diff options
Diffstat (limited to 'third_party/aom/aom_dsp/fwd_txfm.c')
-rw-r--r-- | third_party/aom/aom_dsp/fwd_txfm.c | 668 |
1 files changed, 2 insertions, 666 deletions
diff --git a/third_party/aom/aom_dsp/fwd_txfm.c b/third_party/aom/aom_dsp/fwd_txfm.c index 1ceef7782..e50f951c1 100644 --- a/third_party/aom/aom_dsp/fwd_txfm.c +++ b/third_party/aom/aom_dsp/fwd_txfm.c @@ -9,84 +9,9 @@ * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ -#include "aom_dsp/fwd_txfm.h" #include <assert.h> -#include "./aom_dsp_rtcd.h" - -void aom_fdct4x4_c(const int16_t *input, tran_low_t *output, int stride) { - // The 2D transform is done with two passes which are actually pretty - // similar. In the first one, we transform the columns and transpose - // the results. In the second one, we transform the rows. To achieve that, - // as the first pass results are transposed, we transpose the columns (that - // is the transposed rows) and transpose the results (so that it goes back - // in normal/row positions). - int pass; - // We need an intermediate buffer between passes. - tran_low_t intermediate[4 * 4]; - const tran_low_t *in_low = NULL; - tran_low_t *out = intermediate; - // Do the two transform/transpose passes - for (pass = 0; pass < 2; ++pass) { - tran_high_t in_high[4]; // canbe16 - tran_high_t step[4]; // canbe16 - tran_high_t temp1, temp2; // needs32 - int i; - for (i = 0; i < 4; ++i) { - // Load inputs. - if (pass == 0) { - in_high[0] = input[0 * stride] * 16; - in_high[1] = input[1 * stride] * 16; - in_high[2] = input[2 * stride] * 16; - in_high[3] = input[3 * stride] * 16; - if (i == 0 && in_high[0]) { - ++in_high[0]; - } - } else { - assert(in_low != NULL); - in_high[0] = in_low[0 * 4]; - in_high[1] = in_low[1 * 4]; - in_high[2] = in_low[2 * 4]; - in_high[3] = in_low[3 * 4]; - ++in_low; - } - // Transform. - step[0] = in_high[0] + in_high[3]; - step[1] = in_high[1] + in_high[2]; - step[2] = in_high[1] - in_high[2]; - step[3] = in_high[0] - in_high[3]; - temp1 = (step[0] + step[1]) * cospi_16_64; - temp2 = (step[0] - step[1]) * cospi_16_64; - out[0] = (tran_low_t)fdct_round_shift(temp1); - out[2] = (tran_low_t)fdct_round_shift(temp2); - temp1 = step[2] * cospi_24_64 + step[3] * cospi_8_64; - temp2 = -step[2] * cospi_8_64 + step[3] * cospi_24_64; - out[1] = (tran_low_t)fdct_round_shift(temp1); - out[3] = (tran_low_t)fdct_round_shift(temp2); - // Do next column (which is a transposed row in second/horizontal pass) - ++input; - out += 4; - } - // Setup in/out for next pass. - in_low = intermediate; - out = output; - } - - { - int i, j; - for (i = 0; i < 4; ++i) { - for (j = 0; j < 4; ++j) output[j + i * 4] = (output[j + i * 4] + 1) >> 2; - } - } -} - -void aom_fdct4x4_1_c(const int16_t *input, tran_low_t *output, int stride) { - int r, c; - tran_low_t sum = 0; - for (r = 0; r < 4; ++r) - for (c = 0; c < 4; ++c) sum += input[r * stride + c]; - - output[0] = sum << 1; -} +#include "aom_dsp/txfm_common.h" +#include "config/aom_dsp_rtcd.h" void aom_fdct8x8_c(const int16_t *input, tran_low_t *final_output, int stride) { int i, j; @@ -172,596 +97,7 @@ void aom_fdct8x8_c(const int16_t *input, tran_low_t *final_output, int stride) { } } -void aom_fdct16x16_c(const int16_t *input, tran_low_t *output, int stride) { - // The 2D transform is done with two passes which are actually pretty - // similar. In the first one, we transform the columns and transpose - // the results. In the second one, we transform the rows. To achieve that, - // as the first pass results are transposed, we transpose the columns (that - // is the transposed rows) and transpose the results (so that it goes back - // in normal/row positions). - int pass; - // We need an intermediate buffer between passes. - tran_low_t intermediate[256]; - const tran_low_t *in_low = NULL; - tran_low_t *out = intermediate; - // Do the two transform/transpose passes - for (pass = 0; pass < 2; ++pass) { - tran_high_t step1[8]; // canbe16 - tran_high_t step2[8]; // canbe16 - tran_high_t step3[8]; // canbe16 - tran_high_t in_high[8]; // canbe16 - tran_high_t temp1, temp2; // needs32 - int i; - for (i = 0; i < 16; i++) { - if (0 == pass) { - // Calculate input for the first 8 results. - in_high[0] = (input[0 * stride] + input[15 * stride]) * 4; - in_high[1] = (input[1 * stride] + input[14 * stride]) * 4; - in_high[2] = (input[2 * stride] + input[13 * stride]) * 4; - in_high[3] = (input[3 * stride] + input[12 * stride]) * 4; - in_high[4] = (input[4 * stride] + input[11 * stride]) * 4; - in_high[5] = (input[5 * stride] + input[10 * stride]) * 4; - in_high[6] = (input[6 * stride] + input[9 * stride]) * 4; - in_high[7] = (input[7 * stride] + input[8 * stride]) * 4; - // Calculate input for the next 8 results. - step1[0] = (input[7 * stride] - input[8 * stride]) * 4; - step1[1] = (input[6 * stride] - input[9 * stride]) * 4; - step1[2] = (input[5 * stride] - input[10 * stride]) * 4; - step1[3] = (input[4 * stride] - input[11 * stride]) * 4; - step1[4] = (input[3 * stride] - input[12 * stride]) * 4; - step1[5] = (input[2 * stride] - input[13 * stride]) * 4; - step1[6] = (input[1 * stride] - input[14 * stride]) * 4; - step1[7] = (input[0 * stride] - input[15 * stride]) * 4; - } else { - // Calculate input for the first 8 results. - assert(in_low != NULL); - in_high[0] = ((in_low[0 * 16] + 1) >> 2) + ((in_low[15 * 16] + 1) >> 2); - in_high[1] = ((in_low[1 * 16] + 1) >> 2) + ((in_low[14 * 16] + 1) >> 2); - in_high[2] = ((in_low[2 * 16] + 1) >> 2) + ((in_low[13 * 16] + 1) >> 2); - in_high[3] = ((in_low[3 * 16] + 1) >> 2) + ((in_low[12 * 16] + 1) >> 2); - in_high[4] = ((in_low[4 * 16] + 1) >> 2) + ((in_low[11 * 16] + 1) >> 2); - in_high[5] = ((in_low[5 * 16] + 1) >> 2) + ((in_low[10 * 16] + 1) >> 2); - in_high[6] = ((in_low[6 * 16] + 1) >> 2) + ((in_low[9 * 16] + 1) >> 2); - in_high[7] = ((in_low[7 * 16] + 1) >> 2) + ((in_low[8 * 16] + 1) >> 2); - // Calculate input for the next 8 results. - step1[0] = ((in_low[7 * 16] + 1) >> 2) - ((in_low[8 * 16] + 1) >> 2); - step1[1] = ((in_low[6 * 16] + 1) >> 2) - ((in_low[9 * 16] + 1) >> 2); - step1[2] = ((in_low[5 * 16] + 1) >> 2) - ((in_low[10 * 16] + 1) >> 2); - step1[3] = ((in_low[4 * 16] + 1) >> 2) - ((in_low[11 * 16] + 1) >> 2); - step1[4] = ((in_low[3 * 16] + 1) >> 2) - ((in_low[12 * 16] + 1) >> 2); - step1[5] = ((in_low[2 * 16] + 1) >> 2) - ((in_low[13 * 16] + 1) >> 2); - step1[6] = ((in_low[1 * 16] + 1) >> 2) - ((in_low[14 * 16] + 1) >> 2); - step1[7] = ((in_low[0 * 16] + 1) >> 2) - ((in_low[15 * 16] + 1) >> 2); - in_low++; - } - // Work on the first eight values; fdct8(input, even_results); - { - tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; // canbe16 - tran_high_t t0, t1, t2, t3; // needs32 - tran_high_t x0, x1, x2, x3; // canbe16 - - // stage 1 - s0 = in_high[0] + in_high[7]; - s1 = in_high[1] + in_high[6]; - s2 = in_high[2] + in_high[5]; - s3 = in_high[3] + in_high[4]; - s4 = in_high[3] - in_high[4]; - s5 = in_high[2] - in_high[5]; - s6 = in_high[1] - in_high[6]; - s7 = in_high[0] - in_high[7]; - - // fdct4(step, step); - x0 = s0 + s3; - x1 = s1 + s2; - x2 = s1 - s2; - x3 = s0 - s3; - t0 = (x0 + x1) * cospi_16_64; - t1 = (x0 - x1) * cospi_16_64; - t2 = x3 * cospi_8_64 + x2 * cospi_24_64; - t3 = x3 * cospi_24_64 - x2 * cospi_8_64; - out[0] = (tran_low_t)fdct_round_shift(t0); - out[4] = (tran_low_t)fdct_round_shift(t2); - out[8] = (tran_low_t)fdct_round_shift(t1); - out[12] = (tran_low_t)fdct_round_shift(t3); - - // Stage 2 - t0 = (s6 - s5) * cospi_16_64; - t1 = (s6 + s5) * cospi_16_64; - t2 = fdct_round_shift(t0); - t3 = fdct_round_shift(t1); - - // Stage 3 - x0 = s4 + t2; - x1 = s4 - t2; - x2 = s7 - t3; - x3 = s7 + t3; - - // Stage 4 - t0 = x0 * cospi_28_64 + x3 * cospi_4_64; - t1 = x1 * cospi_12_64 + x2 * cospi_20_64; - t2 = x2 * cospi_12_64 + x1 * -cospi_20_64; - t3 = x3 * cospi_28_64 + x0 * -cospi_4_64; - out[2] = (tran_low_t)fdct_round_shift(t0); - out[6] = (tran_low_t)fdct_round_shift(t2); - out[10] = (tran_low_t)fdct_round_shift(t1); - out[14] = (tran_low_t)fdct_round_shift(t3); - } - // Work on the next eight values; step1 -> odd_results - { - // step 2 - temp1 = (step1[5] - step1[2]) * cospi_16_64; - temp2 = (step1[4] - step1[3]) * cospi_16_64; - step2[2] = fdct_round_shift(temp1); - step2[3] = fdct_round_shift(temp2); - temp1 = (step1[4] + step1[3]) * cospi_16_64; - temp2 = (step1[5] + step1[2]) * cospi_16_64; - step2[4] = fdct_round_shift(temp1); - step2[5] = fdct_round_shift(temp2); - // step 3 - step3[0] = step1[0] + step2[3]; - step3[1] = step1[1] + step2[2]; - step3[2] = step1[1] - step2[2]; - step3[3] = step1[0] - step2[3]; - step3[4] = step1[7] - step2[4]; - step3[5] = step1[6] - step2[5]; - step3[6] = step1[6] + step2[5]; - step3[7] = step1[7] + step2[4]; - // step 4 - temp1 = step3[1] * -cospi_8_64 + step3[6] * cospi_24_64; - temp2 = step3[2] * cospi_24_64 + step3[5] * cospi_8_64; - step2[1] = fdct_round_shift(temp1); - step2[2] = fdct_round_shift(temp2); - temp1 = step3[2] * cospi_8_64 - step3[5] * cospi_24_64; - temp2 = step3[1] * cospi_24_64 + step3[6] * cospi_8_64; - step2[5] = fdct_round_shift(temp1); - step2[6] = fdct_round_shift(temp2); - // step 5 - step1[0] = step3[0] + step2[1]; - step1[1] = step3[0] - step2[1]; - step1[2] = step3[3] + step2[2]; - step1[3] = step3[3] - step2[2]; - step1[4] = step3[4] - step2[5]; - step1[5] = step3[4] + step2[5]; - step1[6] = step3[7] - step2[6]; - step1[7] = step3[7] + step2[6]; - // step 6 - temp1 = step1[0] * cospi_30_64 + step1[7] * cospi_2_64; - temp2 = step1[1] * cospi_14_64 + step1[6] * cospi_18_64; - out[1] = (tran_low_t)fdct_round_shift(temp1); - out[9] = (tran_low_t)fdct_round_shift(temp2); - temp1 = step1[2] * cospi_22_64 + step1[5] * cospi_10_64; - temp2 = step1[3] * cospi_6_64 + step1[4] * cospi_26_64; - out[5] = (tran_low_t)fdct_round_shift(temp1); - out[13] = (tran_low_t)fdct_round_shift(temp2); - temp1 = step1[3] * -cospi_26_64 + step1[4] * cospi_6_64; - temp2 = step1[2] * -cospi_10_64 + step1[5] * cospi_22_64; - out[3] = (tran_low_t)fdct_round_shift(temp1); - out[11] = (tran_low_t)fdct_round_shift(temp2); - temp1 = step1[1] * -cospi_18_64 + step1[6] * cospi_14_64; - temp2 = step1[0] * -cospi_2_64 + step1[7] * cospi_30_64; - out[7] = (tran_low_t)fdct_round_shift(temp1); - out[15] = (tran_low_t)fdct_round_shift(temp2); - } - // Do next column (which is a transposed row in second/horizontal pass) - input++; - out += 16; - } - // Setup in/out for next pass. - in_low = intermediate; - out = output; - } -} - -static INLINE tran_high_t dct_32_round(tran_high_t input) { - tran_high_t rv = ROUND_POWER_OF_TWO(input, DCT_CONST_BITS); - // TODO(debargha, peter.derivaz): Find new bounds for this assert, - // and make the bounds consts. - // assert(-131072 <= rv && rv <= 131071); - return rv; -} - -static INLINE tran_high_t half_round_shift(tran_high_t input) { - tran_high_t rv = (input + 1 + (input < 0)) >> 2; - return rv; -} - -void aom_fdct32(const tran_high_t *input, tran_high_t *output, int round) { - tran_high_t step[32]; - // Stage 1 - step[0] = input[0] + input[(32 - 1)]; - step[1] = input[1] + input[(32 - 2)]; - step[2] = input[2] + input[(32 - 3)]; - step[3] = input[3] + input[(32 - 4)]; - step[4] = input[4] + input[(32 - 5)]; - step[5] = input[5] + input[(32 - 6)]; - step[6] = input[6] + input[(32 - 7)]; - step[7] = input[7] + input[(32 - 8)]; - step[8] = input[8] + input[(32 - 9)]; - step[9] = input[9] + input[(32 - 10)]; - step[10] = input[10] + input[(32 - 11)]; - step[11] = input[11] + input[(32 - 12)]; - step[12] = input[12] + input[(32 - 13)]; - step[13] = input[13] + input[(32 - 14)]; - step[14] = input[14] + input[(32 - 15)]; - step[15] = input[15] + input[(32 - 16)]; - step[16] = -input[16] + input[(32 - 17)]; - step[17] = -input[17] + input[(32 - 18)]; - step[18] = -input[18] + input[(32 - 19)]; - step[19] = -input[19] + input[(32 - 20)]; - step[20] = -input[20] + input[(32 - 21)]; - step[21] = -input[21] + input[(32 - 22)]; - step[22] = -input[22] + input[(32 - 23)]; - step[23] = -input[23] + input[(32 - 24)]; - step[24] = -input[24] + input[(32 - 25)]; - step[25] = -input[25] + input[(32 - 26)]; - step[26] = -input[26] + input[(32 - 27)]; - step[27] = -input[27] + input[(32 - 28)]; - step[28] = -input[28] + input[(32 - 29)]; - step[29] = -input[29] + input[(32 - 30)]; - step[30] = -input[30] + input[(32 - 31)]; - step[31] = -input[31] + input[(32 - 32)]; - - // Stage 2 - output[0] = step[0] + step[16 - 1]; - output[1] = step[1] + step[16 - 2]; - output[2] = step[2] + step[16 - 3]; - output[3] = step[3] + step[16 - 4]; - output[4] = step[4] + step[16 - 5]; - output[5] = step[5] + step[16 - 6]; - output[6] = step[6] + step[16 - 7]; - output[7] = step[7] + step[16 - 8]; - output[8] = -step[8] + step[16 - 9]; - output[9] = -step[9] + step[16 - 10]; - output[10] = -step[10] + step[16 - 11]; - output[11] = -step[11] + step[16 - 12]; - output[12] = -step[12] + step[16 - 13]; - output[13] = -step[13] + step[16 - 14]; - output[14] = -step[14] + step[16 - 15]; - output[15] = -step[15] + step[16 - 16]; - - output[16] = step[16]; - output[17] = step[17]; - output[18] = step[18]; - output[19] = step[19]; - - output[20] = dct_32_round((-step[20] + step[27]) * cospi_16_64); - output[21] = dct_32_round((-step[21] + step[26]) * cospi_16_64); - output[22] = dct_32_round((-step[22] + step[25]) * cospi_16_64); - output[23] = dct_32_round((-step[23] + step[24]) * cospi_16_64); - - output[24] = dct_32_round((step[24] + step[23]) * cospi_16_64); - output[25] = dct_32_round((step[25] + step[22]) * cospi_16_64); - output[26] = dct_32_round((step[26] + step[21]) * cospi_16_64); - output[27] = dct_32_round((step[27] + step[20]) * cospi_16_64); - - output[28] = step[28]; - output[29] = step[29]; - output[30] = step[30]; - output[31] = step[31]; - - // dump the magnitude by 4, hence the intermediate values are within - // the range of 16 bits. - if (round) { - output[0] = half_round_shift(output[0]); - output[1] = half_round_shift(output[1]); - output[2] = half_round_shift(output[2]); - output[3] = half_round_shift(output[3]); - output[4] = half_round_shift(output[4]); - output[5] = half_round_shift(output[5]); - output[6] = half_round_shift(output[6]); - output[7] = half_round_shift(output[7]); - output[8] = half_round_shift(output[8]); - output[9] = half_round_shift(output[9]); - output[10] = half_round_shift(output[10]); - output[11] = half_round_shift(output[11]); - output[12] = half_round_shift(output[12]); - output[13] = half_round_shift(output[13]); - output[14] = half_round_shift(output[14]); - output[15] = half_round_shift(output[15]); - - output[16] = half_round_shift(output[16]); - output[17] = half_round_shift(output[17]); - output[18] = half_round_shift(output[18]); - output[19] = half_round_shift(output[19]); - output[20] = half_round_shift(output[20]); - output[21] = half_round_shift(output[21]); - output[22] = half_round_shift(output[22]); - output[23] = half_round_shift(output[23]); - output[24] = half_round_shift(output[24]); - output[25] = half_round_shift(output[25]); - output[26] = half_round_shift(output[26]); - output[27] = half_round_shift(output[27]); - output[28] = half_round_shift(output[28]); - output[29] = half_round_shift(output[29]); - output[30] = half_round_shift(output[30]); - output[31] = half_round_shift(output[31]); - } - - // Stage 3 - step[0] = output[0] + output[(8 - 1)]; - step[1] = output[1] + output[(8 - 2)]; - step[2] = output[2] + output[(8 - 3)]; - step[3] = output[3] + output[(8 - 4)]; - step[4] = -output[4] + output[(8 - 5)]; - step[5] = -output[5] + output[(8 - 6)]; - step[6] = -output[6] + output[(8 - 7)]; - step[7] = -output[7] + output[(8 - 8)]; - step[8] = output[8]; - step[9] = output[9]; - step[10] = dct_32_round((-output[10] + output[13]) * cospi_16_64); - step[11] = dct_32_round((-output[11] + output[12]) * cospi_16_64); - step[12] = dct_32_round((output[12] + output[11]) * cospi_16_64); - step[13] = dct_32_round((output[13] + output[10]) * cospi_16_64); - step[14] = output[14]; - step[15] = output[15]; - - step[16] = output[16] + output[23]; - step[17] = output[17] + output[22]; - step[18] = output[18] + output[21]; - step[19] = output[19] + output[20]; - step[20] = -output[20] + output[19]; - step[21] = -output[21] + output[18]; - step[22] = -output[22] + output[17]; - step[23] = -output[23] + output[16]; - step[24] = -output[24] + output[31]; - step[25] = -output[25] + output[30]; - step[26] = -output[26] + output[29]; - step[27] = -output[27] + output[28]; - step[28] = output[28] + output[27]; - step[29] = output[29] + output[26]; - step[30] = output[30] + output[25]; - step[31] = output[31] + output[24]; - - // Stage 4 - output[0] = step[0] + step[3]; - output[1] = step[1] + step[2]; - output[2] = -step[2] + step[1]; - output[3] = -step[3] + step[0]; - output[4] = step[4]; - output[5] = dct_32_round((-step[5] + step[6]) * cospi_16_64); - output[6] = dct_32_round((step[6] + step[5]) * cospi_16_64); - output[7] = step[7]; - output[8] = step[8] + step[11]; - output[9] = step[9] + step[10]; - output[10] = -step[10] + step[9]; - output[11] = -step[11] + step[8]; - output[12] = -step[12] + step[15]; - output[13] = -step[13] + step[14]; - output[14] = step[14] + step[13]; - output[15] = step[15] + step[12]; - - output[16] = step[16]; - output[17] = step[17]; - output[18] = dct_32_round(step[18] * -cospi_8_64 + step[29] * cospi_24_64); - output[19] = dct_32_round(step[19] * -cospi_8_64 + step[28] * cospi_24_64); - output[20] = dct_32_round(step[20] * -cospi_24_64 + step[27] * -cospi_8_64); - output[21] = dct_32_round(step[21] * -cospi_24_64 + step[26] * -cospi_8_64); - output[22] = step[22]; - output[23] = step[23]; - output[24] = step[24]; - output[25] = step[25]; - output[26] = dct_32_round(step[26] * cospi_24_64 + step[21] * -cospi_8_64); - output[27] = dct_32_round(step[27] * cospi_24_64 + step[20] * -cospi_8_64); - output[28] = dct_32_round(step[28] * cospi_8_64 + step[19] * cospi_24_64); - output[29] = dct_32_round(step[29] * cospi_8_64 + step[18] * cospi_24_64); - output[30] = step[30]; - output[31] = step[31]; - - // Stage 5 - step[0] = dct_32_round((output[0] + output[1]) * cospi_16_64); - step[1] = dct_32_round((-output[1] + output[0]) * cospi_16_64); - step[2] = dct_32_round(output[2] * cospi_24_64 + output[3] * cospi_8_64); - step[3] = dct_32_round(output[3] * cospi_24_64 - output[2] * cospi_8_64); - step[4] = output[4] + output[5]; - step[5] = -output[5] + output[4]; - step[6] = -output[6] + output[7]; - step[7] = output[7] + output[6]; - step[8] = output[8]; - step[9] = dct_32_round(output[9] * -cospi_8_64 + output[14] * cospi_24_64); - step[10] = dct_32_round(output[10] * -cospi_24_64 + output[13] * -cospi_8_64); - step[11] = output[11]; - step[12] = output[12]; - step[13] = dct_32_round(output[13] * cospi_24_64 + output[10] * -cospi_8_64); - step[14] = dct_32_round(output[14] * cospi_8_64 + output[9] * cospi_24_64); - step[15] = output[15]; - - step[16] = output[16] + output[19]; - step[17] = output[17] + output[18]; - step[18] = -output[18] + output[17]; - step[19] = -output[19] + output[16]; - step[20] = -output[20] + output[23]; - step[21] = -output[21] + output[22]; - step[22] = output[22] + output[21]; - step[23] = output[23] + output[20]; - step[24] = output[24] + output[27]; - step[25] = output[25] + output[26]; - step[26] = -output[26] + output[25]; - step[27] = -output[27] + output[24]; - step[28] = -output[28] + output[31]; - step[29] = -output[29] + output[30]; - step[30] = output[30] + output[29]; - step[31] = output[31] + output[28]; - - // Stage 6 - output[0] = step[0]; - output[1] = step[1]; - output[2] = step[2]; - output[3] = step[3]; - output[4] = dct_32_round(step[4] * cospi_28_64 + step[7] * cospi_4_64); - output[5] = dct_32_round(step[5] * cospi_12_64 + step[6] * cospi_20_64); - output[6] = dct_32_round(step[6] * cospi_12_64 + step[5] * -cospi_20_64); - output[7] = dct_32_round(step[7] * cospi_28_64 + step[4] * -cospi_4_64); - output[8] = step[8] + step[9]; - output[9] = -step[9] + step[8]; - output[10] = -step[10] + step[11]; - output[11] = step[11] + step[10]; - output[12] = step[12] + step[13]; - output[13] = -step[13] + step[12]; - output[14] = -step[14] + step[15]; - output[15] = step[15] + step[14]; - - output[16] = step[16]; - output[17] = dct_32_round(step[17] * -cospi_4_64 + step[30] * cospi_28_64); - output[18] = dct_32_round(step[18] * -cospi_28_64 + step[29] * -cospi_4_64); - output[19] = step[19]; - output[20] = step[20]; - output[21] = dct_32_round(step[21] * -cospi_20_64 + step[26] * cospi_12_64); - output[22] = dct_32_round(step[22] * -cospi_12_64 + step[25] * -cospi_20_64); - output[23] = step[23]; - output[24] = step[24]; - output[25] = dct_32_round(step[25] * cospi_12_64 + step[22] * -cospi_20_64); - output[26] = dct_32_round(step[26] * cospi_20_64 + step[21] * cospi_12_64); - output[27] = step[27]; - output[28] = step[28]; - output[29] = dct_32_round(step[29] * cospi_28_64 + step[18] * -cospi_4_64); - output[30] = dct_32_round(step[30] * cospi_4_64 + step[17] * cospi_28_64); - output[31] = step[31]; - - // Stage 7 - step[0] = output[0]; - step[1] = output[1]; - step[2] = output[2]; - step[3] = output[3]; - step[4] = output[4]; - step[5] = output[5]; - step[6] = output[6]; - step[7] = output[7]; - step[8] = dct_32_round(output[8] * cospi_30_64 + output[15] * cospi_2_64); - step[9] = dct_32_round(output[9] * cospi_14_64 + output[14] * cospi_18_64); - step[10] = dct_32_round(output[10] * cospi_22_64 + output[13] * cospi_10_64); - step[11] = dct_32_round(output[11] * cospi_6_64 + output[12] * cospi_26_64); - step[12] = dct_32_round(output[12] * cospi_6_64 + output[11] * -cospi_26_64); - step[13] = dct_32_round(output[13] * cospi_22_64 + output[10] * -cospi_10_64); - step[14] = dct_32_round(output[14] * cospi_14_64 + output[9] * -cospi_18_64); - step[15] = dct_32_round(output[15] * cospi_30_64 + output[8] * -cospi_2_64); - - step[16] = output[16] + output[17]; - step[17] = -output[17] + output[16]; - step[18] = -output[18] + output[19]; - step[19] = output[19] + output[18]; - step[20] = output[20] + output[21]; - step[21] = -output[21] + output[20]; - step[22] = -output[22] + output[23]; - step[23] = output[23] + output[22]; - step[24] = output[24] + output[25]; - step[25] = -output[25] + output[24]; - step[26] = -output[26] + output[27]; - step[27] = output[27] + output[26]; - step[28] = output[28] + output[29]; - step[29] = -output[29] + output[28]; - step[30] = -output[30] + output[31]; - step[31] = output[31] + output[30]; - - // Final stage --- outputs indices are bit-reversed. - output[0] = step[0]; - output[16] = step[1]; - output[8] = step[2]; - output[24] = step[3]; - output[4] = step[4]; - output[20] = step[5]; - output[12] = step[6]; - output[28] = step[7]; - output[2] = step[8]; - output[18] = step[9]; - output[10] = step[10]; - output[26] = step[11]; - output[6] = step[12]; - output[22] = step[13]; - output[14] = step[14]; - output[30] = step[15]; - - output[1] = dct_32_round(step[16] * cospi_31_64 + step[31] * cospi_1_64); - output[17] = dct_32_round(step[17] * cospi_15_64 + step[30] * cospi_17_64); - output[9] = dct_32_round(step[18] * cospi_23_64 + step[29] * cospi_9_64); - output[25] = dct_32_round(step[19] * cospi_7_64 + step[28] * cospi_25_64); - output[5] = dct_32_round(step[20] * cospi_27_64 + step[27] * cospi_5_64); - output[21] = dct_32_round(step[21] * cospi_11_64 + step[26] * cospi_21_64); - output[13] = dct_32_round(step[22] * cospi_19_64 + step[25] * cospi_13_64); - output[29] = dct_32_round(step[23] * cospi_3_64 + step[24] * cospi_29_64); - output[3] = dct_32_round(step[24] * cospi_3_64 + step[23] * -cospi_29_64); - output[19] = dct_32_round(step[25] * cospi_19_64 + step[22] * -cospi_13_64); - output[11] = dct_32_round(step[26] * cospi_11_64 + step[21] * -cospi_21_64); - output[27] = dct_32_round(step[27] * cospi_27_64 + step[20] * -cospi_5_64); - output[7] = dct_32_round(step[28] * cospi_7_64 + step[19] * -cospi_25_64); - output[23] = dct_32_round(step[29] * cospi_23_64 + step[18] * -cospi_9_64); - output[15] = dct_32_round(step[30] * cospi_15_64 + step[17] * -cospi_17_64); - output[31] = dct_32_round(step[31] * cospi_31_64 + step[16] * -cospi_1_64); -} - -void aom_fdct32x32_c(const int16_t *input, tran_low_t *out, int stride) { - int i, j; - tran_high_t output[32 * 32]; - - // Columns - for (i = 0; i < 32; ++i) { - tran_high_t temp_in[32], temp_out[32]; - for (j = 0; j < 32; ++j) temp_in[j] = input[j * stride + i] * 4; - aom_fdct32(temp_in, temp_out, 0); - for (j = 0; j < 32; ++j) - output[j * 32 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 2; - } - - // Rows - for (i = 0; i < 32; ++i) { - tran_high_t temp_in[32], temp_out[32]; - for (j = 0; j < 32; ++j) temp_in[j] = output[j + i * 32]; - aom_fdct32(temp_in, temp_out, 0); - for (j = 0; j < 32; ++j) - out[j + i * 32] = - (tran_low_t)((temp_out[j] + 1 + (temp_out[j] < 0)) >> 2); - } -} - -// Note that although we use dct_32_round in dct32 computation flow, -// this 2d fdct32x32 for rate-distortion optimization loop is operating -// within 16 bits precision. -void aom_fdct32x32_rd_c(const int16_t *input, tran_low_t *out, int stride) { - int i, j; - tran_high_t output[32 * 32]; - - // Columns - for (i = 0; i < 32; ++i) { - tran_high_t temp_in[32], temp_out[32]; - for (j = 0; j < 32; ++j) temp_in[j] = input[j * stride + i] * 4; - aom_fdct32(temp_in, temp_out, 0); - for (j = 0; j < 32; ++j) - // TODO(cd): see quality impact of only doing - // output[j * 32 + i] = (temp_out[j] + 1) >> 2; - // PS: also change code in aom_dsp/x86/aom_dct_sse2.c - output[j * 32 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 2; - } - - // Rows - for (i = 0; i < 32; ++i) { - tran_high_t temp_in[32], temp_out[32]; - for (j = 0; j < 32; ++j) temp_in[j] = output[j + i * 32]; - aom_fdct32(temp_in, temp_out, 1); - for (j = 0; j < 32; ++j) out[j + i * 32] = (tran_low_t)temp_out[j]; - } -} - -#if CONFIG_HIGHBITDEPTH -void aom_highbd_fdct4x4_c(const int16_t *input, tran_low_t *output, - int stride) { - aom_fdct4x4_c(input, output, stride); -} - void aom_highbd_fdct8x8_c(const int16_t *input, tran_low_t *final_output, int stride) { aom_fdct8x8_c(input, final_output, stride); } - -void aom_highbd_fdct16x16_c(const int16_t *input, tran_low_t *output, - int stride) { - aom_fdct16x16_c(input, output, stride); -} - -void aom_highbd_fdct32x32_c(const int16_t *input, tran_low_t *out, int stride) { - aom_fdct32x32_c(input, out, stride); -} -void aom_highbd_fdct32x32_rd_c(const int16_t *input, tran_low_t *out, - int stride) { - aom_fdct32x32_rd_c(input, out, stride); -} - -#endif // CONFIG_HIGHBITDEPTH |