summaryrefslogtreecommitdiffstats
path: root/third_party/aom/aom_dsp/fwd_txfm.c
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/aom/aom_dsp/fwd_txfm.c')
-rw-r--r--third_party/aom/aom_dsp/fwd_txfm.c668
1 files changed, 2 insertions, 666 deletions
diff --git a/third_party/aom/aom_dsp/fwd_txfm.c b/third_party/aom/aom_dsp/fwd_txfm.c
index 1ceef7782..e50f951c1 100644
--- a/third_party/aom/aom_dsp/fwd_txfm.c
+++ b/third_party/aom/aom_dsp/fwd_txfm.c
@@ -9,84 +9,9 @@
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
-#include "aom_dsp/fwd_txfm.h"
#include <assert.h>
-#include "./aom_dsp_rtcd.h"
-
-void aom_fdct4x4_c(const int16_t *input, tran_low_t *output, int stride) {
- // The 2D transform is done with two passes which are actually pretty
- // similar. In the first one, we transform the columns and transpose
- // the results. In the second one, we transform the rows. To achieve that,
- // as the first pass results are transposed, we transpose the columns (that
- // is the transposed rows) and transpose the results (so that it goes back
- // in normal/row positions).
- int pass;
- // We need an intermediate buffer between passes.
- tran_low_t intermediate[4 * 4];
- const tran_low_t *in_low = NULL;
- tran_low_t *out = intermediate;
- // Do the two transform/transpose passes
- for (pass = 0; pass < 2; ++pass) {
- tran_high_t in_high[4]; // canbe16
- tran_high_t step[4]; // canbe16
- tran_high_t temp1, temp2; // needs32
- int i;
- for (i = 0; i < 4; ++i) {
- // Load inputs.
- if (pass == 0) {
- in_high[0] = input[0 * stride] * 16;
- in_high[1] = input[1 * stride] * 16;
- in_high[2] = input[2 * stride] * 16;
- in_high[3] = input[3 * stride] * 16;
- if (i == 0 && in_high[0]) {
- ++in_high[0];
- }
- } else {
- assert(in_low != NULL);
- in_high[0] = in_low[0 * 4];
- in_high[1] = in_low[1 * 4];
- in_high[2] = in_low[2 * 4];
- in_high[3] = in_low[3 * 4];
- ++in_low;
- }
- // Transform.
- step[0] = in_high[0] + in_high[3];
- step[1] = in_high[1] + in_high[2];
- step[2] = in_high[1] - in_high[2];
- step[3] = in_high[0] - in_high[3];
- temp1 = (step[0] + step[1]) * cospi_16_64;
- temp2 = (step[0] - step[1]) * cospi_16_64;
- out[0] = (tran_low_t)fdct_round_shift(temp1);
- out[2] = (tran_low_t)fdct_round_shift(temp2);
- temp1 = step[2] * cospi_24_64 + step[3] * cospi_8_64;
- temp2 = -step[2] * cospi_8_64 + step[3] * cospi_24_64;
- out[1] = (tran_low_t)fdct_round_shift(temp1);
- out[3] = (tran_low_t)fdct_round_shift(temp2);
- // Do next column (which is a transposed row in second/horizontal pass)
- ++input;
- out += 4;
- }
- // Setup in/out for next pass.
- in_low = intermediate;
- out = output;
- }
-
- {
- int i, j;
- for (i = 0; i < 4; ++i) {
- for (j = 0; j < 4; ++j) output[j + i * 4] = (output[j + i * 4] + 1) >> 2;
- }
- }
-}
-
-void aom_fdct4x4_1_c(const int16_t *input, tran_low_t *output, int stride) {
- int r, c;
- tran_low_t sum = 0;
- for (r = 0; r < 4; ++r)
- for (c = 0; c < 4; ++c) sum += input[r * stride + c];
-
- output[0] = sum << 1;
-}
+#include "aom_dsp/txfm_common.h"
+#include "config/aom_dsp_rtcd.h"
void aom_fdct8x8_c(const int16_t *input, tran_low_t *final_output, int stride) {
int i, j;
@@ -172,596 +97,7 @@ void aom_fdct8x8_c(const int16_t *input, tran_low_t *final_output, int stride) {
}
}
-void aom_fdct16x16_c(const int16_t *input, tran_low_t *output, int stride) {
- // The 2D transform is done with two passes which are actually pretty
- // similar. In the first one, we transform the columns and transpose
- // the results. In the second one, we transform the rows. To achieve that,
- // as the first pass results are transposed, we transpose the columns (that
- // is the transposed rows) and transpose the results (so that it goes back
- // in normal/row positions).
- int pass;
- // We need an intermediate buffer between passes.
- tran_low_t intermediate[256];
- const tran_low_t *in_low = NULL;
- tran_low_t *out = intermediate;
- // Do the two transform/transpose passes
- for (pass = 0; pass < 2; ++pass) {
- tran_high_t step1[8]; // canbe16
- tran_high_t step2[8]; // canbe16
- tran_high_t step3[8]; // canbe16
- tran_high_t in_high[8]; // canbe16
- tran_high_t temp1, temp2; // needs32
- int i;
- for (i = 0; i < 16; i++) {
- if (0 == pass) {
- // Calculate input for the first 8 results.
- in_high[0] = (input[0 * stride] + input[15 * stride]) * 4;
- in_high[1] = (input[1 * stride] + input[14 * stride]) * 4;
- in_high[2] = (input[2 * stride] + input[13 * stride]) * 4;
- in_high[3] = (input[3 * stride] + input[12 * stride]) * 4;
- in_high[4] = (input[4 * stride] + input[11 * stride]) * 4;
- in_high[5] = (input[5 * stride] + input[10 * stride]) * 4;
- in_high[6] = (input[6 * stride] + input[9 * stride]) * 4;
- in_high[7] = (input[7 * stride] + input[8 * stride]) * 4;
- // Calculate input for the next 8 results.
- step1[0] = (input[7 * stride] - input[8 * stride]) * 4;
- step1[1] = (input[6 * stride] - input[9 * stride]) * 4;
- step1[2] = (input[5 * stride] - input[10 * stride]) * 4;
- step1[3] = (input[4 * stride] - input[11 * stride]) * 4;
- step1[4] = (input[3 * stride] - input[12 * stride]) * 4;
- step1[5] = (input[2 * stride] - input[13 * stride]) * 4;
- step1[6] = (input[1 * stride] - input[14 * stride]) * 4;
- step1[7] = (input[0 * stride] - input[15 * stride]) * 4;
- } else {
- // Calculate input for the first 8 results.
- assert(in_low != NULL);
- in_high[0] = ((in_low[0 * 16] + 1) >> 2) + ((in_low[15 * 16] + 1) >> 2);
- in_high[1] = ((in_low[1 * 16] + 1) >> 2) + ((in_low[14 * 16] + 1) >> 2);
- in_high[2] = ((in_low[2 * 16] + 1) >> 2) + ((in_low[13 * 16] + 1) >> 2);
- in_high[3] = ((in_low[3 * 16] + 1) >> 2) + ((in_low[12 * 16] + 1) >> 2);
- in_high[4] = ((in_low[4 * 16] + 1) >> 2) + ((in_low[11 * 16] + 1) >> 2);
- in_high[5] = ((in_low[5 * 16] + 1) >> 2) + ((in_low[10 * 16] + 1) >> 2);
- in_high[6] = ((in_low[6 * 16] + 1) >> 2) + ((in_low[9 * 16] + 1) >> 2);
- in_high[7] = ((in_low[7 * 16] + 1) >> 2) + ((in_low[8 * 16] + 1) >> 2);
- // Calculate input for the next 8 results.
- step1[0] = ((in_low[7 * 16] + 1) >> 2) - ((in_low[8 * 16] + 1) >> 2);
- step1[1] = ((in_low[6 * 16] + 1) >> 2) - ((in_low[9 * 16] + 1) >> 2);
- step1[2] = ((in_low[5 * 16] + 1) >> 2) - ((in_low[10 * 16] + 1) >> 2);
- step1[3] = ((in_low[4 * 16] + 1) >> 2) - ((in_low[11 * 16] + 1) >> 2);
- step1[4] = ((in_low[3 * 16] + 1) >> 2) - ((in_low[12 * 16] + 1) >> 2);
- step1[5] = ((in_low[2 * 16] + 1) >> 2) - ((in_low[13 * 16] + 1) >> 2);
- step1[6] = ((in_low[1 * 16] + 1) >> 2) - ((in_low[14 * 16] + 1) >> 2);
- step1[7] = ((in_low[0 * 16] + 1) >> 2) - ((in_low[15 * 16] + 1) >> 2);
- in_low++;
- }
- // Work on the first eight values; fdct8(input, even_results);
- {
- tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; // canbe16
- tran_high_t t0, t1, t2, t3; // needs32
- tran_high_t x0, x1, x2, x3; // canbe16
-
- // stage 1
- s0 = in_high[0] + in_high[7];
- s1 = in_high[1] + in_high[6];
- s2 = in_high[2] + in_high[5];
- s3 = in_high[3] + in_high[4];
- s4 = in_high[3] - in_high[4];
- s5 = in_high[2] - in_high[5];
- s6 = in_high[1] - in_high[6];
- s7 = in_high[0] - in_high[7];
-
- // fdct4(step, step);
- x0 = s0 + s3;
- x1 = s1 + s2;
- x2 = s1 - s2;
- x3 = s0 - s3;
- t0 = (x0 + x1) * cospi_16_64;
- t1 = (x0 - x1) * cospi_16_64;
- t2 = x3 * cospi_8_64 + x2 * cospi_24_64;
- t3 = x3 * cospi_24_64 - x2 * cospi_8_64;
- out[0] = (tran_low_t)fdct_round_shift(t0);
- out[4] = (tran_low_t)fdct_round_shift(t2);
- out[8] = (tran_low_t)fdct_round_shift(t1);
- out[12] = (tran_low_t)fdct_round_shift(t3);
-
- // Stage 2
- t0 = (s6 - s5) * cospi_16_64;
- t1 = (s6 + s5) * cospi_16_64;
- t2 = fdct_round_shift(t0);
- t3 = fdct_round_shift(t1);
-
- // Stage 3
- x0 = s4 + t2;
- x1 = s4 - t2;
- x2 = s7 - t3;
- x3 = s7 + t3;
-
- // Stage 4
- t0 = x0 * cospi_28_64 + x3 * cospi_4_64;
- t1 = x1 * cospi_12_64 + x2 * cospi_20_64;
- t2 = x2 * cospi_12_64 + x1 * -cospi_20_64;
- t3 = x3 * cospi_28_64 + x0 * -cospi_4_64;
- out[2] = (tran_low_t)fdct_round_shift(t0);
- out[6] = (tran_low_t)fdct_round_shift(t2);
- out[10] = (tran_low_t)fdct_round_shift(t1);
- out[14] = (tran_low_t)fdct_round_shift(t3);
- }
- // Work on the next eight values; step1 -> odd_results
- {
- // step 2
- temp1 = (step1[5] - step1[2]) * cospi_16_64;
- temp2 = (step1[4] - step1[3]) * cospi_16_64;
- step2[2] = fdct_round_shift(temp1);
- step2[3] = fdct_round_shift(temp2);
- temp1 = (step1[4] + step1[3]) * cospi_16_64;
- temp2 = (step1[5] + step1[2]) * cospi_16_64;
- step2[4] = fdct_round_shift(temp1);
- step2[5] = fdct_round_shift(temp2);
- // step 3
- step3[0] = step1[0] + step2[3];
- step3[1] = step1[1] + step2[2];
- step3[2] = step1[1] - step2[2];
- step3[3] = step1[0] - step2[3];
- step3[4] = step1[7] - step2[4];
- step3[5] = step1[6] - step2[5];
- step3[6] = step1[6] + step2[5];
- step3[7] = step1[7] + step2[4];
- // step 4
- temp1 = step3[1] * -cospi_8_64 + step3[6] * cospi_24_64;
- temp2 = step3[2] * cospi_24_64 + step3[5] * cospi_8_64;
- step2[1] = fdct_round_shift(temp1);
- step2[2] = fdct_round_shift(temp2);
- temp1 = step3[2] * cospi_8_64 - step3[5] * cospi_24_64;
- temp2 = step3[1] * cospi_24_64 + step3[6] * cospi_8_64;
- step2[5] = fdct_round_shift(temp1);
- step2[6] = fdct_round_shift(temp2);
- // step 5
- step1[0] = step3[0] + step2[1];
- step1[1] = step3[0] - step2[1];
- step1[2] = step3[3] + step2[2];
- step1[3] = step3[3] - step2[2];
- step1[4] = step3[4] - step2[5];
- step1[5] = step3[4] + step2[5];
- step1[6] = step3[7] - step2[6];
- step1[7] = step3[7] + step2[6];
- // step 6
- temp1 = step1[0] * cospi_30_64 + step1[7] * cospi_2_64;
- temp2 = step1[1] * cospi_14_64 + step1[6] * cospi_18_64;
- out[1] = (tran_low_t)fdct_round_shift(temp1);
- out[9] = (tran_low_t)fdct_round_shift(temp2);
- temp1 = step1[2] * cospi_22_64 + step1[5] * cospi_10_64;
- temp2 = step1[3] * cospi_6_64 + step1[4] * cospi_26_64;
- out[5] = (tran_low_t)fdct_round_shift(temp1);
- out[13] = (tran_low_t)fdct_round_shift(temp2);
- temp1 = step1[3] * -cospi_26_64 + step1[4] * cospi_6_64;
- temp2 = step1[2] * -cospi_10_64 + step1[5] * cospi_22_64;
- out[3] = (tran_low_t)fdct_round_shift(temp1);
- out[11] = (tran_low_t)fdct_round_shift(temp2);
- temp1 = step1[1] * -cospi_18_64 + step1[6] * cospi_14_64;
- temp2 = step1[0] * -cospi_2_64 + step1[7] * cospi_30_64;
- out[7] = (tran_low_t)fdct_round_shift(temp1);
- out[15] = (tran_low_t)fdct_round_shift(temp2);
- }
- // Do next column (which is a transposed row in second/horizontal pass)
- input++;
- out += 16;
- }
- // Setup in/out for next pass.
- in_low = intermediate;
- out = output;
- }
-}
-
-static INLINE tran_high_t dct_32_round(tran_high_t input) {
- tran_high_t rv = ROUND_POWER_OF_TWO(input, DCT_CONST_BITS);
- // TODO(debargha, peter.derivaz): Find new bounds for this assert,
- // and make the bounds consts.
- // assert(-131072 <= rv && rv <= 131071);
- return rv;
-}
-
-static INLINE tran_high_t half_round_shift(tran_high_t input) {
- tran_high_t rv = (input + 1 + (input < 0)) >> 2;
- return rv;
-}
-
-void aom_fdct32(const tran_high_t *input, tran_high_t *output, int round) {
- tran_high_t step[32];
- // Stage 1
- step[0] = input[0] + input[(32 - 1)];
- step[1] = input[1] + input[(32 - 2)];
- step[2] = input[2] + input[(32 - 3)];
- step[3] = input[3] + input[(32 - 4)];
- step[4] = input[4] + input[(32 - 5)];
- step[5] = input[5] + input[(32 - 6)];
- step[6] = input[6] + input[(32 - 7)];
- step[7] = input[7] + input[(32 - 8)];
- step[8] = input[8] + input[(32 - 9)];
- step[9] = input[9] + input[(32 - 10)];
- step[10] = input[10] + input[(32 - 11)];
- step[11] = input[11] + input[(32 - 12)];
- step[12] = input[12] + input[(32 - 13)];
- step[13] = input[13] + input[(32 - 14)];
- step[14] = input[14] + input[(32 - 15)];
- step[15] = input[15] + input[(32 - 16)];
- step[16] = -input[16] + input[(32 - 17)];
- step[17] = -input[17] + input[(32 - 18)];
- step[18] = -input[18] + input[(32 - 19)];
- step[19] = -input[19] + input[(32 - 20)];
- step[20] = -input[20] + input[(32 - 21)];
- step[21] = -input[21] + input[(32 - 22)];
- step[22] = -input[22] + input[(32 - 23)];
- step[23] = -input[23] + input[(32 - 24)];
- step[24] = -input[24] + input[(32 - 25)];
- step[25] = -input[25] + input[(32 - 26)];
- step[26] = -input[26] + input[(32 - 27)];
- step[27] = -input[27] + input[(32 - 28)];
- step[28] = -input[28] + input[(32 - 29)];
- step[29] = -input[29] + input[(32 - 30)];
- step[30] = -input[30] + input[(32 - 31)];
- step[31] = -input[31] + input[(32 - 32)];
-
- // Stage 2
- output[0] = step[0] + step[16 - 1];
- output[1] = step[1] + step[16 - 2];
- output[2] = step[2] + step[16 - 3];
- output[3] = step[3] + step[16 - 4];
- output[4] = step[4] + step[16 - 5];
- output[5] = step[5] + step[16 - 6];
- output[6] = step[6] + step[16 - 7];
- output[7] = step[7] + step[16 - 8];
- output[8] = -step[8] + step[16 - 9];
- output[9] = -step[9] + step[16 - 10];
- output[10] = -step[10] + step[16 - 11];
- output[11] = -step[11] + step[16 - 12];
- output[12] = -step[12] + step[16 - 13];
- output[13] = -step[13] + step[16 - 14];
- output[14] = -step[14] + step[16 - 15];
- output[15] = -step[15] + step[16 - 16];
-
- output[16] = step[16];
- output[17] = step[17];
- output[18] = step[18];
- output[19] = step[19];
-
- output[20] = dct_32_round((-step[20] + step[27]) * cospi_16_64);
- output[21] = dct_32_round((-step[21] + step[26]) * cospi_16_64);
- output[22] = dct_32_round((-step[22] + step[25]) * cospi_16_64);
- output[23] = dct_32_round((-step[23] + step[24]) * cospi_16_64);
-
- output[24] = dct_32_round((step[24] + step[23]) * cospi_16_64);
- output[25] = dct_32_round((step[25] + step[22]) * cospi_16_64);
- output[26] = dct_32_round((step[26] + step[21]) * cospi_16_64);
- output[27] = dct_32_round((step[27] + step[20]) * cospi_16_64);
-
- output[28] = step[28];
- output[29] = step[29];
- output[30] = step[30];
- output[31] = step[31];
-
- // dump the magnitude by 4, hence the intermediate values are within
- // the range of 16 bits.
- if (round) {
- output[0] = half_round_shift(output[0]);
- output[1] = half_round_shift(output[1]);
- output[2] = half_round_shift(output[2]);
- output[3] = half_round_shift(output[3]);
- output[4] = half_round_shift(output[4]);
- output[5] = half_round_shift(output[5]);
- output[6] = half_round_shift(output[6]);
- output[7] = half_round_shift(output[7]);
- output[8] = half_round_shift(output[8]);
- output[9] = half_round_shift(output[9]);
- output[10] = half_round_shift(output[10]);
- output[11] = half_round_shift(output[11]);
- output[12] = half_round_shift(output[12]);
- output[13] = half_round_shift(output[13]);
- output[14] = half_round_shift(output[14]);
- output[15] = half_round_shift(output[15]);
-
- output[16] = half_round_shift(output[16]);
- output[17] = half_round_shift(output[17]);
- output[18] = half_round_shift(output[18]);
- output[19] = half_round_shift(output[19]);
- output[20] = half_round_shift(output[20]);
- output[21] = half_round_shift(output[21]);
- output[22] = half_round_shift(output[22]);
- output[23] = half_round_shift(output[23]);
- output[24] = half_round_shift(output[24]);
- output[25] = half_round_shift(output[25]);
- output[26] = half_round_shift(output[26]);
- output[27] = half_round_shift(output[27]);
- output[28] = half_round_shift(output[28]);
- output[29] = half_round_shift(output[29]);
- output[30] = half_round_shift(output[30]);
- output[31] = half_round_shift(output[31]);
- }
-
- // Stage 3
- step[0] = output[0] + output[(8 - 1)];
- step[1] = output[1] + output[(8 - 2)];
- step[2] = output[2] + output[(8 - 3)];
- step[3] = output[3] + output[(8 - 4)];
- step[4] = -output[4] + output[(8 - 5)];
- step[5] = -output[5] + output[(8 - 6)];
- step[6] = -output[6] + output[(8 - 7)];
- step[7] = -output[7] + output[(8 - 8)];
- step[8] = output[8];
- step[9] = output[9];
- step[10] = dct_32_round((-output[10] + output[13]) * cospi_16_64);
- step[11] = dct_32_round((-output[11] + output[12]) * cospi_16_64);
- step[12] = dct_32_round((output[12] + output[11]) * cospi_16_64);
- step[13] = dct_32_round((output[13] + output[10]) * cospi_16_64);
- step[14] = output[14];
- step[15] = output[15];
-
- step[16] = output[16] + output[23];
- step[17] = output[17] + output[22];
- step[18] = output[18] + output[21];
- step[19] = output[19] + output[20];
- step[20] = -output[20] + output[19];
- step[21] = -output[21] + output[18];
- step[22] = -output[22] + output[17];
- step[23] = -output[23] + output[16];
- step[24] = -output[24] + output[31];
- step[25] = -output[25] + output[30];
- step[26] = -output[26] + output[29];
- step[27] = -output[27] + output[28];
- step[28] = output[28] + output[27];
- step[29] = output[29] + output[26];
- step[30] = output[30] + output[25];
- step[31] = output[31] + output[24];
-
- // Stage 4
- output[0] = step[0] + step[3];
- output[1] = step[1] + step[2];
- output[2] = -step[2] + step[1];
- output[3] = -step[3] + step[0];
- output[4] = step[4];
- output[5] = dct_32_round((-step[5] + step[6]) * cospi_16_64);
- output[6] = dct_32_round((step[6] + step[5]) * cospi_16_64);
- output[7] = step[7];
- output[8] = step[8] + step[11];
- output[9] = step[9] + step[10];
- output[10] = -step[10] + step[9];
- output[11] = -step[11] + step[8];
- output[12] = -step[12] + step[15];
- output[13] = -step[13] + step[14];
- output[14] = step[14] + step[13];
- output[15] = step[15] + step[12];
-
- output[16] = step[16];
- output[17] = step[17];
- output[18] = dct_32_round(step[18] * -cospi_8_64 + step[29] * cospi_24_64);
- output[19] = dct_32_round(step[19] * -cospi_8_64 + step[28] * cospi_24_64);
- output[20] = dct_32_round(step[20] * -cospi_24_64 + step[27] * -cospi_8_64);
- output[21] = dct_32_round(step[21] * -cospi_24_64 + step[26] * -cospi_8_64);
- output[22] = step[22];
- output[23] = step[23];
- output[24] = step[24];
- output[25] = step[25];
- output[26] = dct_32_round(step[26] * cospi_24_64 + step[21] * -cospi_8_64);
- output[27] = dct_32_round(step[27] * cospi_24_64 + step[20] * -cospi_8_64);
- output[28] = dct_32_round(step[28] * cospi_8_64 + step[19] * cospi_24_64);
- output[29] = dct_32_round(step[29] * cospi_8_64 + step[18] * cospi_24_64);
- output[30] = step[30];
- output[31] = step[31];
-
- // Stage 5
- step[0] = dct_32_round((output[0] + output[1]) * cospi_16_64);
- step[1] = dct_32_round((-output[1] + output[0]) * cospi_16_64);
- step[2] = dct_32_round(output[2] * cospi_24_64 + output[3] * cospi_8_64);
- step[3] = dct_32_round(output[3] * cospi_24_64 - output[2] * cospi_8_64);
- step[4] = output[4] + output[5];
- step[5] = -output[5] + output[4];
- step[6] = -output[6] + output[7];
- step[7] = output[7] + output[6];
- step[8] = output[8];
- step[9] = dct_32_round(output[9] * -cospi_8_64 + output[14] * cospi_24_64);
- step[10] = dct_32_round(output[10] * -cospi_24_64 + output[13] * -cospi_8_64);
- step[11] = output[11];
- step[12] = output[12];
- step[13] = dct_32_round(output[13] * cospi_24_64 + output[10] * -cospi_8_64);
- step[14] = dct_32_round(output[14] * cospi_8_64 + output[9] * cospi_24_64);
- step[15] = output[15];
-
- step[16] = output[16] + output[19];
- step[17] = output[17] + output[18];
- step[18] = -output[18] + output[17];
- step[19] = -output[19] + output[16];
- step[20] = -output[20] + output[23];
- step[21] = -output[21] + output[22];
- step[22] = output[22] + output[21];
- step[23] = output[23] + output[20];
- step[24] = output[24] + output[27];
- step[25] = output[25] + output[26];
- step[26] = -output[26] + output[25];
- step[27] = -output[27] + output[24];
- step[28] = -output[28] + output[31];
- step[29] = -output[29] + output[30];
- step[30] = output[30] + output[29];
- step[31] = output[31] + output[28];
-
- // Stage 6
- output[0] = step[0];
- output[1] = step[1];
- output[2] = step[2];
- output[3] = step[3];
- output[4] = dct_32_round(step[4] * cospi_28_64 + step[7] * cospi_4_64);
- output[5] = dct_32_round(step[5] * cospi_12_64 + step[6] * cospi_20_64);
- output[6] = dct_32_round(step[6] * cospi_12_64 + step[5] * -cospi_20_64);
- output[7] = dct_32_round(step[7] * cospi_28_64 + step[4] * -cospi_4_64);
- output[8] = step[8] + step[9];
- output[9] = -step[9] + step[8];
- output[10] = -step[10] + step[11];
- output[11] = step[11] + step[10];
- output[12] = step[12] + step[13];
- output[13] = -step[13] + step[12];
- output[14] = -step[14] + step[15];
- output[15] = step[15] + step[14];
-
- output[16] = step[16];
- output[17] = dct_32_round(step[17] * -cospi_4_64 + step[30] * cospi_28_64);
- output[18] = dct_32_round(step[18] * -cospi_28_64 + step[29] * -cospi_4_64);
- output[19] = step[19];
- output[20] = step[20];
- output[21] = dct_32_round(step[21] * -cospi_20_64 + step[26] * cospi_12_64);
- output[22] = dct_32_round(step[22] * -cospi_12_64 + step[25] * -cospi_20_64);
- output[23] = step[23];
- output[24] = step[24];
- output[25] = dct_32_round(step[25] * cospi_12_64 + step[22] * -cospi_20_64);
- output[26] = dct_32_round(step[26] * cospi_20_64 + step[21] * cospi_12_64);
- output[27] = step[27];
- output[28] = step[28];
- output[29] = dct_32_round(step[29] * cospi_28_64 + step[18] * -cospi_4_64);
- output[30] = dct_32_round(step[30] * cospi_4_64 + step[17] * cospi_28_64);
- output[31] = step[31];
-
- // Stage 7
- step[0] = output[0];
- step[1] = output[1];
- step[2] = output[2];
- step[3] = output[3];
- step[4] = output[4];
- step[5] = output[5];
- step[6] = output[6];
- step[7] = output[7];
- step[8] = dct_32_round(output[8] * cospi_30_64 + output[15] * cospi_2_64);
- step[9] = dct_32_round(output[9] * cospi_14_64 + output[14] * cospi_18_64);
- step[10] = dct_32_round(output[10] * cospi_22_64 + output[13] * cospi_10_64);
- step[11] = dct_32_round(output[11] * cospi_6_64 + output[12] * cospi_26_64);
- step[12] = dct_32_round(output[12] * cospi_6_64 + output[11] * -cospi_26_64);
- step[13] = dct_32_round(output[13] * cospi_22_64 + output[10] * -cospi_10_64);
- step[14] = dct_32_round(output[14] * cospi_14_64 + output[9] * -cospi_18_64);
- step[15] = dct_32_round(output[15] * cospi_30_64 + output[8] * -cospi_2_64);
-
- step[16] = output[16] + output[17];
- step[17] = -output[17] + output[16];
- step[18] = -output[18] + output[19];
- step[19] = output[19] + output[18];
- step[20] = output[20] + output[21];
- step[21] = -output[21] + output[20];
- step[22] = -output[22] + output[23];
- step[23] = output[23] + output[22];
- step[24] = output[24] + output[25];
- step[25] = -output[25] + output[24];
- step[26] = -output[26] + output[27];
- step[27] = output[27] + output[26];
- step[28] = output[28] + output[29];
- step[29] = -output[29] + output[28];
- step[30] = -output[30] + output[31];
- step[31] = output[31] + output[30];
-
- // Final stage --- outputs indices are bit-reversed.
- output[0] = step[0];
- output[16] = step[1];
- output[8] = step[2];
- output[24] = step[3];
- output[4] = step[4];
- output[20] = step[5];
- output[12] = step[6];
- output[28] = step[7];
- output[2] = step[8];
- output[18] = step[9];
- output[10] = step[10];
- output[26] = step[11];
- output[6] = step[12];
- output[22] = step[13];
- output[14] = step[14];
- output[30] = step[15];
-
- output[1] = dct_32_round(step[16] * cospi_31_64 + step[31] * cospi_1_64);
- output[17] = dct_32_round(step[17] * cospi_15_64 + step[30] * cospi_17_64);
- output[9] = dct_32_round(step[18] * cospi_23_64 + step[29] * cospi_9_64);
- output[25] = dct_32_round(step[19] * cospi_7_64 + step[28] * cospi_25_64);
- output[5] = dct_32_round(step[20] * cospi_27_64 + step[27] * cospi_5_64);
- output[21] = dct_32_round(step[21] * cospi_11_64 + step[26] * cospi_21_64);
- output[13] = dct_32_round(step[22] * cospi_19_64 + step[25] * cospi_13_64);
- output[29] = dct_32_round(step[23] * cospi_3_64 + step[24] * cospi_29_64);
- output[3] = dct_32_round(step[24] * cospi_3_64 + step[23] * -cospi_29_64);
- output[19] = dct_32_round(step[25] * cospi_19_64 + step[22] * -cospi_13_64);
- output[11] = dct_32_round(step[26] * cospi_11_64 + step[21] * -cospi_21_64);
- output[27] = dct_32_round(step[27] * cospi_27_64 + step[20] * -cospi_5_64);
- output[7] = dct_32_round(step[28] * cospi_7_64 + step[19] * -cospi_25_64);
- output[23] = dct_32_round(step[29] * cospi_23_64 + step[18] * -cospi_9_64);
- output[15] = dct_32_round(step[30] * cospi_15_64 + step[17] * -cospi_17_64);
- output[31] = dct_32_round(step[31] * cospi_31_64 + step[16] * -cospi_1_64);
-}
-
-void aom_fdct32x32_c(const int16_t *input, tran_low_t *out, int stride) {
- int i, j;
- tran_high_t output[32 * 32];
-
- // Columns
- for (i = 0; i < 32; ++i) {
- tran_high_t temp_in[32], temp_out[32];
- for (j = 0; j < 32; ++j) temp_in[j] = input[j * stride + i] * 4;
- aom_fdct32(temp_in, temp_out, 0);
- for (j = 0; j < 32; ++j)
- output[j * 32 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 2;
- }
-
- // Rows
- for (i = 0; i < 32; ++i) {
- tran_high_t temp_in[32], temp_out[32];
- for (j = 0; j < 32; ++j) temp_in[j] = output[j + i * 32];
- aom_fdct32(temp_in, temp_out, 0);
- for (j = 0; j < 32; ++j)
- out[j + i * 32] =
- (tran_low_t)((temp_out[j] + 1 + (temp_out[j] < 0)) >> 2);
- }
-}
-
-// Note that although we use dct_32_round in dct32 computation flow,
-// this 2d fdct32x32 for rate-distortion optimization loop is operating
-// within 16 bits precision.
-void aom_fdct32x32_rd_c(const int16_t *input, tran_low_t *out, int stride) {
- int i, j;
- tran_high_t output[32 * 32];
-
- // Columns
- for (i = 0; i < 32; ++i) {
- tran_high_t temp_in[32], temp_out[32];
- for (j = 0; j < 32; ++j) temp_in[j] = input[j * stride + i] * 4;
- aom_fdct32(temp_in, temp_out, 0);
- for (j = 0; j < 32; ++j)
- // TODO(cd): see quality impact of only doing
- // output[j * 32 + i] = (temp_out[j] + 1) >> 2;
- // PS: also change code in aom_dsp/x86/aom_dct_sse2.c
- output[j * 32 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 2;
- }
-
- // Rows
- for (i = 0; i < 32; ++i) {
- tran_high_t temp_in[32], temp_out[32];
- for (j = 0; j < 32; ++j) temp_in[j] = output[j + i * 32];
- aom_fdct32(temp_in, temp_out, 1);
- for (j = 0; j < 32; ++j) out[j + i * 32] = (tran_low_t)temp_out[j];
- }
-}
-
-#if CONFIG_HIGHBITDEPTH
-void aom_highbd_fdct4x4_c(const int16_t *input, tran_low_t *output,
- int stride) {
- aom_fdct4x4_c(input, output, stride);
-}
-
void aom_highbd_fdct8x8_c(const int16_t *input, tran_low_t *final_output,
int stride) {
aom_fdct8x8_c(input, final_output, stride);
}
-
-void aom_highbd_fdct16x16_c(const int16_t *input, tran_low_t *output,
- int stride) {
- aom_fdct16x16_c(input, output, stride);
-}
-
-void aom_highbd_fdct32x32_c(const int16_t *input, tran_low_t *out, int stride) {
- aom_fdct32x32_c(input, out, stride);
-}
-void aom_highbd_fdct32x32_rd_c(const int16_t *input, tran_low_t *out,
- int stride) {
- aom_fdct32x32_rd_c(input, out, stride);
-}
-
-#endif // CONFIG_HIGHBITDEPTH