summaryrefslogtreecommitdiffstats
path: root/security/sandbox/chromium/base/strings/safe_sprintf.cc
diff options
context:
space:
mode:
Diffstat (limited to 'security/sandbox/chromium/base/strings/safe_sprintf.cc')
-rw-r--r--security/sandbox/chromium/base/strings/safe_sprintf.cc686
1 files changed, 0 insertions, 686 deletions
diff --git a/security/sandbox/chromium/base/strings/safe_sprintf.cc b/security/sandbox/chromium/base/strings/safe_sprintf.cc
deleted file mode 100644
index a51c77827..000000000
--- a/security/sandbox/chromium/base/strings/safe_sprintf.cc
+++ /dev/null
@@ -1,686 +0,0 @@
-// Copyright 2013 The Chromium Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-#include "base/strings/safe_sprintf.h"
-
-#include <errno.h>
-#include <string.h>
-
-#include <limits>
-
-#include "base/macros.h"
-#include "build/build_config.h"
-
-#if !defined(NDEBUG)
-// In debug builds, we use RAW_CHECK() to print useful error messages, if
-// SafeSPrintf() is called with broken arguments.
-// As our contract promises that SafeSPrintf() can be called from any
-// restricted run-time context, it is not actually safe to call logging
-// functions from it; and we only ever do so for debug builds and hope for the
-// best. We should _never_ call any logging function other than RAW_CHECK(),
-// and we should _never_ include any logging code that is active in production
-// builds. Most notably, we should not include these logging functions in
-// unofficial release builds, even though those builds would otherwise have
-// DCHECKS() enabled.
-// In other words; please do not remove the #ifdef around this #include.
-// Instead, in production builds we opt for returning a degraded result,
-// whenever an error is encountered.
-// E.g. The broken function call
-// SafeSPrintf("errno = %d (%x)", errno, strerror(errno))
-// will print something like
-// errno = 13, (%x)
-// instead of
-// errno = 13 (Access denied)
-// In most of the anticipated use cases, that's probably the preferred
-// behavior.
-#include "base/logging.h"
-#define DEBUG_CHECK RAW_CHECK
-#else
-#define DEBUG_CHECK(x) do { if (x) { } } while (0)
-#endif
-
-namespace base {
-namespace strings {
-
-// The code in this file is extremely careful to be async-signal-safe.
-//
-// Most obviously, we avoid calling any code that could dynamically allocate
-// memory. Doing so would almost certainly result in bugs and dead-locks.
-// We also avoid calling any other STL functions that could have unintended
-// side-effects involving memory allocation or access to other shared
-// resources.
-//
-// But on top of that, we also avoid calling other library functions, as many
-// of them have the side-effect of calling getenv() (in order to deal with
-// localization) or accessing errno. The latter sounds benign, but there are
-// several execution contexts where it isn't even possible to safely read let
-// alone write errno.
-//
-// The stated design goal of the SafeSPrintf() function is that it can be
-// called from any context that can safely call C or C++ code (i.e. anything
-// that doesn't require assembly code).
-//
-// For a brief overview of some but not all of the issues with async-signal-
-// safety, refer to:
-// http://pubs.opengroup.org/onlinepubs/009695399/functions/xsh_chap02_04.html
-
-namespace {
-const size_t kSSizeMaxConst = ((size_t)(ssize_t)-1) >> 1;
-
-const char kUpCaseHexDigits[] = "0123456789ABCDEF";
-const char kDownCaseHexDigits[] = "0123456789abcdef";
-}
-
-#if defined(NDEBUG)
-// We would like to define kSSizeMax as std::numeric_limits<ssize_t>::max(),
-// but C++ doesn't allow us to do that for constants. Instead, we have to
-// use careful casting and shifting. We later use a static_assert to
-// verify that this worked correctly.
-namespace {
-const size_t kSSizeMax = kSSizeMaxConst;
-}
-#else // defined(NDEBUG)
-// For efficiency, we really need kSSizeMax to be a constant. But for unit
-// tests, it should be adjustable. This allows us to verify edge cases without
-// having to fill the entire available address space. As a compromise, we make
-// kSSizeMax adjustable in debug builds, and then only compile that particular
-// part of the unit test in debug builds.
-namespace {
-static size_t kSSizeMax = kSSizeMaxConst;
-}
-
-namespace internal {
-void SetSafeSPrintfSSizeMaxForTest(size_t max) {
- kSSizeMax = max;
-}
-
-size_t GetSafeSPrintfSSizeMaxForTest() {
- return kSSizeMax;
-}
-}
-#endif // defined(NDEBUG)
-
-namespace {
-class Buffer {
- public:
- // |buffer| is caller-allocated storage that SafeSPrintf() writes to. It
- // has |size| bytes of writable storage. It is the caller's responsibility
- // to ensure that the buffer is at least one byte in size, so that it fits
- // the trailing NUL that will be added by the destructor. The buffer also
- // must be smaller or equal to kSSizeMax in size.
- Buffer(char* buffer, size_t size)
- : buffer_(buffer),
- size_(size - 1), // Account for trailing NUL byte
- count_(0) {
-// MSVS2013's standard library doesn't mark max() as constexpr yet. cl.exe
-// supports static_cast but doesn't really implement constexpr yet so it doesn't
-// complain, but clang does.
-#if __cplusplus >= 201103 && !(defined(__clang__) && defined(OS_WIN))
- static_assert(kSSizeMaxConst ==
- static_cast<size_t>(std::numeric_limits<ssize_t>::max()),
- "kSSizeMaxConst should be the max value of an ssize_t");
-#endif
- DEBUG_CHECK(size > 0);
- DEBUG_CHECK(size <= kSSizeMax);
- }
-
- ~Buffer() {
- // The code calling the constructor guaranteed that there was enough space
- // to store a trailing NUL -- and in debug builds, we are actually
- // verifying this with DEBUG_CHECK()s in the constructor. So, we can
- // always unconditionally write the NUL byte in the destructor. We do not
- // need to adjust the count_, as SafeSPrintf() copies snprintf() in not
- // including the NUL byte in its return code.
- *GetInsertionPoint() = '\000';
- }
-
- // Returns true, iff the buffer is filled all the way to |kSSizeMax-1|. The
- // caller can now stop adding more data, as GetCount() has reached its
- // maximum possible value.
- inline bool OutOfAddressableSpace() const {
- return count_ == static_cast<size_t>(kSSizeMax - 1);
- }
-
- // Returns the number of bytes that would have been emitted to |buffer_|
- // if it was sized sufficiently large. This number can be larger than
- // |size_|, if the caller provided an insufficiently large output buffer.
- // But it will never be bigger than |kSSizeMax-1|.
- inline ssize_t GetCount() const {
- DEBUG_CHECK(count_ < kSSizeMax);
- return static_cast<ssize_t>(count_);
- }
-
- // Emits one |ch| character into the |buffer_| and updates the |count_| of
- // characters that are currently supposed to be in the buffer.
- // Returns "false", iff the buffer was already full.
- // N.B. |count_| increases even if no characters have been written. This is
- // needed so that GetCount() can return the number of bytes that should
- // have been allocated for the |buffer_|.
- inline bool Out(char ch) {
- if (size_ >= 1 && count_ < size_) {
- buffer_[count_] = ch;
- return IncrementCountByOne();
- }
- // |count_| still needs to be updated, even if the buffer has been
- // filled completely. This allows SafeSPrintf() to return the number of
- // bytes that should have been emitted.
- IncrementCountByOne();
- return false;
- }
-
- // Inserts |padding|-|len| bytes worth of padding into the |buffer_|.
- // |count_| will also be incremented by the number of bytes that were meant
- // to be emitted. The |pad| character is typically either a ' ' space
- // or a '0' zero, but other non-NUL values are legal.
- // Returns "false", iff the the |buffer_| filled up (i.e. |count_|
- // overflowed |size_|) at any time during padding.
- inline bool Pad(char pad, size_t padding, size_t len) {
- DEBUG_CHECK(pad);
- DEBUG_CHECK(padding <= kSSizeMax);
- for (; padding > len; --padding) {
- if (!Out(pad)) {
- if (--padding) {
- IncrementCount(padding-len);
- }
- return false;
- }
- }
- return true;
- }
-
- // POSIX doesn't define any async-signal-safe function for converting
- // an integer to ASCII. Define our own version.
- //
- // This also gives us the ability to make the function a little more
- // powerful and have it deal with |padding|, with truncation, and with
- // predicting the length of the untruncated output.
- //
- // IToASCII() converts an integer |i| to ASCII.
- //
- // Unlike similar functions in the standard C library, it never appends a
- // NUL character. This is left for the caller to do.
- //
- // While the function signature takes a signed int64_t, the code decides at
- // run-time whether to treat the argument as signed (int64_t) or as unsigned
- // (uint64_t) based on the value of |sign|.
- //
- // It supports |base|s 2 through 16. Only a |base| of 10 is allowed to have
- // a |sign|. Otherwise, |i| is treated as unsigned.
- //
- // For bases larger than 10, |upcase| decides whether lower-case or upper-
- // case letters should be used to designate digits greater than 10.
- //
- // Padding can be done with either '0' zeros or ' ' spaces. Padding has to
- // be positive and will always be applied to the left of the output.
- //
- // Prepends a |prefix| to the number (e.g. "0x"). This prefix goes to
- // the left of |padding|, if |pad| is '0'; and to the right of |padding|
- // if |pad| is ' '.
- //
- // Returns "false", if the |buffer_| overflowed at any time.
- bool IToASCII(bool sign, bool upcase, int64_t i, int base,
- char pad, size_t padding, const char* prefix);
-
- private:
- // Increments |count_| by |inc| unless this would cause |count_| to
- // overflow |kSSizeMax-1|. Returns "false", iff an overflow was detected;
- // it then clamps |count_| to |kSSizeMax-1|.
- inline bool IncrementCount(size_t inc) {
- // "inc" is either 1 or a "padding" value. Padding is clamped at
- // run-time to at most kSSizeMax-1. So, we know that "inc" is always in
- // the range 1..kSSizeMax-1.
- // This allows us to compute "kSSizeMax - 1 - inc" without incurring any
- // integer overflows.
- DEBUG_CHECK(inc <= kSSizeMax - 1);
- if (count_ > kSSizeMax - 1 - inc) {
- count_ = kSSizeMax - 1;
- return false;
- } else {
- count_ += inc;
- return true;
- }
- }
-
- // Convenience method for the common case of incrementing |count_| by one.
- inline bool IncrementCountByOne() {
- return IncrementCount(1);
- }
-
- // Return the current insertion point into the buffer. This is typically
- // at |buffer_| + |count_|, but could be before that if truncation
- // happened. It always points to one byte past the last byte that was
- // successfully placed into the |buffer_|.
- inline char* GetInsertionPoint() const {
- size_t idx = count_;
- if (idx > size_) {
- idx = size_;
- }
- return buffer_ + idx;
- }
-
- // User-provided buffer that will receive the fully formatted output string.
- char* buffer_;
-
- // Number of bytes that are available in the buffer excluding the trailing
- // NUL byte that will be added by the destructor.
- const size_t size_;
-
- // Number of bytes that would have been emitted to the buffer, if the buffer
- // was sufficiently big. This number always excludes the trailing NUL byte
- // and it is guaranteed to never grow bigger than kSSizeMax-1.
- size_t count_;
-
- DISALLOW_COPY_AND_ASSIGN(Buffer);
-};
-
-
-bool Buffer::IToASCII(bool sign, bool upcase, int64_t i, int base,
- char pad, size_t padding, const char* prefix) {
- // Sanity check for parameters. None of these should ever fail, but see
- // above for the rationale why we can't call CHECK().
- DEBUG_CHECK(base >= 2);
- DEBUG_CHECK(base <= 16);
- DEBUG_CHECK(!sign || base == 10);
- DEBUG_CHECK(pad == '0' || pad == ' ');
- DEBUG_CHECK(padding <= kSSizeMax);
- DEBUG_CHECK(!(sign && prefix && *prefix));
-
- // Handle negative numbers, if the caller indicated that |i| should be
- // treated as a signed number; otherwise treat |i| as unsigned (even if the
- // MSB is set!)
- // Details are tricky, because of limited data-types, but equivalent pseudo-
- // code would look like:
- // if (sign && i < 0)
- // prefix = "-";
- // num = abs(i);
- int minint = 0;
- uint64_t num;
- if (sign && i < 0) {
- prefix = "-";
-
- // Turn our number positive.
- if (i == std::numeric_limits<int64_t>::min()) {
- // The most negative integer needs special treatment.
- minint = 1;
- num = static_cast<uint64_t>(-(i + 1));
- } else {
- // "Normal" negative numbers are easy.
- num = static_cast<uint64_t>(-i);
- }
- } else {
- num = static_cast<uint64_t>(i);
- }
-
- // If padding with '0' zero, emit the prefix or '-' character now. Otherwise,
- // make the prefix accessible in reverse order, so that we can later output
- // it right between padding and the number.
- // We cannot choose the easier approach of just reversing the number, as that
- // fails in situations where we need to truncate numbers that have padding
- // and/or prefixes.
- const char* reverse_prefix = NULL;
- if (prefix && *prefix) {
- if (pad == '0') {
- while (*prefix) {
- if (padding) {
- --padding;
- }
- Out(*prefix++);
- }
- prefix = NULL;
- } else {
- for (reverse_prefix = prefix; *reverse_prefix; ++reverse_prefix) {
- }
- }
- } else
- prefix = NULL;
- const size_t prefix_length = reverse_prefix - prefix;
-
- // Loop until we have converted the entire number. Output at least one
- // character (i.e. '0').
- size_t start = count_;
- size_t discarded = 0;
- bool started = false;
- do {
- // Make sure there is still enough space left in our output buffer.
- if (count_ >= size_) {
- if (start < size_) {
- // It is rare that we need to output a partial number. But if asked
- // to do so, we will still make sure we output the correct number of
- // leading digits.
- // Since we are generating the digits in reverse order, we actually
- // have to discard digits in the order that we have already emitted
- // them. This is essentially equivalent to:
- // memmove(buffer_ + start, buffer_ + start + 1, size_ - start - 1)
- for (char* move = buffer_ + start, *end = buffer_ + size_ - 1;
- move < end;
- ++move) {
- *move = move[1];
- }
- ++discarded;
- --count_;
- } else if (count_ - size_ > 1) {
- // Need to increment either |count_| or |discarded| to make progress.
- // The latter is more efficient, as it eventually triggers fast
- // handling of padding. But we have to ensure we don't accidentally
- // change the overall state (i.e. switch the state-machine from
- // discarding to non-discarding). |count_| needs to always stay
- // bigger than |size_|.
- --count_;
- ++discarded;
- }
- }
-
- // Output the next digit and (if necessary) compensate for the most
- // negative integer needing special treatment. This works because,
- // no matter the bit width of the integer, the lowest-most decimal
- // integer always ends in 2, 4, 6, or 8.
- if (!num && started) {
- if (reverse_prefix > prefix) {
- Out(*--reverse_prefix);
- } else {
- Out(pad);
- }
- } else {
- started = true;
- Out((upcase ? kUpCaseHexDigits : kDownCaseHexDigits)[num%base + minint]);
- }
-
- minint = 0;
- num /= base;
-
- // Add padding, if requested.
- if (padding > 0) {
- --padding;
-
- // Performance optimization for when we are asked to output excessive
- // padding, but our output buffer is limited in size. Even if we output
- // a 64bit number in binary, we would never write more than 64 plus
- // prefix non-padding characters. So, once this limit has been passed,
- // any further state change can be computed arithmetically; we know that
- // by this time, our entire final output consists of padding characters
- // that have all already been output.
- if (discarded > 8*sizeof(num) + prefix_length) {
- IncrementCount(padding);
- padding = 0;
- }
- }
- } while (num || padding || (reverse_prefix > prefix));
-
- // Conversion to ASCII actually resulted in the digits being in reverse
- // order. We can't easily generate them in forward order, as we can't tell
- // the number of characters needed until we are done converting.
- // So, now, we reverse the string (except for the possible '-' sign).
- char* front = buffer_ + start;
- char* back = GetInsertionPoint();
- while (--back > front) {
- char ch = *back;
- *back = *front;
- *front++ = ch;
- }
-
- IncrementCount(discarded);
- return !discarded;
-}
-
-} // anonymous namespace
-
-namespace internal {
-
-ssize_t SafeSNPrintf(char* buf, size_t sz, const char* fmt, const Arg* args,
- const size_t max_args) {
- // Make sure that at least one NUL byte can be written, and that the buffer
- // never overflows kSSizeMax. Not only does that use up most or all of the
- // address space, it also would result in a return code that cannot be
- // represented.
- if (static_cast<ssize_t>(sz) < 1) {
- return -1;
- } else if (sz > kSSizeMax) {
- sz = kSSizeMax;
- }
-
- // Iterate over format string and interpret '%' arguments as they are
- // encountered.
- Buffer buffer(buf, sz);
- size_t padding;
- char pad;
- for (unsigned int cur_arg = 0; *fmt && !buffer.OutOfAddressableSpace(); ) {
- if (*fmt++ == '%') {
- padding = 0;
- pad = ' ';
- char ch = *fmt++;
- format_character_found:
- switch (ch) {
- case '0': case '1': case '2': case '3': case '4':
- case '5': case '6': case '7': case '8': case '9':
- // Found a width parameter. Convert to an integer value and store in
- // "padding". If the leading digit is a zero, change the padding
- // character from a space ' ' to a zero '0'.
- pad = ch == '0' ? '0' : ' ';
- for (;;) {
- // The maximum allowed padding fills all the available address
- // space and leaves just enough space to insert the trailing NUL.
- const size_t max_padding = kSSizeMax - 1;
- if (padding > max_padding/10 ||
- 10*padding > max_padding - (ch - '0')) {
- DEBUG_CHECK(padding <= max_padding/10 &&
- 10*padding <= max_padding - (ch - '0'));
- // Integer overflow detected. Skip the rest of the width until
- // we find the format character, then do the normal error handling.
- padding_overflow:
- padding = max_padding;
- while ((ch = *fmt++) >= '0' && ch <= '9') {
- }
- if (cur_arg < max_args) {
- ++cur_arg;
- }
- goto fail_to_expand;
- }
- padding = 10*padding + ch - '0';
- if (padding > max_padding) {
- // This doesn't happen for "sane" values of kSSizeMax. But once
- // kSSizeMax gets smaller than about 10, our earlier range checks
- // are incomplete. Unittests do trigger this artificial corner
- // case.
- DEBUG_CHECK(padding <= max_padding);
- goto padding_overflow;
- }
- ch = *fmt++;
- if (ch < '0' || ch > '9') {
- // Reached the end of the width parameter. This is where the format
- // character is found.
- goto format_character_found;
- }
- }
- break;
- case 'c': { // Output an ASCII character.
- // Check that there are arguments left to be inserted.
- if (cur_arg >= max_args) {
- DEBUG_CHECK(cur_arg < max_args);
- goto fail_to_expand;
- }
-
- // Check that the argument has the expected type.
- const Arg& arg = args[cur_arg++];
- if (arg.type != Arg::INT && arg.type != Arg::UINT) {
- DEBUG_CHECK(arg.type == Arg::INT || arg.type == Arg::UINT);
- goto fail_to_expand;
- }
-
- // Apply padding, if needed.
- buffer.Pad(' ', padding, 1);
-
- // Convert the argument to an ASCII character and output it.
- char as_char = static_cast<char>(arg.integer.i);
- if (!as_char) {
- goto end_of_output_buffer;
- }
- buffer.Out(as_char);
- break; }
- case 'd': // Output a possibly signed decimal value.
- case 'o': // Output an unsigned octal value.
- case 'x': // Output an unsigned hexadecimal value.
- case 'X':
- case 'p': { // Output a pointer value.
- // Check that there are arguments left to be inserted.
- if (cur_arg >= max_args) {
- DEBUG_CHECK(cur_arg < max_args);
- goto fail_to_expand;
- }
-
- const Arg& arg = args[cur_arg++];
- int64_t i;
- const char* prefix = NULL;
- if (ch != 'p') {
- // Check that the argument has the expected type.
- if (arg.type != Arg::INT && arg.type != Arg::UINT) {
- DEBUG_CHECK(arg.type == Arg::INT || arg.type == Arg::UINT);
- goto fail_to_expand;
- }
- i = arg.integer.i;
-
- if (ch != 'd') {
- // The Arg() constructor automatically performed sign expansion on
- // signed parameters. This is great when outputting a %d decimal
- // number, but can result in unexpected leading 0xFF bytes when
- // outputting a %x hexadecimal number. Mask bits, if necessary.
- // We have to do this here, instead of in the Arg() constructor, as
- // the Arg() constructor cannot tell whether we will output a %d
- // or a %x. Only the latter should experience masking.
- if (arg.integer.width < sizeof(int64_t)) {
- i &= (1LL << (8*arg.integer.width)) - 1;
- }
- }
- } else {
- // Pointer values require an actual pointer or a string.
- if (arg.type == Arg::POINTER) {
- i = reinterpret_cast<uintptr_t>(arg.ptr);
- } else if (arg.type == Arg::STRING) {
- i = reinterpret_cast<uintptr_t>(arg.str);
- } else if (arg.type == Arg::INT &&
- arg.integer.width == sizeof(NULL) &&
- arg.integer.i == 0) { // Allow C++'s version of NULL
- i = 0;
- } else {
- DEBUG_CHECK(arg.type == Arg::POINTER || arg.type == Arg::STRING);
- goto fail_to_expand;
- }
-
- // Pointers always include the "0x" prefix.
- prefix = "0x";
- }
-
- // Use IToASCII() to convert to ASCII representation. For decimal
- // numbers, optionally print a sign. For hexadecimal numbers,
- // distinguish between upper and lower case. %p addresses are always
- // printed as upcase. Supports base 8, 10, and 16. Prints padding
- // and/or prefixes, if so requested.
- buffer.IToASCII(ch == 'd' && arg.type == Arg::INT,
- ch != 'x', i,
- ch == 'o' ? 8 : ch == 'd' ? 10 : 16,
- pad, padding, prefix);
- break; }
- case 's': {
- // Check that there are arguments left to be inserted.
- if (cur_arg >= max_args) {
- DEBUG_CHECK(cur_arg < max_args);
- goto fail_to_expand;
- }
-
- // Check that the argument has the expected type.
- const Arg& arg = args[cur_arg++];
- const char *s;
- if (arg.type == Arg::STRING) {
- s = arg.str ? arg.str : "<NULL>";
- } else if (arg.type == Arg::INT && arg.integer.width == sizeof(NULL) &&
- arg.integer.i == 0) { // Allow C++'s version of NULL
- s = "<NULL>";
- } else {
- DEBUG_CHECK(arg.type == Arg::STRING);
- goto fail_to_expand;
- }
-
- // Apply padding, if needed. This requires us to first check the
- // length of the string that we are outputting.
- if (padding) {
- size_t len = 0;
- for (const char* src = s; *src++; ) {
- ++len;
- }
- buffer.Pad(' ', padding, len);
- }
-
- // Printing a string involves nothing more than copying it into the
- // output buffer and making sure we don't output more bytes than
- // available space; Out() takes care of doing that.
- for (const char* src = s; *src; ) {
- buffer.Out(*src++);
- }
- break; }
- case '%':
- // Quoted percent '%' character.
- goto copy_verbatim;
- fail_to_expand:
- // C++ gives us tools to do type checking -- something that snprintf()
- // could never really do. So, whenever we see arguments that don't
- // match up with the format string, we refuse to output them. But
- // since we have to be extremely conservative about being async-
- // signal-safe, we are limited in the type of error handling that we
- // can do in production builds (in debug builds we can use
- // DEBUG_CHECK() and hope for the best). So, all we do is pass the
- // format string unchanged. That should eventually get the user's
- // attention; and in the meantime, it hopefully doesn't lose too much
- // data.
- default:
- // Unknown or unsupported format character. Just copy verbatim to
- // output.
- buffer.Out('%');
- DEBUG_CHECK(ch);
- if (!ch) {
- goto end_of_format_string;
- }
- buffer.Out(ch);
- break;
- }
- } else {
- copy_verbatim:
- buffer.Out(fmt[-1]);
- }
- }
- end_of_format_string:
- end_of_output_buffer:
- return buffer.GetCount();
-}
-
-} // namespace internal
-
-ssize_t SafeSNPrintf(char* buf, size_t sz, const char* fmt) {
- // Make sure that at least one NUL byte can be written, and that the buffer
- // never overflows kSSizeMax. Not only does that use up most or all of the
- // address space, it also would result in a return code that cannot be
- // represented.
- if (static_cast<ssize_t>(sz) < 1) {
- return -1;
- } else if (sz > kSSizeMax) {
- sz = kSSizeMax;
- }
-
- Buffer buffer(buf, sz);
-
- // In the slow-path, we deal with errors by copying the contents of
- // "fmt" unexpanded. This means, if there are no arguments passed, the
- // SafeSPrintf() function always degenerates to a version of strncpy() that
- // de-duplicates '%' characters.
- const char* src = fmt;
- for (; *src; ++src) {
- buffer.Out(*src);
- DEBUG_CHECK(src[0] != '%' || src[1] == '%');
- if (src[0] == '%' && src[1] == '%') {
- ++src;
- }
- }
- return buffer.GetCount();
-}
-
-} // namespace strings
-} // namespace base