_qmlevel;
+
+ /* We allocate a MB_MODE_INFO struct for each macroblock, together with
+ an extra row on top and column on the left to simplify prediction. */
+ int mi_alloc_size;
+ MB_MODE_INFO *mip; /* Base of allocated array */
+ MB_MODE_INFO *mi; /* Corresponds to upper left visible macroblock */
+
+ // TODO(agrange): Move prev_mi into encoder structure.
+ // prev_mip and prev_mi will only be allocated in encoder.
+ MB_MODE_INFO *prev_mip; /* MB_MODE_INFO array 'mip' from last decoded frame */
+ MB_MODE_INFO *prev_mi; /* 'mi' from last frame (points into prev_mip) */
+
+ // Separate mi functions between encoder and decoder.
+ int (*alloc_mi)(struct AV1Common *cm, int mi_size);
+ void (*free_mi)(struct AV1Common *cm);
+ void (*setup_mi)(struct AV1Common *cm);
+
+ // Grid of pointers to 8x8 MB_MODE_INFO structs. Any 8x8 not in the visible
+ // area will be NULL.
+ MB_MODE_INFO **mi_grid_base;
+ MB_MODE_INFO **mi_grid_visible;
+ MB_MODE_INFO **prev_mi_grid_base;
+ MB_MODE_INFO **prev_mi_grid_visible;
+
+ // Whether to use previous frames' motion vectors for prediction.
+ int allow_ref_frame_mvs;
+
+ uint8_t *last_frame_seg_map;
+ uint8_t *current_frame_seg_map;
+ int seg_map_alloc_size;
+
+ InterpFilter interp_filter;
+
+ int switchable_motion_mode;
+
+ loop_filter_info_n lf_info;
+ // The denominator of the superres scale; the numerator is fixed.
+ uint8_t superres_scale_denominator;
+ int superres_upscaled_width;
+ int superres_upscaled_height;
+ RestorationInfo rst_info[MAX_MB_PLANE];
+
+ // rst_end_stripe[i] is one more than the index of the bottom stripe
+ // for tile row i.
+ int rst_end_stripe[MAX_TILE_ROWS];
+
+ // Pointer to a scratch buffer used by self-guided restoration
+ int32_t *rst_tmpbuf;
+ RestorationLineBuffers *rlbs;
+
+ // Output of loop restoration
+ YV12_BUFFER_CONFIG rst_frame;
+
+ // Flag signaling how frame contexts should be updated at the end of
+ // a frame decode
+ REFRESH_FRAME_CONTEXT_MODE refresh_frame_context;
+
+ int ref_frame_sign_bias[REF_FRAMES]; /* Two state 0, 1 */
+
+ struct loopfilter lf;
+ struct segmentation seg;
+ int coded_lossless; // frame is fully lossless at the coded resolution.
+ int all_lossless; // frame is fully lossless at the upscaled resolution.
+
+ int reduced_tx_set_used;
+
+ // Context probabilities for reference frame prediction
+ MV_REFERENCE_FRAME comp_fwd_ref[FWD_REFS];
+ MV_REFERENCE_FRAME comp_bwd_ref[BWD_REFS];
+ REFERENCE_MODE reference_mode;
+
+ FRAME_CONTEXT *fc; /* this frame entropy */
+ FRAME_CONTEXT *frame_contexts; // FRAME_CONTEXTS
+ unsigned int frame_context_idx; /* Context to use/update */
+ int fb_of_context_type[REF_FRAMES];
+ int primary_ref_frame;
+
+ unsigned int frame_offset;
+
+ unsigned int current_video_frame;
+
+ aom_bit_depth_t dequant_bit_depth; // bit_depth of current dequantizer
+
+ int error_resilient_mode;
+ int force_primary_ref_none;
+
+ int tile_cols, tile_rows;
+ int last_tile_cols, last_tile_rows;
+
+ int max_tile_width_sb;
+ int min_log2_tile_cols;
+ int max_log2_tile_cols;
+ int max_log2_tile_rows;
+ int min_log2_tile_rows;
+ int min_log2_tiles;
+ int max_tile_height_sb;
+ int uniform_tile_spacing_flag;
+ int log2_tile_cols; // only valid for uniform tiles
+ int log2_tile_rows; // only valid for uniform tiles
+ int tile_col_start_sb[MAX_TILE_COLS + 1]; // valid for 0 <= i <= tile_cols
+ int tile_row_start_sb[MAX_TILE_ROWS + 1]; // valid for 0 <= i <= tile_rows
+ int tile_width, tile_height; // In MI units
+
+ unsigned int large_scale_tile;
+ unsigned int single_tile_decoding;
+
+ int byte_alignment;
+ int skip_loop_filter;
+ int skip_film_grain;
+
+ // Private data associated with the frame buffer callbacks.
+ void *cb_priv;
+ aom_get_frame_buffer_cb_fn_t get_fb_cb;
+ aom_release_frame_buffer_cb_fn_t release_fb_cb;
+
+ // Handles memory for the codec.
+ InternalFrameBufferList int_frame_buffers;
+
+ // External BufferPool passed from outside.
+ BufferPool *buffer_pool;
+
+ PARTITION_CONTEXT **above_seg_context;
+ ENTROPY_CONTEXT **above_context[MAX_MB_PLANE];
+ TXFM_CONTEXT **above_txfm_context;
+ WarpedMotionParams global_motion[REF_FRAMES];
+ aom_film_grain_t film_grain_params;
+
+ int cdef_pri_damping;
+ int cdef_sec_damping;
+ int nb_cdef_strengths;
+ int cdef_strengths[CDEF_MAX_STRENGTHS];
+ int cdef_uv_strengths[CDEF_MAX_STRENGTHS];
+ int cdef_bits;
+
+ int delta_q_present_flag;
+ // Resolution of delta quant
+ int delta_q_res;
+ int delta_lf_present_flag;
+ // Resolution of delta lf level
+ int delta_lf_res;
+ // This is a flag for number of deltas of loop filter level
+ // 0: use 1 delta, for y_vertical, y_horizontal, u, and v
+ // 1: use separate deltas for each filter level
+ int delta_lf_multi;
+ int num_tg;
+ SequenceHeader seq_params;
+ int current_frame_id;
+ int ref_frame_id[REF_FRAMES];
+ int valid_for_referencing[REF_FRAMES];
+ int invalid_delta_frame_id_minus_1;
+ LV_MAP_CTX_TABLE coeff_ctx_table;
+ TPL_MV_REF *tpl_mvs;
+ int tpl_mvs_mem_size;
+ // TODO(jingning): This can be combined with sign_bias later.
+ int8_t ref_frame_side[REF_FRAMES];
+
+ int is_annexb;
+
+ int frame_refs_short_signaling;
+ int temporal_layer_id;
+ int spatial_layer_id;
+ unsigned int number_temporal_layers;
+ unsigned int number_spatial_layers;
+ int num_allocated_above_context_mi_col;
+ int num_allocated_above_contexts;
+ int num_allocated_above_context_planes;
+
+#if TXCOEFF_TIMER
+ int64_t cum_txcoeff_timer;
+ int64_t txcoeff_timer;
+ int txb_count;
+#endif
+
+#if TXCOEFF_COST_TIMER
+ int64_t cum_txcoeff_cost_timer;
+ int64_t txcoeff_cost_timer;
+ int64_t txcoeff_cost_count;
+#endif
+ const cfg_options_t *options;
+} AV1_COMMON;
+
+// TODO(hkuang): Don't need to lock the whole pool after implementing atomic
+// frame reference count.
+static void lock_buffer_pool(BufferPool *const pool) {
+#if CONFIG_MULTITHREAD
+ pthread_mutex_lock(&pool->pool_mutex);
+#else
+ (void)pool;
+#endif
+}
+
+static void unlock_buffer_pool(BufferPool *const pool) {
+#if CONFIG_MULTITHREAD
+ pthread_mutex_unlock(&pool->pool_mutex);
+#else
+ (void)pool;
+#endif
+}
+
+static INLINE YV12_BUFFER_CONFIG *get_ref_frame(AV1_COMMON *cm, int index) {
+ if (index < 0 || index >= REF_FRAMES) return NULL;
+ if (cm->ref_frame_map[index] < 0) return NULL;
+ assert(cm->ref_frame_map[index] < FRAME_BUFFERS);
+ return &cm->buffer_pool->frame_bufs[cm->ref_frame_map[index]].buf;
+}
+
+static INLINE YV12_BUFFER_CONFIG *get_frame_new_buffer(
+ const AV1_COMMON *const cm) {
+ return &cm->buffer_pool->frame_bufs[cm->new_fb_idx].buf;
+}
+
+static INLINE int get_free_fb(AV1_COMMON *cm) {
+ RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs;
+ int i;
+
+ lock_buffer_pool(cm->buffer_pool);
+ for (i = 0; i < FRAME_BUFFERS; ++i)
+ if (frame_bufs[i].ref_count == 0) break;
+
+ if (i != FRAME_BUFFERS) {
+ if (frame_bufs[i].buf.use_external_reference_buffers) {
+ // If this frame buffer's y_buffer, u_buffer, and v_buffer point to the
+ // external reference buffers. Restore the buffer pointers to point to the
+ // internally allocated memory.
+ YV12_BUFFER_CONFIG *ybf = &frame_bufs[i].buf;
+ ybf->y_buffer = ybf->store_buf_adr[0];
+ ybf->u_buffer = ybf->store_buf_adr[1];
+ ybf->v_buffer = ybf->store_buf_adr[2];
+ ybf->use_external_reference_buffers = 0;
+ }
+
+ frame_bufs[i].ref_count = 1;
+ } else {
+ // Reset i to be INVALID_IDX to indicate no free buffer found.
+ i = INVALID_IDX;
+ }
+
+ unlock_buffer_pool(cm->buffer_pool);
+ return i;
+}
+
+static INLINE void ref_cnt_fb(RefCntBuffer *bufs, int *idx, int new_idx) {
+ const int ref_index = *idx;
+
+ if (ref_index >= 0 && bufs[ref_index].ref_count > 0)
+ bufs[ref_index].ref_count--;
+
+ *idx = new_idx;
+
+ bufs[new_idx].ref_count++;
+}
+
+static INLINE int frame_is_intra_only(const AV1_COMMON *const cm) {
+ return cm->frame_type == KEY_FRAME || cm->intra_only;
+}
+
+static INLINE int frame_is_sframe(const AV1_COMMON *cm) {
+ return cm->frame_type == S_FRAME;
+}
+
+static INLINE RefCntBuffer *get_prev_frame(const AV1_COMMON *const cm) {
+ if (cm->primary_ref_frame == PRIMARY_REF_NONE ||
+ cm->frame_refs[cm->primary_ref_frame].idx == INVALID_IDX) {
+ return NULL;
+ } else {
+ return &cm->buffer_pool
+ ->frame_bufs[cm->frame_refs[cm->primary_ref_frame].idx];
+ }
+}
+
+// Returns 1 if this frame might allow mvs from some reference frame.
+static INLINE int frame_might_allow_ref_frame_mvs(const AV1_COMMON *cm) {
+ return !cm->error_resilient_mode && cm->seq_params.enable_ref_frame_mvs &&
+ cm->seq_params.enable_order_hint && !frame_is_intra_only(cm);
+}
+
+// Returns 1 if this frame might use warped_motion
+static INLINE int frame_might_allow_warped_motion(const AV1_COMMON *cm) {
+ return !cm->error_resilient_mode && !frame_is_intra_only(cm) &&
+ cm->seq_params.enable_warped_motion;
+}
+
+static INLINE void ensure_mv_buffer(RefCntBuffer *buf, AV1_COMMON *cm) {
+ const int buf_rows = buf->mi_rows;
+ const int buf_cols = buf->mi_cols;
+
+ if (buf->mvs == NULL || buf_rows != cm->mi_rows || buf_cols != cm->mi_cols) {
+ aom_free(buf->mvs);
+ buf->mi_rows = cm->mi_rows;
+ buf->mi_cols = cm->mi_cols;
+ CHECK_MEM_ERROR(cm, buf->mvs,
+ (MV_REF *)aom_calloc(
+ ((cm->mi_rows + 1) >> 1) * ((cm->mi_cols + 1) >> 1),
+ sizeof(*buf->mvs)));
+ aom_free(buf->seg_map);
+ CHECK_MEM_ERROR(cm, buf->seg_map,
+ (uint8_t *)aom_calloc(cm->mi_rows * cm->mi_cols,
+ sizeof(*buf->seg_map)));
+ }
+
+ const int mem_size =
+ ((cm->mi_rows + MAX_MIB_SIZE) >> 1) * (cm->mi_stride >> 1);
+ int realloc = cm->tpl_mvs == NULL;
+ if (cm->tpl_mvs) realloc |= cm->tpl_mvs_mem_size < mem_size;
+
+ if (realloc) {
+ aom_free(cm->tpl_mvs);
+ CHECK_MEM_ERROR(cm, cm->tpl_mvs,
+ (TPL_MV_REF *)aom_calloc(mem_size, sizeof(*cm->tpl_mvs)));
+ cm->tpl_mvs_mem_size = mem_size;
+ }
+}
+
+void cfl_init(CFL_CTX *cfl, const SequenceHeader *seq_params);
+
+static INLINE int av1_num_planes(const AV1_COMMON *cm) {
+ return cm->seq_params.monochrome ? 1 : MAX_MB_PLANE;
+}
+
+static INLINE void av1_init_above_context(AV1_COMMON *cm, MACROBLOCKD *xd,
+ const int tile_row) {
+ const int num_planes = av1_num_planes(cm);
+ for (int i = 0; i < num_planes; ++i) {
+ xd->above_context[i] = cm->above_context[i][tile_row];
+ }
+ xd->above_seg_context = cm->above_seg_context[tile_row];
+ xd->above_txfm_context = cm->above_txfm_context[tile_row];
+}
+
+static INLINE void av1_init_macroblockd(AV1_COMMON *cm, MACROBLOCKD *xd,
+ tran_low_t *dqcoeff) {
+ const int num_planes = av1_num_planes(cm);
+ for (int i = 0; i < num_planes; ++i) {
+ xd->plane[i].dqcoeff = dqcoeff;
+
+ if (xd->plane[i].plane_type == PLANE_TYPE_Y) {
+ memcpy(xd->plane[i].seg_dequant_QTX, cm->y_dequant_QTX,
+ sizeof(cm->y_dequant_QTX));
+ memcpy(xd->plane[i].seg_iqmatrix, cm->y_iqmatrix, sizeof(cm->y_iqmatrix));
+
+ } else {
+ if (i == AOM_PLANE_U) {
+ memcpy(xd->plane[i].seg_dequant_QTX, cm->u_dequant_QTX,
+ sizeof(cm->u_dequant_QTX));
+ memcpy(xd->plane[i].seg_iqmatrix, cm->u_iqmatrix,
+ sizeof(cm->u_iqmatrix));
+ } else {
+ memcpy(xd->plane[i].seg_dequant_QTX, cm->v_dequant_QTX,
+ sizeof(cm->v_dequant_QTX));
+ memcpy(xd->plane[i].seg_iqmatrix, cm->v_iqmatrix,
+ sizeof(cm->v_iqmatrix));
+ }
+ }
+ }
+ xd->mi_stride = cm->mi_stride;
+ xd->error_info = &cm->error;
+ cfl_init(&xd->cfl, &cm->seq_params);
+}
+
+static INLINE void set_skip_context(MACROBLOCKD *xd, int mi_row, int mi_col,
+ const int num_planes) {
+ int i;
+ int row_offset = mi_row;
+ int col_offset = mi_col;
+ for (i = 0; i < num_planes; ++i) {
+ struct macroblockd_plane *const pd = &xd->plane[i];
+ // Offset the buffer pointer
+ const BLOCK_SIZE bsize = xd->mi[0]->sb_type;
+ if (pd->subsampling_y && (mi_row & 0x01) && (mi_size_high[bsize] == 1))
+ row_offset = mi_row - 1;
+ if (pd->subsampling_x && (mi_col & 0x01) && (mi_size_wide[bsize] == 1))
+ col_offset = mi_col - 1;
+ int above_idx = col_offset;
+ int left_idx = row_offset & MAX_MIB_MASK;
+ pd->above_context = &xd->above_context[i][above_idx >> pd->subsampling_x];
+ pd->left_context = &xd->left_context[i][left_idx >> pd->subsampling_y];
+ }
+}
+
+static INLINE int calc_mi_size(int len) {
+ // len is in mi units. Align to a multiple of SBs.
+ return ALIGN_POWER_OF_TWO(len, MAX_MIB_SIZE_LOG2);
+}
+
+static INLINE void set_plane_n4(MACROBLOCKD *const xd, int bw, int bh,
+ const int num_planes) {
+ int i;
+ for (i = 0; i < num_planes; i++) {
+ xd->plane[i].width = (bw * MI_SIZE) >> xd->plane[i].subsampling_x;
+ xd->plane[i].height = (bh * MI_SIZE) >> xd->plane[i].subsampling_y;
+
+ xd->plane[i].width = AOMMAX(xd->plane[i].width, 4);
+ xd->plane[i].height = AOMMAX(xd->plane[i].height, 4);
+ }
+}
+
+static INLINE void set_mi_row_col(MACROBLOCKD *xd, const TileInfo *const tile,
+ int mi_row, int bh, int mi_col, int bw,
+ int mi_rows, int mi_cols) {
+ xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8);
+ xd->mb_to_bottom_edge = ((mi_rows - bh - mi_row) * MI_SIZE) * 8;
+ xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8);
+ xd->mb_to_right_edge = ((mi_cols - bw - mi_col) * MI_SIZE) * 8;
+
+ // Are edges available for intra prediction?
+ xd->up_available = (mi_row > tile->mi_row_start);
+
+ const int ss_x = xd->plane[1].subsampling_x;
+ const int ss_y = xd->plane[1].subsampling_y;
+
+ xd->left_available = (mi_col > tile->mi_col_start);
+ xd->chroma_up_available = xd->up_available;
+ xd->chroma_left_available = xd->left_available;
+ if (ss_x && bw < mi_size_wide[BLOCK_8X8])
+ xd->chroma_left_available = (mi_col - 1) > tile->mi_col_start;
+ if (ss_y && bh < mi_size_high[BLOCK_8X8])
+ xd->chroma_up_available = (mi_row - 1) > tile->mi_row_start;
+ if (xd->up_available) {
+ xd->above_mbmi = xd->mi[-xd->mi_stride];
+ } else {
+ xd->above_mbmi = NULL;
+ }
+
+ if (xd->left_available) {
+ xd->left_mbmi = xd->mi[-1];
+ } else {
+ xd->left_mbmi = NULL;
+ }
+
+ const int chroma_ref = ((mi_row & 0x01) || !(bh & 0x01) || !ss_y) &&
+ ((mi_col & 0x01) || !(bw & 0x01) || !ss_x);
+ if (chroma_ref) {
+ // To help calculate the "above" and "left" chroma blocks, note that the
+ // current block may cover multiple luma blocks (eg, if partitioned into
+ // 4x4 luma blocks).
+ // First, find the top-left-most luma block covered by this chroma block
+ MB_MODE_INFO **base_mi =
+ &xd->mi[-(mi_row & ss_y) * xd->mi_stride - (mi_col & ss_x)];
+
+ // Then, we consider the luma region covered by the left or above 4x4 chroma
+ // prediction. We want to point to the chroma reference block in that
+ // region, which is the bottom-right-most mi unit.
+ // This leads to the following offsets:
+ MB_MODE_INFO *chroma_above_mi =
+ xd->chroma_up_available ? base_mi[-xd->mi_stride + ss_x] : NULL;
+ xd->chroma_above_mbmi = chroma_above_mi;
+
+ MB_MODE_INFO *chroma_left_mi =
+ xd->chroma_left_available ? base_mi[ss_y * xd->mi_stride - 1] : NULL;
+ xd->chroma_left_mbmi = chroma_left_mi;
+ }
+
+ xd->n4_h = bh;
+ xd->n4_w = bw;
+ xd->is_sec_rect = 0;
+ if (xd->n4_w < xd->n4_h) {
+ // Only mark is_sec_rect as 1 for the last block.
+ // For PARTITION_VERT_4, it would be (0, 0, 0, 1);
+ // For other partitions, it would be (0, 1).
+ if (!((mi_col + xd->n4_w) & (xd->n4_h - 1))) xd->is_sec_rect = 1;
+ }
+
+ if (xd->n4_w > xd->n4_h)
+ if (mi_row & (xd->n4_w - 1)) xd->is_sec_rect = 1;
+}
+
+static INLINE aom_cdf_prob *get_y_mode_cdf(FRAME_CONTEXT *tile_ctx,
+ const MB_MODE_INFO *above_mi,
+ const MB_MODE_INFO *left_mi) {
+ const PREDICTION_MODE above = av1_above_block_mode(above_mi);
+ const PREDICTION_MODE left = av1_left_block_mode(left_mi);
+ const int above_ctx = intra_mode_context[above];
+ const int left_ctx = intra_mode_context[left];
+ return tile_ctx->kf_y_cdf[above_ctx][left_ctx];
+}
+
+static INLINE void update_partition_context(MACROBLOCKD *xd, int mi_row,
+ int mi_col, BLOCK_SIZE subsize,
+ BLOCK_SIZE bsize) {
+ PARTITION_CONTEXT *const above_ctx = xd->above_seg_context + mi_col;
+ PARTITION_CONTEXT *const left_ctx =
+ xd->left_seg_context + (mi_row & MAX_MIB_MASK);
+
+ const int bw = mi_size_wide[bsize];
+ const int bh = mi_size_high[bsize];
+ memset(above_ctx, partition_context_lookup[subsize].above, bw);
+ memset(left_ctx, partition_context_lookup[subsize].left, bh);
+}
+
+static INLINE int is_chroma_reference(int mi_row, int mi_col, BLOCK_SIZE bsize,
+ int subsampling_x, int subsampling_y) {
+ const int bw = mi_size_wide[bsize];
+ const int bh = mi_size_high[bsize];
+ int ref_pos = ((mi_row & 0x01) || !(bh & 0x01) || !subsampling_y) &&
+ ((mi_col & 0x01) || !(bw & 0x01) || !subsampling_x);
+ return ref_pos;
+}
+
+static INLINE BLOCK_SIZE scale_chroma_bsize(BLOCK_SIZE bsize, int subsampling_x,
+ int subsampling_y) {
+ BLOCK_SIZE bs = bsize;
+ switch (bsize) {
+ case BLOCK_4X4:
+ if (subsampling_x == 1 && subsampling_y == 1)
+ bs = BLOCK_8X8;
+ else if (subsampling_x == 1)
+ bs = BLOCK_8X4;
+ else if (subsampling_y == 1)
+ bs = BLOCK_4X8;
+ break;
+ case BLOCK_4X8:
+ if (subsampling_x == 1 && subsampling_y == 1)
+ bs = BLOCK_8X8;
+ else if (subsampling_x == 1)
+ bs = BLOCK_8X8;
+ else if (subsampling_y == 1)
+ bs = BLOCK_4X8;
+ break;
+ case BLOCK_8X4:
+ if (subsampling_x == 1 && subsampling_y == 1)
+ bs = BLOCK_8X8;
+ else if (subsampling_x == 1)
+ bs = BLOCK_8X4;
+ else if (subsampling_y == 1)
+ bs = BLOCK_8X8;
+ break;
+ case BLOCK_4X16:
+ if (subsampling_x == 1 && subsampling_y == 1)
+ bs = BLOCK_8X16;
+ else if (subsampling_x == 1)
+ bs = BLOCK_8X16;
+ else if (subsampling_y == 1)
+ bs = BLOCK_4X16;
+ break;
+ case BLOCK_16X4:
+ if (subsampling_x == 1 && subsampling_y == 1)
+ bs = BLOCK_16X8;
+ else if (subsampling_x == 1)
+ bs = BLOCK_16X4;
+ else if (subsampling_y == 1)
+ bs = BLOCK_16X8;
+ break;
+ default: break;
+ }
+ return bs;
+}
+
+static INLINE aom_cdf_prob cdf_element_prob(const aom_cdf_prob *cdf,
+ size_t element) {
+ assert(cdf != NULL);
+ return (element > 0 ? cdf[element - 1] : CDF_PROB_TOP) - cdf[element];
+}
+
+static INLINE void partition_gather_horz_alike(aom_cdf_prob *out,
+ const aom_cdf_prob *const in,
+ BLOCK_SIZE bsize) {
+ (void)bsize;
+ out[0] = CDF_PROB_TOP;
+ out[0] -= cdf_element_prob(in, PARTITION_HORZ);
+ out[0] -= cdf_element_prob(in, PARTITION_SPLIT);
+ out[0] -= cdf_element_prob(in, PARTITION_HORZ_A);
+ out[0] -= cdf_element_prob(in, PARTITION_HORZ_B);
+ out[0] -= cdf_element_prob(in, PARTITION_VERT_A);
+ if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_HORZ_4);
+ out[0] = AOM_ICDF(out[0]);
+ out[1] = AOM_ICDF(CDF_PROB_TOP);
+}
+
+static INLINE void partition_gather_vert_alike(aom_cdf_prob *out,
+ const aom_cdf_prob *const in,
+ BLOCK_SIZE bsize) {
+ (void)bsize;
+ out[0] = CDF_PROB_TOP;
+ out[0] -= cdf_element_prob(in, PARTITION_VERT);
+ out[0] -= cdf_element_prob(in, PARTITION_SPLIT);
+ out[0] -= cdf_element_prob(in, PARTITION_HORZ_A);
+ out[0] -= cdf_element_prob(in, PARTITION_VERT_A);
+ out[0] -= cdf_element_prob(in, PARTITION_VERT_B);
+ if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_VERT_4);
+ out[0] = AOM_ICDF(out[0]);
+ out[1] = AOM_ICDF(CDF_PROB_TOP);
+}
+
+static INLINE void update_ext_partition_context(MACROBLOCKD *xd, int mi_row,
+ int mi_col, BLOCK_SIZE subsize,
+ BLOCK_SIZE bsize,
+ PARTITION_TYPE partition) {
+ if (bsize >= BLOCK_8X8) {
+ const int hbs = mi_size_wide[bsize] / 2;
+ BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT);
+ switch (partition) {
+ case PARTITION_SPLIT:
+ if (bsize != BLOCK_8X8) break;
+ AOM_FALLTHROUGH_INTENDED;
+ case PARTITION_NONE:
+ case PARTITION_HORZ:
+ case PARTITION_VERT:
+ case PARTITION_HORZ_4:
+ case PARTITION_VERT_4:
+ update_partition_context(xd, mi_row, mi_col, subsize, bsize);
+ break;
+ case PARTITION_HORZ_A:
+ update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
+ update_partition_context(xd, mi_row + hbs, mi_col, subsize, subsize);
+ break;
+ case PARTITION_HORZ_B:
+ update_partition_context(xd, mi_row, mi_col, subsize, subsize);
+ update_partition_context(xd, mi_row + hbs, mi_col, bsize2, subsize);
+ break;
+ case PARTITION_VERT_A:
+ update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
+ update_partition_context(xd, mi_row, mi_col + hbs, subsize, subsize);
+ break;
+ case PARTITION_VERT_B:
+ update_partition_context(xd, mi_row, mi_col, subsize, subsize);
+ update_partition_context(xd, mi_row, mi_col + hbs, bsize2, subsize);
+ break;
+ default: assert(0 && "Invalid partition type");
+ }
+ }
+}
+
+static INLINE int partition_plane_context(const MACROBLOCKD *xd, int mi_row,
+ int mi_col, BLOCK_SIZE bsize) {
+ const PARTITION_CONTEXT *above_ctx = xd->above_seg_context + mi_col;
+ const PARTITION_CONTEXT *left_ctx =
+ xd->left_seg_context + (mi_row & MAX_MIB_MASK);
+ // Minimum partition point is 8x8. Offset the bsl accordingly.
+ const int bsl = mi_size_wide_log2[bsize] - mi_size_wide_log2[BLOCK_8X8];
+ int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1;
+
+ assert(mi_size_wide_log2[bsize] == mi_size_high_log2[bsize]);
+ assert(bsl >= 0);
+
+ return (left * 2 + above) + bsl * PARTITION_PLOFFSET;
+}
+
+// Return the number of elements in the partition CDF when
+// partitioning the (square) block with luma block size of bsize.
+static INLINE int partition_cdf_length(BLOCK_SIZE bsize) {
+ if (bsize <= BLOCK_8X8)
+ return PARTITION_TYPES;
+ else if (bsize == BLOCK_128X128)
+ return EXT_PARTITION_TYPES - 2;
+ else
+ return EXT_PARTITION_TYPES;
+}
+
+static INLINE int max_block_wide(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
+ int plane) {
+ int max_blocks_wide = block_size_wide[bsize];
+ const struct macroblockd_plane *const pd = &xd->plane[plane];
+
+ if (xd->mb_to_right_edge < 0)
+ max_blocks_wide += xd->mb_to_right_edge >> (3 + pd->subsampling_x);
+
+ // Scale the width in the transform block unit.
+ return max_blocks_wide >> tx_size_wide_log2[0];
+}
+
+static INLINE int max_block_high(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
+ int plane) {
+ int max_blocks_high = block_size_high[bsize];
+ const struct macroblockd_plane *const pd = &xd->plane[plane];
+
+ if (xd->mb_to_bottom_edge < 0)
+ max_blocks_high += xd->mb_to_bottom_edge >> (3 + pd->subsampling_y);
+
+ // Scale the height in the transform block unit.
+ return max_blocks_high >> tx_size_high_log2[0];
+}
+
+static INLINE int max_intra_block_width(const MACROBLOCKD *xd,
+ BLOCK_SIZE plane_bsize, int plane,
+ TX_SIZE tx_size) {
+ const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane)
+ << tx_size_wide_log2[0];
+ return ALIGN_POWER_OF_TWO(max_blocks_wide, tx_size_wide_log2[tx_size]);
+}
+
+static INLINE int max_intra_block_height(const MACROBLOCKD *xd,
+ BLOCK_SIZE plane_bsize, int plane,
+ TX_SIZE tx_size) {
+ const int max_blocks_high = max_block_high(xd, plane_bsize, plane)
+ << tx_size_high_log2[0];
+ return ALIGN_POWER_OF_TWO(max_blocks_high, tx_size_high_log2[tx_size]);
+}
+
+static INLINE void av1_zero_above_context(AV1_COMMON *const cm, const MACROBLOCKD *xd,
+ int mi_col_start, int mi_col_end, const int tile_row) {
+ const SequenceHeader *const seq_params = &cm->seq_params;
+ const int num_planes = av1_num_planes(cm);
+ const int width = mi_col_end - mi_col_start;
+ const int aligned_width =
+ ALIGN_POWER_OF_TWO(width, seq_params->mib_size_log2);
+
+ const int offset_y = mi_col_start;
+ const int width_y = aligned_width;
+ const int offset_uv = offset_y >> seq_params->subsampling_x;
+ const int width_uv = width_y >> seq_params->subsampling_x;
+
+ av1_zero_array(cm->above_context[0][tile_row] + offset_y, width_y);
+ if (num_planes > 1) {
+ if (cm->above_context[1][tile_row] && cm->above_context[2][tile_row]) {
+ av1_zero_array(cm->above_context[1][tile_row] + offset_uv, width_uv);
+ av1_zero_array(cm->above_context[2][tile_row] + offset_uv, width_uv);
+ } else {
+ aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
+ "Invalid value of planes");
+ }
+ }
+
+ av1_zero_array(cm->above_seg_context[tile_row] + mi_col_start, aligned_width);
+
+ memset(cm->above_txfm_context[tile_row] + mi_col_start,
+ tx_size_wide[TX_SIZES_LARGEST],
+ aligned_width * sizeof(TXFM_CONTEXT));
+}
+
+static INLINE void av1_zero_left_context(MACROBLOCKD *const xd) {
+ av1_zero(xd->left_context);
+ av1_zero(xd->left_seg_context);
+
+ memset(xd->left_txfm_context_buffer, tx_size_high[TX_SIZES_LARGEST],
+ sizeof(xd->left_txfm_context_buffer));
+}
+
+// Disable array-bounds checks as the TX_SIZE enum contains values larger than
+// TX_SIZES_ALL (TX_INVALID) which make extending the array as a workaround
+// infeasible. The assert is enough for static analysis and this or other tools
+// asan, valgrind would catch oob access at runtime.
+#if defined(__GNUC__) && __GNUC__ >= 4
+#pragma GCC diagnostic ignored "-Warray-bounds"
+#endif
+
+#if defined(__GNUC__) && __GNUC__ >= 4
+#pragma GCC diagnostic warning "-Warray-bounds"
+#endif
+
+static INLINE void set_txfm_ctx(TXFM_CONTEXT *txfm_ctx, uint8_t txs, int len) {
+ int i;
+ for (i = 0; i < len; ++i) txfm_ctx[i] = txs;
+}
+
+static INLINE void set_txfm_ctxs(TX_SIZE tx_size, int n4_w, int n4_h, int skip,
+ const MACROBLOCKD *xd) {
+ uint8_t bw = tx_size_wide[tx_size];
+ uint8_t bh = tx_size_high[tx_size];
+
+ if (skip) {
+ bw = n4_w * MI_SIZE;
+ bh = n4_h * MI_SIZE;
+ }
+
+ set_txfm_ctx(xd->above_txfm_context, bw, n4_w);
+ set_txfm_ctx(xd->left_txfm_context, bh, n4_h);
+}
+
+static INLINE void txfm_partition_update(TXFM_CONTEXT *above_ctx,
+ TXFM_CONTEXT *left_ctx,
+ TX_SIZE tx_size, TX_SIZE txb_size) {
+ BLOCK_SIZE bsize = txsize_to_bsize[txb_size];
+ int bh = mi_size_high[bsize];
+ int bw = mi_size_wide[bsize];
+ uint8_t txw = tx_size_wide[tx_size];
+ uint8_t txh = tx_size_high[tx_size];
+ int i;
+ for (i = 0; i < bh; ++i) left_ctx[i] = txh;
+ for (i = 0; i < bw; ++i) above_ctx[i] = txw;
+}
+
+static INLINE TX_SIZE get_sqr_tx_size(int tx_dim) {
+ switch (tx_dim) {
+ case 128:
+ case 64: return TX_64X64; break;
+ case 32: return TX_32X32; break;
+ case 16: return TX_16X16; break;
+ case 8: return TX_8X8; break;
+ default: return TX_4X4;
+ }
+}
+
+static INLINE TX_SIZE get_tx_size(int width, int height) {
+ if (width == height) {
+ return get_sqr_tx_size(width);
+ }
+ if (width < height) {
+ if (width + width == height) {
+ switch (width) {
+ case 4: return TX_4X8; break;
+ case 8: return TX_8X16; break;
+ case 16: return TX_16X32; break;
+ case 32: return TX_32X64; break;
+ }
+ } else {
+ switch (width) {
+ case 4: return TX_4X16; break;
+ case 8: return TX_8X32; break;
+ case 16: return TX_16X64; break;
+ }
+ }
+ } else {
+ if (height + height == width) {
+ switch (height) {
+ case 4: return TX_8X4; break;
+ case 8: return TX_16X8; break;
+ case 16: return TX_32X16; break;
+ case 32: return TX_64X32; break;
+ }
+ } else {
+ switch (height) {
+ case 4: return TX_16X4; break;
+ case 8: return TX_32X8; break;
+ case 16: return TX_64X16; break;
+ }
+ }
+ }
+ assert(0);
+ return TX_4X4;
+}
+
+static INLINE int txfm_partition_context(TXFM_CONTEXT *above_ctx,
+ TXFM_CONTEXT *left_ctx,
+ BLOCK_SIZE bsize, TX_SIZE tx_size) {
+ const uint8_t txw = tx_size_wide[tx_size];
+ const uint8_t txh = tx_size_high[tx_size];
+ const int above = *above_ctx < txw;
+ const int left = *left_ctx < txh;
+ int category = TXFM_PARTITION_CONTEXTS;
+
+ // dummy return, not used by others.
+ if (tx_size <= TX_4X4) return 0;
+
+ TX_SIZE max_tx_size =
+ get_sqr_tx_size(AOMMAX(block_size_wide[bsize], block_size_high[bsize]));
+
+ if (max_tx_size >= TX_8X8) {
+ category =
+ (txsize_sqr_up_map[tx_size] != max_tx_size && max_tx_size > TX_8X8) +
+ (TX_SIZES - 1 - max_tx_size) * 2;
+ }
+ assert(category != TXFM_PARTITION_CONTEXTS);
+ return category * 3 + above + left;
+}
+
+// Compute the next partition in the direction of the sb_type stored in the mi
+// array, starting with bsize.
+static INLINE PARTITION_TYPE get_partition(const AV1_COMMON *const cm,
+ int mi_row, int mi_col,
+ BLOCK_SIZE bsize) {
+ if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return PARTITION_INVALID;
+
+ const int offset = mi_row * cm->mi_stride + mi_col;
+ MB_MODE_INFO **mi = cm->mi_grid_visible + offset;
+ const BLOCK_SIZE subsize = mi[0]->sb_type;
+
+ if (subsize == bsize) return PARTITION_NONE;
+
+ const int bhigh = mi_size_high[bsize];
+ const int bwide = mi_size_wide[bsize];
+ const int sshigh = mi_size_high[subsize];
+ const int sswide = mi_size_wide[subsize];
+
+ if (bsize > BLOCK_8X8 && mi_row + bwide / 2 < cm->mi_rows &&
+ mi_col + bhigh / 2 < cm->mi_cols) {
+ // In this case, the block might be using an extended partition
+ // type.
+ const MB_MODE_INFO *const mbmi_right = mi[bwide / 2];
+ const MB_MODE_INFO *const mbmi_below = mi[bhigh / 2 * cm->mi_stride];
+
+ if (sswide == bwide) {
+ // Smaller height but same width. Is PARTITION_HORZ_4, PARTITION_HORZ or
+ // PARTITION_HORZ_B. To distinguish the latter two, check if the lower
+ // half was split.
+ if (sshigh * 4 == bhigh) return PARTITION_HORZ_4;
+ assert(sshigh * 2 == bhigh);
+
+ if (mbmi_below->sb_type == subsize)
+ return PARTITION_HORZ;
+ else
+ return PARTITION_HORZ_B;
+ } else if (sshigh == bhigh) {
+ // Smaller width but same height. Is PARTITION_VERT_4, PARTITION_VERT or
+ // PARTITION_VERT_B. To distinguish the latter two, check if the right
+ // half was split.
+ if (sswide * 4 == bwide) return PARTITION_VERT_4;
+ assert(sswide * 2 == bhigh);
+
+ if (mbmi_right->sb_type == subsize)
+ return PARTITION_VERT;
+ else
+ return PARTITION_VERT_B;
+ } else {
+ // Smaller width and smaller height. Might be PARTITION_SPLIT or could be
+ // PARTITION_HORZ_A or PARTITION_VERT_A. If subsize isn't halved in both
+ // dimensions, we immediately know this is a split (which will recurse to
+ // get to subsize). Otherwise look down and to the right. With
+ // PARTITION_VERT_A, the right block will have height bhigh; with
+ // PARTITION_HORZ_A, the lower block with have width bwide. Otherwise
+ // it's PARTITION_SPLIT.
+ if (sswide * 2 != bwide || sshigh * 2 != bhigh) return PARTITION_SPLIT;
+
+ if (mi_size_wide[mbmi_below->sb_type] == bwide) return PARTITION_HORZ_A;
+ if (mi_size_high[mbmi_right->sb_type] == bhigh) return PARTITION_VERT_A;
+
+ return PARTITION_SPLIT;
+ }
+ }
+ const int vert_split = sswide < bwide;
+ const int horz_split = sshigh < bhigh;
+ const int split_idx = (vert_split << 1) | horz_split;
+ assert(split_idx != 0);
+
+ static const PARTITION_TYPE base_partitions[4] = {
+ PARTITION_INVALID, PARTITION_HORZ, PARTITION_VERT, PARTITION_SPLIT
+ };
+
+ return base_partitions[split_idx];
+}
+
+static INLINE void set_use_reference_buffer(AV1_COMMON *const cm, int use) {
+ cm->seq_params.frame_id_numbers_present_flag = use;
+}
+
+static INLINE void set_sb_size(SequenceHeader *const seq_params,
+ BLOCK_SIZE sb_size) {
+ seq_params->sb_size = sb_size;
+ seq_params->mib_size = mi_size_wide[seq_params->sb_size];
+ seq_params->mib_size_log2 = mi_size_wide_log2[seq_params->sb_size];
+}
+
+// Returns true if the frame is fully lossless at the coded resolution.
+// Note: If super-resolution is used, such a frame will still NOT be lossless at
+// the upscaled resolution.
+static INLINE int is_coded_lossless(const AV1_COMMON *cm,
+ const MACROBLOCKD *xd) {
+ int coded_lossless = 1;
+ if (cm->seg.enabled) {
+ for (int i = 0; i < MAX_SEGMENTS; ++i) {
+ if (!xd->lossless[i]) {
+ coded_lossless = 0;
+ break;
+ }
+ }
+ } else {
+ coded_lossless = xd->lossless[0];
+ }
+ return coded_lossless;
+}
+
+static INLINE int is_valid_seq_level_idx(uint8_t seq_level_idx) {
+ return seq_level_idx < 24 || seq_level_idx == 31;
+}
+
+static INLINE uint8_t major_minor_to_seq_level_idx(BitstreamLevel bl) {
+ assert(bl.major >= LEVEL_MAJOR_MIN && bl.major <= LEVEL_MAJOR_MAX);
+ // Since bl.minor is unsigned a comparison will return a warning:
+ // comparison is always true due to limited range of data type
+ assert(LEVEL_MINOR_MIN == 0);
+ assert(bl.minor <= LEVEL_MINOR_MAX);
+ return ((bl.major - LEVEL_MAJOR_MIN) << LEVEL_MINOR_BITS) + bl.minor;
+}
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // AOM_AV1_COMMON_ONYXC_INT_H_