diff options
Diffstat (limited to 'security/sandbox/chromium/base/numerics/safe_math_impl.h')
-rw-r--r-- | security/sandbox/chromium/base/numerics/safe_math_impl.h | 545 |
1 files changed, 545 insertions, 0 deletions
diff --git a/security/sandbox/chromium/base/numerics/safe_math_impl.h b/security/sandbox/chromium/base/numerics/safe_math_impl.h new file mode 100644 index 000000000..4fbcc045b --- /dev/null +++ b/security/sandbox/chromium/base/numerics/safe_math_impl.h @@ -0,0 +1,545 @@ +// Copyright 2014 The Chromium Authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#ifndef BASE_NUMERICS_SAFE_MATH_IMPL_H_ +#define BASE_NUMERICS_SAFE_MATH_IMPL_H_ + +#include <stddef.h> +#include <stdint.h> + +#include <cmath> +#include <cstdlib> +#include <limits> +#include <type_traits> + +#include "base/numerics/safe_conversions.h" +#include "base/template_util.h" + +namespace base { +namespace internal { + +// Everything from here up to the floating point operations is portable C++, +// but it may not be fast. This code could be split based on +// platform/architecture and replaced with potentially faster implementations. + +// Integer promotion templates used by the portable checked integer arithmetic. +template <size_t Size, bool IsSigned> +struct IntegerForSizeAndSign; +template <> +struct IntegerForSizeAndSign<1, true> { + typedef int8_t type; +}; +template <> +struct IntegerForSizeAndSign<1, false> { + typedef uint8_t type; +}; +template <> +struct IntegerForSizeAndSign<2, true> { + typedef int16_t type; +}; +template <> +struct IntegerForSizeAndSign<2, false> { + typedef uint16_t type; +}; +template <> +struct IntegerForSizeAndSign<4, true> { + typedef int32_t type; +}; +template <> +struct IntegerForSizeAndSign<4, false> { + typedef uint32_t type; +}; +template <> +struct IntegerForSizeAndSign<8, true> { + typedef int64_t type; +}; +template <> +struct IntegerForSizeAndSign<8, false> { + typedef uint64_t type; +}; + +// WARNING: We have no IntegerForSizeAndSign<16, *>. If we ever add one to +// support 128-bit math, then the ArithmeticPromotion template below will need +// to be updated (or more likely replaced with a decltype expression). + +template <typename Integer> +struct UnsignedIntegerForSize { + typedef typename std::enable_if< + std::numeric_limits<Integer>::is_integer, + typename IntegerForSizeAndSign<sizeof(Integer), false>::type>::type type; +}; + +template <typename Integer> +struct SignedIntegerForSize { + typedef typename std::enable_if< + std::numeric_limits<Integer>::is_integer, + typename IntegerForSizeAndSign<sizeof(Integer), true>::type>::type type; +}; + +template <typename Integer> +struct TwiceWiderInteger { + typedef typename std::enable_if< + std::numeric_limits<Integer>::is_integer, + typename IntegerForSizeAndSign< + sizeof(Integer) * 2, + std::numeric_limits<Integer>::is_signed>::type>::type type; +}; + +template <typename Integer> +struct PositionOfSignBit { + static const typename std::enable_if<std::numeric_limits<Integer>::is_integer, + size_t>::type value = + 8 * sizeof(Integer) - 1; +}; + +// This is used for UnsignedAbs, where we need to support floating-point +// template instantiations even though we don't actually support the operations. +// However, there is no corresponding implementation of e.g. CheckedUnsignedAbs, +// so the float versions will not compile. +template <typename Numeric, + bool IsInteger = std::numeric_limits<Numeric>::is_integer, + bool IsFloat = std::numeric_limits<Numeric>::is_iec559> +struct UnsignedOrFloatForSize; + +template <typename Numeric> +struct UnsignedOrFloatForSize<Numeric, true, false> { + typedef typename UnsignedIntegerForSize<Numeric>::type type; +}; + +template <typename Numeric> +struct UnsignedOrFloatForSize<Numeric, false, true> { + typedef Numeric type; +}; + +// Helper templates for integer manipulations. + +template <typename T> +bool HasSignBit(T x) { + // Cast to unsigned since right shift on signed is undefined. + return !!(static_cast<typename UnsignedIntegerForSize<T>::type>(x) >> + PositionOfSignBit<T>::value); +} + +// This wrapper undoes the standard integer promotions. +template <typename T> +T BinaryComplement(T x) { + return ~x; +} + +// Here are the actual portable checked integer math implementations. +// TODO(jschuh): Break this code out from the enable_if pattern and find a clean +// way to coalesce things into the CheckedNumericState specializations below. + +template <typename T> +typename std::enable_if<std::numeric_limits<T>::is_integer, T>::type +CheckedAdd(T x, T y, RangeConstraint* validity) { + // Since the value of x+y is undefined if we have a signed type, we compute + // it using the unsigned type of the same size. + typedef typename UnsignedIntegerForSize<T>::type UnsignedDst; + UnsignedDst ux = static_cast<UnsignedDst>(x); + UnsignedDst uy = static_cast<UnsignedDst>(y); + UnsignedDst uresult = ux + uy; + // Addition is valid if the sign of (x + y) is equal to either that of x or + // that of y. + if (std::numeric_limits<T>::is_signed) { + if (HasSignBit(BinaryComplement((uresult ^ ux) & (uresult ^ uy)))) + *validity = RANGE_VALID; + else // Direction of wrap is inverse of result sign. + *validity = HasSignBit(uresult) ? RANGE_OVERFLOW : RANGE_UNDERFLOW; + + } else { // Unsigned is either valid or overflow. + *validity = BinaryComplement(x) >= y ? RANGE_VALID : RANGE_OVERFLOW; + } + return static_cast<T>(uresult); +} + +template <typename T> +typename std::enable_if<std::numeric_limits<T>::is_integer, T>::type +CheckedSub(T x, T y, RangeConstraint* validity) { + // Since the value of x+y is undefined if we have a signed type, we compute + // it using the unsigned type of the same size. + typedef typename UnsignedIntegerForSize<T>::type UnsignedDst; + UnsignedDst ux = static_cast<UnsignedDst>(x); + UnsignedDst uy = static_cast<UnsignedDst>(y); + UnsignedDst uresult = ux - uy; + // Subtraction is valid if either x and y have same sign, or (x-y) and x have + // the same sign. + if (std::numeric_limits<T>::is_signed) { + if (HasSignBit(BinaryComplement((uresult ^ ux) & (ux ^ uy)))) + *validity = RANGE_VALID; + else // Direction of wrap is inverse of result sign. + *validity = HasSignBit(uresult) ? RANGE_OVERFLOW : RANGE_UNDERFLOW; + + } else { // Unsigned is either valid or underflow. + *validity = x >= y ? RANGE_VALID : RANGE_UNDERFLOW; + } + return static_cast<T>(uresult); +} + +// Integer multiplication is a bit complicated. In the fast case we just +// we just promote to a twice wider type, and range check the result. In the +// slow case we need to manually check that the result won't be truncated by +// checking with division against the appropriate bound. +template <typename T> +typename std::enable_if<std::numeric_limits<T>::is_integer && + sizeof(T) * 2 <= sizeof(uintmax_t), + T>::type +CheckedMul(T x, T y, RangeConstraint* validity) { + typedef typename TwiceWiderInteger<T>::type IntermediateType; + IntermediateType tmp = + static_cast<IntermediateType>(x) * static_cast<IntermediateType>(y); + *validity = DstRangeRelationToSrcRange<T>(tmp); + return static_cast<T>(tmp); +} + +template <typename T> +typename std::enable_if<std::numeric_limits<T>::is_integer && + std::numeric_limits<T>::is_signed && + (sizeof(T) * 2 > sizeof(uintmax_t)), + T>::type +CheckedMul(T x, T y, RangeConstraint* validity) { + // If either side is zero then the result will be zero. + if (!x || !y) { + return RANGE_VALID; + + } else if (x > 0) { + if (y > 0) + *validity = + x <= std::numeric_limits<T>::max() / y ? RANGE_VALID : RANGE_OVERFLOW; + else + *validity = y >= std::numeric_limits<T>::min() / x ? RANGE_VALID + : RANGE_UNDERFLOW; + + } else { + if (y > 0) + *validity = x >= std::numeric_limits<T>::min() / y ? RANGE_VALID + : RANGE_UNDERFLOW; + else + *validity = + y >= std::numeric_limits<T>::max() / x ? RANGE_VALID : RANGE_OVERFLOW; + } + + return x * y; +} + +template <typename T> +typename std::enable_if<std::numeric_limits<T>::is_integer && + !std::numeric_limits<T>::is_signed && + (sizeof(T) * 2 > sizeof(uintmax_t)), + T>::type +CheckedMul(T x, T y, RangeConstraint* validity) { + *validity = (y == 0 || x <= std::numeric_limits<T>::max() / y) + ? RANGE_VALID + : RANGE_OVERFLOW; + return x * y; +} + +// Division just requires a check for an invalid negation on signed min/-1. +template <typename T> +T CheckedDiv(T x, + T y, + RangeConstraint* validity, + typename std::enable_if<std::numeric_limits<T>::is_integer, + int>::type = 0) { + if (std::numeric_limits<T>::is_signed && x == std::numeric_limits<T>::min() && + y == static_cast<T>(-1)) { + *validity = RANGE_OVERFLOW; + return std::numeric_limits<T>::min(); + } + + *validity = RANGE_VALID; + return x / y; +} + +template <typename T> +typename std::enable_if<std::numeric_limits<T>::is_integer && + std::numeric_limits<T>::is_signed, + T>::type +CheckedMod(T x, T y, RangeConstraint* validity) { + *validity = y > 0 ? RANGE_VALID : RANGE_INVALID; + return x % y; +} + +template <typename T> +typename std::enable_if<std::numeric_limits<T>::is_integer && + !std::numeric_limits<T>::is_signed, + T>::type +CheckedMod(T x, T y, RangeConstraint* validity) { + *validity = RANGE_VALID; + return x % y; +} + +template <typename T> +typename std::enable_if<std::numeric_limits<T>::is_integer && + std::numeric_limits<T>::is_signed, + T>::type +CheckedNeg(T value, RangeConstraint* validity) { + *validity = + value != std::numeric_limits<T>::min() ? RANGE_VALID : RANGE_OVERFLOW; + // The negation of signed min is min, so catch that one. + return -value; +} + +template <typename T> +typename std::enable_if<std::numeric_limits<T>::is_integer && + !std::numeric_limits<T>::is_signed, + T>::type +CheckedNeg(T value, RangeConstraint* validity) { + // The only legal unsigned negation is zero. + *validity = value ? RANGE_UNDERFLOW : RANGE_VALID; + return static_cast<T>( + -static_cast<typename SignedIntegerForSize<T>::type>(value)); +} + +template <typename T> +typename std::enable_if<std::numeric_limits<T>::is_integer && + std::numeric_limits<T>::is_signed, + T>::type +CheckedAbs(T value, RangeConstraint* validity) { + *validity = + value != std::numeric_limits<T>::min() ? RANGE_VALID : RANGE_OVERFLOW; + return static_cast<T>(std::abs(value)); +} + +template <typename T> +typename std::enable_if<std::numeric_limits<T>::is_integer && + !std::numeric_limits<T>::is_signed, + T>::type +CheckedAbs(T value, RangeConstraint* validity) { + // T is unsigned, so |value| must already be positive. + *validity = RANGE_VALID; + return value; +} + +template <typename T> +typename std::enable_if<std::numeric_limits<T>::is_integer && + std::numeric_limits<T>::is_signed, + typename UnsignedIntegerForSize<T>::type>::type +CheckedUnsignedAbs(T value) { + typedef typename UnsignedIntegerForSize<T>::type UnsignedT; + return value == std::numeric_limits<T>::min() + ? static_cast<UnsignedT>(std::numeric_limits<T>::max()) + 1 + : static_cast<UnsignedT>(std::abs(value)); +} + +template <typename T> +typename std::enable_if<std::numeric_limits<T>::is_integer && + !std::numeric_limits<T>::is_signed, + T>::type +CheckedUnsignedAbs(T value) { + // T is unsigned, so |value| must already be positive. + return value; +} + +// These are the floating point stubs that the compiler needs to see. Only the +// negation operation is ever called. +#define BASE_FLOAT_ARITHMETIC_STUBS(NAME) \ + template <typename T> \ + typename std::enable_if<std::numeric_limits<T>::is_iec559, T>::type \ + Checked##NAME(T, T, RangeConstraint*) { \ + NOTREACHED(); \ + return 0; \ + } + +BASE_FLOAT_ARITHMETIC_STUBS(Add) +BASE_FLOAT_ARITHMETIC_STUBS(Sub) +BASE_FLOAT_ARITHMETIC_STUBS(Mul) +BASE_FLOAT_ARITHMETIC_STUBS(Div) +BASE_FLOAT_ARITHMETIC_STUBS(Mod) + +#undef BASE_FLOAT_ARITHMETIC_STUBS + +template <typename T> +typename std::enable_if<std::numeric_limits<T>::is_iec559, T>::type CheckedNeg( + T value, + RangeConstraint*) { + return -value; +} + +template <typename T> +typename std::enable_if<std::numeric_limits<T>::is_iec559, T>::type CheckedAbs( + T value, + RangeConstraint*) { + return std::abs(value); +} + +// Floats carry around their validity state with them, but integers do not. So, +// we wrap the underlying value in a specialization in order to hide that detail +// and expose an interface via accessors. +enum NumericRepresentation { + NUMERIC_INTEGER, + NUMERIC_FLOATING, + NUMERIC_UNKNOWN +}; + +template <typename NumericType> +struct GetNumericRepresentation { + static const NumericRepresentation value = + std::numeric_limits<NumericType>::is_integer + ? NUMERIC_INTEGER + : (std::numeric_limits<NumericType>::is_iec559 ? NUMERIC_FLOATING + : NUMERIC_UNKNOWN); +}; + +template <typename T, NumericRepresentation type = + GetNumericRepresentation<T>::value> +class CheckedNumericState {}; + +// Integrals require quite a bit of additional housekeeping to manage state. +template <typename T> +class CheckedNumericState<T, NUMERIC_INTEGER> { + private: + T value_; + RangeConstraint validity_; + + public: + template <typename Src, NumericRepresentation type> + friend class CheckedNumericState; + + CheckedNumericState() : value_(0), validity_(RANGE_VALID) {} + + template <typename Src> + CheckedNumericState(Src value, RangeConstraint validity) + : value_(static_cast<T>(value)), + validity_(GetRangeConstraint(validity | + DstRangeRelationToSrcRange<T>(value))) { + static_assert(std::numeric_limits<Src>::is_specialized, + "Argument must be numeric."); + } + + // Copy constructor. + template <typename Src> + CheckedNumericState(const CheckedNumericState<Src>& rhs) + : value_(static_cast<T>(rhs.value())), + validity_(GetRangeConstraint( + rhs.validity() | DstRangeRelationToSrcRange<T>(rhs.value()))) {} + + template <typename Src> + explicit CheckedNumericState( + Src value, + typename std::enable_if<std::numeric_limits<Src>::is_specialized, + int>::type = 0) + : value_(static_cast<T>(value)), + validity_(DstRangeRelationToSrcRange<T>(value)) {} + + RangeConstraint validity() const { return validity_; } + T value() const { return value_; } +}; + +// Floating points maintain their own validity, but need translation wrappers. +template <typename T> +class CheckedNumericState<T, NUMERIC_FLOATING> { + private: + T value_; + + public: + template <typename Src, NumericRepresentation type> + friend class CheckedNumericState; + + CheckedNumericState() : value_(0.0) {} + + template <typename Src> + CheckedNumericState( + Src value, + RangeConstraint validity, + typename std::enable_if<std::numeric_limits<Src>::is_integer, int>::type = + 0) { + switch (DstRangeRelationToSrcRange<T>(value)) { + case RANGE_VALID: + value_ = static_cast<T>(value); + break; + + case RANGE_UNDERFLOW: + value_ = -std::numeric_limits<T>::infinity(); + break; + + case RANGE_OVERFLOW: + value_ = std::numeric_limits<T>::infinity(); + break; + + case RANGE_INVALID: + value_ = std::numeric_limits<T>::quiet_NaN(); + break; + + default: + NOTREACHED(); + } + } + + template <typename Src> + explicit CheckedNumericState( + Src value, + typename std::enable_if<std::numeric_limits<Src>::is_specialized, + int>::type = 0) + : value_(static_cast<T>(value)) {} + + // Copy constructor. + template <typename Src> + CheckedNumericState(const CheckedNumericState<Src>& rhs) + : value_(static_cast<T>(rhs.value())) {} + + RangeConstraint validity() const { + return GetRangeConstraint(value_ <= std::numeric_limits<T>::max(), + value_ >= -std::numeric_limits<T>::max()); + } + T value() const { return value_; } +}; + +// For integers less than 128-bit and floats 32-bit or larger, we can distil +// C/C++ arithmetic promotions down to two simple rules: +// 1. The type with the larger maximum exponent always takes precedence. +// 2. The resulting type must be promoted to at least an int. +// The following template specializations implement that promotion logic. +enum ArithmeticPromotionCategory { + LEFT_PROMOTION, + RIGHT_PROMOTION, + DEFAULT_PROMOTION +}; + +template <typename Lhs, + typename Rhs = Lhs, + ArithmeticPromotionCategory Promotion = + (MaxExponent<Lhs>::value > MaxExponent<Rhs>::value) + ? (MaxExponent<Lhs>::value > MaxExponent<int>::value + ? LEFT_PROMOTION + : DEFAULT_PROMOTION) + : (MaxExponent<Rhs>::value > MaxExponent<int>::value + ? RIGHT_PROMOTION + : DEFAULT_PROMOTION) > +struct ArithmeticPromotion; + +template <typename Lhs, typename Rhs> +struct ArithmeticPromotion<Lhs, Rhs, LEFT_PROMOTION> { + typedef Lhs type; +}; + +template <typename Lhs, typename Rhs> +struct ArithmeticPromotion<Lhs, Rhs, RIGHT_PROMOTION> { + typedef Rhs type; +}; + +template <typename Lhs, typename Rhs> +struct ArithmeticPromotion<Lhs, Rhs, DEFAULT_PROMOTION> { + typedef int type; +}; + +// We can statically check if operations on the provided types can wrap, so we +// can skip the checked operations if they're not needed. So, for an integer we +// care if the destination type preserves the sign and is twice the width of +// the source. +template <typename T, typename Lhs, typename Rhs> +struct IsIntegerArithmeticSafe { + static const bool value = !std::numeric_limits<T>::is_iec559 && + StaticDstRangeRelationToSrcRange<T, Lhs>::value == + NUMERIC_RANGE_CONTAINED && + sizeof(T) >= (2 * sizeof(Lhs)) && + StaticDstRangeRelationToSrcRange<T, Rhs>::value != + NUMERIC_RANGE_CONTAINED && + sizeof(T) >= (2 * sizeof(Rhs)); +}; + +} // namespace internal +} // namespace base + +#endif // BASE_NUMERICS_SAFE_MATH_IMPL_H_ |