summaryrefslogtreecommitdiffstats
path: root/security/sandbox/chromium/base/memory
diff options
context:
space:
mode:
Diffstat (limited to 'security/sandbox/chromium/base/memory')
-rw-r--r--security/sandbox/chromium/base/memory/aligned_memory.h117
-rw-r--r--security/sandbox/chromium/base/memory/raw_scoped_refptr_mismatch_checker.h64
-rw-r--r--security/sandbox/chromium/base/memory/ref_counted.cc53
-rw-r--r--security/sandbox/chromium/base/memory/ref_counted.h446
-rw-r--r--security/sandbox/chromium/base/memory/scoped_ptr.h607
-rw-r--r--security/sandbox/chromium/base/memory/singleton.cc34
-rw-r--r--security/sandbox/chromium/base/memory/singleton.h284
-rw-r--r--security/sandbox/chromium/base/memory/weak_ptr.h345
8 files changed, 0 insertions, 1950 deletions
diff --git a/security/sandbox/chromium/base/memory/aligned_memory.h b/security/sandbox/chromium/base/memory/aligned_memory.h
deleted file mode 100644
index bb7bd872c..000000000
--- a/security/sandbox/chromium/base/memory/aligned_memory.h
+++ /dev/null
@@ -1,117 +0,0 @@
-// Copyright (c) 2012 The Chromium Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-// AlignedMemory is a POD type that gives you a portable way to specify static
-// or local stack data of a given alignment and size. For example, if you need
-// static storage for a class, but you want manual control over when the object
-// is constructed and destructed (you don't want static initialization and
-// destruction), use AlignedMemory:
-//
-// static AlignedMemory<sizeof(MyClass), ALIGNOF(MyClass)> my_class;
-//
-// // ... at runtime:
-// new(my_class.void_data()) MyClass();
-//
-// // ... use it:
-// MyClass* mc = my_class.data_as<MyClass>();
-//
-// // ... later, to destruct my_class:
-// my_class.data_as<MyClass>()->MyClass::~MyClass();
-//
-// Alternatively, a runtime sized aligned allocation can be created:
-//
-// float* my_array = static_cast<float*>(AlignedAlloc(size, alignment));
-//
-// // ... later, to release the memory:
-// AlignedFree(my_array);
-//
-// Or using scoped_ptr:
-//
-// scoped_ptr<float, AlignedFreeDeleter> my_array(
-// static_cast<float*>(AlignedAlloc(size, alignment)));
-
-#ifndef BASE_MEMORY_ALIGNED_MEMORY_H_
-#define BASE_MEMORY_ALIGNED_MEMORY_H_
-
-#include <stddef.h>
-#include <stdint.h>
-
-#include "base/base_export.h"
-#include "base/compiler_specific.h"
-
-#if defined(COMPILER_MSVC)
-#include <malloc.h>
-#else
-#include <stdlib.h>
-#endif
-
-namespace base {
-
-// AlignedMemory is specialized for all supported alignments.
-// Make sure we get a compiler error if someone uses an unsupported alignment.
-template <size_t Size, size_t ByteAlignment>
-struct AlignedMemory {};
-
-#define BASE_DECL_ALIGNED_MEMORY(byte_alignment) \
- template <size_t Size> \
- class AlignedMemory<Size, byte_alignment> { \
- public: \
- ALIGNAS(byte_alignment) uint8_t data_[Size]; \
- void* void_data() { return static_cast<void*>(data_); } \
- const void* void_data() const { return static_cast<const void*>(data_); } \
- template <typename Type> \
- Type* data_as() { \
- return static_cast<Type*>(void_data()); \
- } \
- template <typename Type> \
- const Type* data_as() const { \
- return static_cast<const Type*>(void_data()); \
- } \
- \
- private: \
- void* operator new(size_t); \
- void operator delete(void*); \
- }
-
-// Specialization for all alignments is required because MSVC (as of VS 2008)
-// does not understand ALIGNAS(ALIGNOF(Type)) or ALIGNAS(template_param).
-// Greater than 4096 alignment is not supported by some compilers, so 4096 is
-// the maximum specified here.
-BASE_DECL_ALIGNED_MEMORY(1);
-BASE_DECL_ALIGNED_MEMORY(2);
-BASE_DECL_ALIGNED_MEMORY(4);
-BASE_DECL_ALIGNED_MEMORY(8);
-BASE_DECL_ALIGNED_MEMORY(16);
-BASE_DECL_ALIGNED_MEMORY(32);
-BASE_DECL_ALIGNED_MEMORY(64);
-BASE_DECL_ALIGNED_MEMORY(128);
-BASE_DECL_ALIGNED_MEMORY(256);
-BASE_DECL_ALIGNED_MEMORY(512);
-BASE_DECL_ALIGNED_MEMORY(1024);
-BASE_DECL_ALIGNED_MEMORY(2048);
-BASE_DECL_ALIGNED_MEMORY(4096);
-
-#undef BASE_DECL_ALIGNED_MEMORY
-
-BASE_EXPORT void* AlignedAlloc(size_t size, size_t alignment);
-
-inline void AlignedFree(void* ptr) {
-#if defined(COMPILER_MSVC)
- _aligned_free(ptr);
-#else
- free(ptr);
-#endif
-}
-
-// Deleter for use with scoped_ptr. E.g., use as
-// scoped_ptr<Foo, base::AlignedFreeDeleter> foo;
-struct AlignedFreeDeleter {
- inline void operator()(void* ptr) const {
- AlignedFree(ptr);
- }
-};
-
-} // namespace base
-
-#endif // BASE_MEMORY_ALIGNED_MEMORY_H_
diff --git a/security/sandbox/chromium/base/memory/raw_scoped_refptr_mismatch_checker.h b/security/sandbox/chromium/base/memory/raw_scoped_refptr_mismatch_checker.h
deleted file mode 100644
index 09f982b12..000000000
--- a/security/sandbox/chromium/base/memory/raw_scoped_refptr_mismatch_checker.h
+++ /dev/null
@@ -1,64 +0,0 @@
-// Copyright (c) 2011 The Chromium Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-#ifndef BASE_MEMORY_RAW_SCOPED_REFPTR_MISMATCH_CHECKER_H_
-#define BASE_MEMORY_RAW_SCOPED_REFPTR_MISMATCH_CHECKER_H_
-
-#include "base/memory/ref_counted.h"
-#include "base/template_util.h"
-#include "base/tuple.h"
-#include "build/build_config.h"
-
-// It is dangerous to post a task with a T* argument where T is a subtype of
-// RefCounted(Base|ThreadSafeBase), since by the time the parameter is used, the
-// object may already have been deleted since it was not held with a
-// scoped_refptr. Example: http://crbug.com/27191
-// The following set of traits are designed to generate a compile error
-// whenever this antipattern is attempted.
-
-namespace base {
-
-// This is a base internal implementation file used by task.h and callback.h.
-// Not for public consumption, so we wrap it in namespace internal.
-namespace internal {
-
-template <typename T>
-struct NeedsScopedRefptrButGetsRawPtr {
-#if defined(OS_WIN)
- enum {
- value = base::false_type::value
- };
-#else
- enum {
- // Human readable translation: you needed to be a scoped_refptr if you are a
- // raw pointer type and are convertible to a RefCounted(Base|ThreadSafeBase)
- // type.
- value = (is_pointer<T>::value &&
- (is_convertible<T, subtle::RefCountedBase*>::value ||
- is_convertible<T, subtle::RefCountedThreadSafeBase*>::value))
- };
-#endif
-};
-
-template <typename Params>
-struct ParamsUseScopedRefptrCorrectly {
- enum { value = 0 };
-};
-
-template <>
-struct ParamsUseScopedRefptrCorrectly<Tuple<>> {
- enum { value = 1 };
-};
-
-template <typename Head, typename... Tail>
-struct ParamsUseScopedRefptrCorrectly<Tuple<Head, Tail...>> {
- enum { value = !NeedsScopedRefptrButGetsRawPtr<Head>::value &&
- ParamsUseScopedRefptrCorrectly<Tuple<Tail...>>::value };
-};
-
-} // namespace internal
-
-} // namespace base
-
-#endif // BASE_MEMORY_RAW_SCOPED_REFPTR_MISMATCH_CHECKER_H_
diff --git a/security/sandbox/chromium/base/memory/ref_counted.cc b/security/sandbox/chromium/base/memory/ref_counted.cc
deleted file mode 100644
index f5924d0fe..000000000
--- a/security/sandbox/chromium/base/memory/ref_counted.cc
+++ /dev/null
@@ -1,53 +0,0 @@
-// Copyright (c) 2011 The Chromium Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-#include "base/memory/ref_counted.h"
-#include "base/threading/thread_collision_warner.h"
-
-namespace base {
-
-namespace subtle {
-
-bool RefCountedThreadSafeBase::HasOneRef() const {
- return AtomicRefCountIsOne(
- &const_cast<RefCountedThreadSafeBase*>(this)->ref_count_);
-}
-
-RefCountedThreadSafeBase::RefCountedThreadSafeBase() : ref_count_(0) {
-#ifndef NDEBUG
- in_dtor_ = false;
-#endif
-}
-
-RefCountedThreadSafeBase::~RefCountedThreadSafeBase() {
-#ifndef NDEBUG
- DCHECK(in_dtor_) << "RefCountedThreadSafe object deleted without "
- "calling Release()";
-#endif
-}
-
-void RefCountedThreadSafeBase::AddRef() const {
-#ifndef NDEBUG
- DCHECK(!in_dtor_);
-#endif
- AtomicRefCountInc(&ref_count_);
-}
-
-bool RefCountedThreadSafeBase::Release() const {
-#ifndef NDEBUG
- DCHECK(!in_dtor_);
- DCHECK(!AtomicRefCountIsZero(&ref_count_));
-#endif
- if (!AtomicRefCountDec(&ref_count_)) {
-#ifndef NDEBUG
- in_dtor_ = true;
-#endif
- return true;
- }
- return false;
-}
-
-} // namespace subtle
-
-} // namespace base
diff --git a/security/sandbox/chromium/base/memory/ref_counted.h b/security/sandbox/chromium/base/memory/ref_counted.h
deleted file mode 100644
index a1c126969..000000000
--- a/security/sandbox/chromium/base/memory/ref_counted.h
+++ /dev/null
@@ -1,446 +0,0 @@
-// Copyright (c) 2012 The Chromium Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-#ifndef BASE_MEMORY_REF_COUNTED_H_
-#define BASE_MEMORY_REF_COUNTED_H_
-
-#include <cassert>
-#include <iosfwd>
-
-#include "base/atomic_ref_count.h"
-#include "base/base_export.h"
-#include "base/compiler_specific.h"
-#include "base/macros.h"
-#ifndef NDEBUG
-#include "base/logging.h"
-#endif
-#include "base/threading/thread_collision_warner.h"
-#include "build/build_config.h"
-
-namespace base {
-
-namespace subtle {
-
-class BASE_EXPORT RefCountedBase {
- public:
- bool HasOneRef() const { return ref_count_ == 1; }
-
- protected:
- RefCountedBase()
- : ref_count_(0)
- #ifndef NDEBUG
- , in_dtor_(false)
- #endif
- {
- }
-
- ~RefCountedBase() {
- #ifndef NDEBUG
- DCHECK(in_dtor_) << "RefCounted object deleted without calling Release()";
- #endif
- }
-
-
- void AddRef() const {
- // TODO(maruel): Add back once it doesn't assert 500 times/sec.
- // Current thread books the critical section "AddRelease"
- // without release it.
- // DFAKE_SCOPED_LOCK_THREAD_LOCKED(add_release_);
- #ifndef NDEBUG
- DCHECK(!in_dtor_);
- #endif
- ++ref_count_;
- }
-
- // Returns true if the object should self-delete.
- bool Release() const {
- // TODO(maruel): Add back once it doesn't assert 500 times/sec.
- // Current thread books the critical section "AddRelease"
- // without release it.
- // DFAKE_SCOPED_LOCK_THREAD_LOCKED(add_release_);
- #ifndef NDEBUG
- DCHECK(!in_dtor_);
- #endif
- if (--ref_count_ == 0) {
- #ifndef NDEBUG
- in_dtor_ = true;
- #endif
- return true;
- }
- return false;
- }
-
- private:
- mutable int ref_count_;
-#ifndef NDEBUG
- mutable bool in_dtor_;
-#endif
-
- DFAKE_MUTEX(add_release_);
-
- DISALLOW_COPY_AND_ASSIGN(RefCountedBase);
-};
-
-class BASE_EXPORT RefCountedThreadSafeBase {
- public:
- bool HasOneRef() const;
-
- protected:
- RefCountedThreadSafeBase();
- ~RefCountedThreadSafeBase();
-
- void AddRef() const;
-
- // Returns true if the object should self-delete.
- bool Release() const;
-
- private:
- mutable AtomicRefCount ref_count_;
-#ifndef NDEBUG
- mutable bool in_dtor_;
-#endif
-
- DISALLOW_COPY_AND_ASSIGN(RefCountedThreadSafeBase);
-};
-
-} // namespace subtle
-
-//
-// A base class for reference counted classes. Otherwise, known as a cheap
-// knock-off of WebKit's RefCounted<T> class. To use this guy just extend your
-// class from it like so:
-//
-// class MyFoo : public base::RefCounted<MyFoo> {
-// ...
-// private:
-// friend class base::RefCounted<MyFoo>;
-// ~MyFoo();
-// };
-//
-// You should always make your destructor non-public, to avoid any code deleting
-// the object accidently while there are references to it.
-template <class T>
-class RefCounted : public subtle::RefCountedBase {
- public:
- RefCounted() {}
-
- void AddRef() const {
- subtle::RefCountedBase::AddRef();
- }
-
- void Release() const {
- if (subtle::RefCountedBase::Release()) {
- delete static_cast<const T*>(this);
- }
- }
-
- protected:
- ~RefCounted() {}
-
- private:
- DISALLOW_COPY_AND_ASSIGN(RefCounted<T>);
-};
-
-// Forward declaration.
-template <class T, typename Traits> class RefCountedThreadSafe;
-
-// Default traits for RefCountedThreadSafe<T>. Deletes the object when its ref
-// count reaches 0. Overload to delete it on a different thread etc.
-template<typename T>
-struct DefaultRefCountedThreadSafeTraits {
- static void Destruct(const T* x) {
- // Delete through RefCountedThreadSafe to make child classes only need to be
- // friend with RefCountedThreadSafe instead of this struct, which is an
- // implementation detail.
- RefCountedThreadSafe<T,
- DefaultRefCountedThreadSafeTraits>::DeleteInternal(x);
- }
-};
-
-//
-// A thread-safe variant of RefCounted<T>
-//
-// class MyFoo : public base::RefCountedThreadSafe<MyFoo> {
-// ...
-// };
-//
-// If you're using the default trait, then you should add compile time
-// asserts that no one else is deleting your object. i.e.
-// private:
-// friend class base::RefCountedThreadSafe<MyFoo>;
-// ~MyFoo();
-template <class T, typename Traits = DefaultRefCountedThreadSafeTraits<T> >
-class RefCountedThreadSafe : public subtle::RefCountedThreadSafeBase {
- public:
- RefCountedThreadSafe() {}
-
- void AddRef() const {
- subtle::RefCountedThreadSafeBase::AddRef();
- }
-
- void Release() const {
- if (subtle::RefCountedThreadSafeBase::Release()) {
- Traits::Destruct(static_cast<const T*>(this));
- }
- }
-
- protected:
- ~RefCountedThreadSafe() {}
-
- private:
- friend struct DefaultRefCountedThreadSafeTraits<T>;
- static void DeleteInternal(const T* x) { delete x; }
-
- DISALLOW_COPY_AND_ASSIGN(RefCountedThreadSafe);
-};
-
-//
-// A thread-safe wrapper for some piece of data so we can place other
-// things in scoped_refptrs<>.
-//
-template<typename T>
-class RefCountedData
- : public base::RefCountedThreadSafe< base::RefCountedData<T> > {
- public:
- RefCountedData() : data() {}
- RefCountedData(const T& in_value) : data(in_value) {}
-
- T data;
-
- private:
- friend class base::RefCountedThreadSafe<base::RefCountedData<T> >;
- ~RefCountedData() {}
-};
-
-} // namespace base
-
-//
-// A smart pointer class for reference counted objects. Use this class instead
-// of calling AddRef and Release manually on a reference counted object to
-// avoid common memory leaks caused by forgetting to Release an object
-// reference. Sample usage:
-//
-// class MyFoo : public RefCounted<MyFoo> {
-// ...
-// };
-//
-// void some_function() {
-// scoped_refptr<MyFoo> foo = new MyFoo();
-// foo->Method(param);
-// // |foo| is released when this function returns
-// }
-//
-// void some_other_function() {
-// scoped_refptr<MyFoo> foo = new MyFoo();
-// ...
-// foo = NULL; // explicitly releases |foo|
-// ...
-// if (foo)
-// foo->Method(param);
-// }
-//
-// The above examples show how scoped_refptr<T> acts like a pointer to T.
-// Given two scoped_refptr<T> classes, it is also possible to exchange
-// references between the two objects, like so:
-//
-// {
-// scoped_refptr<MyFoo> a = new MyFoo();
-// scoped_refptr<MyFoo> b;
-//
-// b.swap(a);
-// // now, |b| references the MyFoo object, and |a| references NULL.
-// }
-//
-// To make both |a| and |b| in the above example reference the same MyFoo
-// object, simply use the assignment operator:
-//
-// {
-// scoped_refptr<MyFoo> a = new MyFoo();
-// scoped_refptr<MyFoo> b;
-//
-// b = a;
-// // now, |a| and |b| each own a reference to the same MyFoo object.
-// }
-//
-template <class T>
-class scoped_refptr {
- public:
- typedef T element_type;
-
- scoped_refptr() : ptr_(NULL) {
- }
-
- scoped_refptr(T* p) : ptr_(p) {
- if (ptr_)
- AddRef(ptr_);
- }
-
- // Copy constructor.
- scoped_refptr(const scoped_refptr<T>& r) : ptr_(r.ptr_) {
- if (ptr_)
- AddRef(ptr_);
- }
-
- // Copy conversion constructor.
- template <typename U>
- scoped_refptr(const scoped_refptr<U>& r) : ptr_(r.get()) {
- if (ptr_)
- AddRef(ptr_);
- }
-
- // Move constructor. This is required in addition to the conversion
- // constructor below in order for clang to warn about pessimizing moves.
- scoped_refptr(scoped_refptr&& r) : ptr_(r.get()) { r.ptr_ = nullptr; }
-
- // Move conversion constructor.
- template <typename U>
- scoped_refptr(scoped_refptr<U>&& r) : ptr_(r.get()) {
- r.ptr_ = nullptr;
- }
-
- ~scoped_refptr() {
- if (ptr_)
- Release(ptr_);
- }
-
- T* get() const { return ptr_; }
-
- T& operator*() const {
- assert(ptr_ != NULL);
- return *ptr_;
- }
-
- T* operator->() const {
- assert(ptr_ != NULL);
- return ptr_;
- }
-
- scoped_refptr<T>& operator=(T* p) {
- // AddRef first so that self assignment should work
- if (p)
- AddRef(p);
- T* old_ptr = ptr_;
- ptr_ = p;
- if (old_ptr)
- Release(old_ptr);
- return *this;
- }
-
- scoped_refptr<T>& operator=(const scoped_refptr<T>& r) {
- return *this = r.ptr_;
- }
-
- template <typename U>
- scoped_refptr<T>& operator=(const scoped_refptr<U>& r) {
- return *this = r.get();
- }
-
- scoped_refptr<T>& operator=(scoped_refptr<T>&& r) {
- scoped_refptr<T>(std::move(r)).swap(*this);
- return *this;
- }
-
- template <typename U>
- scoped_refptr<T>& operator=(scoped_refptr<U>&& r) {
- scoped_refptr<T>(std::move(r)).swap(*this);
- return *this;
- }
-
- void swap(T** pp) {
- T* p = ptr_;
- ptr_ = *pp;
- *pp = p;
- }
-
- void swap(scoped_refptr<T>& r) {
- swap(&r.ptr_);
- }
-
- private:
- template <typename U> friend class scoped_refptr;
-
- // Allow scoped_refptr<T> to be used in boolean expressions, but not
- // implicitly convertible to a real bool (which is dangerous).
- //
- // Note that this trick is only safe when the == and != operators
- // are declared explicitly, as otherwise "refptr1 == refptr2"
- // will compile but do the wrong thing (i.e., convert to Testable
- // and then do the comparison).
- typedef T* scoped_refptr::*Testable;
-
- public:
- operator Testable() const { return ptr_ ? &scoped_refptr::ptr_ : nullptr; }
-
- template <typename U>
- bool operator==(const scoped_refptr<U>& rhs) const {
- return ptr_ == rhs.get();
- }
-
- template <typename U>
- bool operator!=(const scoped_refptr<U>& rhs) const {
- return !operator==(rhs);
- }
-
- template <typename U>
- bool operator<(const scoped_refptr<U>& rhs) const {
- return ptr_ < rhs.get();
- }
-
- protected:
- T* ptr_;
-
- private:
- // Non-inline helpers to allow:
- // class Opaque;
- // extern template class scoped_refptr<Opaque>;
- // Otherwise the compiler will complain that Opaque is an incomplete type.
- static void AddRef(T* ptr);
- static void Release(T* ptr);
-};
-
-template <typename T>
-void scoped_refptr<T>::AddRef(T* ptr) {
- ptr->AddRef();
-}
-
-template <typename T>
-void scoped_refptr<T>::Release(T* ptr) {
- ptr->Release();
-}
-
-// Handy utility for creating a scoped_refptr<T> out of a T* explicitly without
-// having to retype all the template arguments
-template <typename T>
-scoped_refptr<T> make_scoped_refptr(T* t) {
- return scoped_refptr<T>(t);
-}
-
-// Temporary operator overloads to facilitate the transition. See
-// https://crbug.com/110610.
-template <typename T, typename U>
-bool operator==(const scoped_refptr<T>& lhs, const U* rhs) {
- return lhs.get() == rhs;
-}
-
-template <typename T, typename U>
-bool operator==(const T* lhs, const scoped_refptr<U>& rhs) {
- return lhs == rhs.get();
-}
-
-template <typename T, typename U>
-bool operator!=(const scoped_refptr<T>& lhs, const U* rhs) {
- return !operator==(lhs, rhs);
-}
-
-template <typename T, typename U>
-bool operator!=(const T* lhs, const scoped_refptr<U>& rhs) {
- return !operator==(lhs, rhs);
-}
-
-template <typename T>
-std::ostream& operator<<(std::ostream& out, const scoped_refptr<T>& p) {
- return out << p.get();
-}
-
-#endif // BASE_MEMORY_REF_COUNTED_H_
diff --git a/security/sandbox/chromium/base/memory/scoped_ptr.h b/security/sandbox/chromium/base/memory/scoped_ptr.h
deleted file mode 100644
index 282a01486..000000000
--- a/security/sandbox/chromium/base/memory/scoped_ptr.h
+++ /dev/null
@@ -1,607 +0,0 @@
-// Copyright (c) 2012 The Chromium Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-// Scopers help you manage ownership of a pointer, helping you easily manage a
-// pointer within a scope, and automatically destroying the pointer at the end
-// of a scope. There are two main classes you will use, which correspond to the
-// operators new/delete and new[]/delete[].
-//
-// Example usage (scoped_ptr<T>):
-// {
-// scoped_ptr<Foo> foo(new Foo("wee"));
-// } // foo goes out of scope, releasing the pointer with it.
-//
-// {
-// scoped_ptr<Foo> foo; // No pointer managed.
-// foo.reset(new Foo("wee")); // Now a pointer is managed.
-// foo.reset(new Foo("wee2")); // Foo("wee") was destroyed.
-// foo.reset(new Foo("wee3")); // Foo("wee2") was destroyed.
-// foo->Method(); // Foo::Method() called.
-// foo.get()->Method(); // Foo::Method() called.
-// SomeFunc(foo.release()); // SomeFunc takes ownership, foo no longer
-// // manages a pointer.
-// foo.reset(new Foo("wee4")); // foo manages a pointer again.
-// foo.reset(); // Foo("wee4") destroyed, foo no longer
-// // manages a pointer.
-// } // foo wasn't managing a pointer, so nothing was destroyed.
-//
-// Example usage (scoped_ptr<T[]>):
-// {
-// scoped_ptr<Foo[]> foo(new Foo[100]);
-// foo.get()->Method(); // Foo::Method on the 0th element.
-// foo[10].Method(); // Foo::Method on the 10th element.
-// }
-//
-// These scopers also implement part of the functionality of C++11 unique_ptr
-// in that they are "movable but not copyable." You can use the scopers in
-// the parameter and return types of functions to signify ownership transfer
-// in to and out of a function. When calling a function that has a scoper
-// as the argument type, it must be called with an rvalue of a scoper, which
-// can be created by using std::move(), or the result of another function that
-// generates a temporary; passing by copy will NOT work. Here is an example
-// using scoped_ptr:
-//
-// void TakesOwnership(scoped_ptr<Foo> arg) {
-// // Do something with arg.
-// }
-// scoped_ptr<Foo> CreateFoo() {
-// // No need for calling std::move() for returning a move-only value, or
-// // when you already have an rvalue as we do here.
-// return scoped_ptr<Foo>(new Foo("new"));
-// }
-// scoped_ptr<Foo> PassThru(scoped_ptr<Foo> arg) {
-// return arg;
-// }
-//
-// {
-// scoped_ptr<Foo> ptr(new Foo("yay")); // ptr manages Foo("yay").
-// TakesOwnership(std::move(ptr)); // ptr no longer owns Foo("yay").
-// scoped_ptr<Foo> ptr2 = CreateFoo(); // ptr2 owns the return Foo.
-// scoped_ptr<Foo> ptr3 = // ptr3 now owns what was in ptr2.
-// PassThru(std::move(ptr2)); // ptr2 is correspondingly nullptr.
-// }
-//
-// Notice that if you do not call std::move() when returning from PassThru(), or
-// when invoking TakesOwnership(), the code will not compile because scopers
-// are not copyable; they only implement move semantics which require calling
-// the std::move() function to signify a destructive transfer of state.
-// CreateFoo() is different though because we are constructing a temporary on
-// the return line and thus can avoid needing to call std::move().
-//
-// The conversion move-constructor properly handles upcast in initialization,
-// i.e. you can use a scoped_ptr<Child> to initialize a scoped_ptr<Parent>:
-//
-// scoped_ptr<Foo> foo(new Foo());
-// scoped_ptr<FooParent> parent(std::move(foo));
-
-#ifndef BASE_MEMORY_SCOPED_PTR_H_
-#define BASE_MEMORY_SCOPED_PTR_H_
-
-// This is an implementation designed to match the anticipated future TR2
-// implementation of the scoped_ptr class.
-
-#include <assert.h>
-#include <stddef.h>
-#include <stdlib.h>
-
-#include <iosfwd>
-#include <memory>
-#include <type_traits>
-#include <utility>
-
-#include "base/compiler_specific.h"
-#include "base/macros.h"
-#include "base/move.h"
-#include "base/template_util.h"
-
-namespace base {
-
-namespace subtle {
-class RefCountedBase;
-class RefCountedThreadSafeBase;
-} // namespace subtle
-
-// Function object which invokes 'free' on its parameter, which must be
-// a pointer. Can be used to store malloc-allocated pointers in scoped_ptr:
-//
-// scoped_ptr<int, base::FreeDeleter> foo_ptr(
-// static_cast<int*>(malloc(sizeof(int))));
-struct FreeDeleter {
- inline void operator()(void* ptr) const {
- free(ptr);
- }
-};
-
-namespace internal {
-
-template <typename T> struct IsNotRefCounted {
- enum {
- value = !base::is_convertible<T*, base::subtle::RefCountedBase*>::value &&
- !base::is_convertible<T*, base::subtle::RefCountedThreadSafeBase*>::
- value
- };
-};
-
-// Minimal implementation of the core logic of scoped_ptr, suitable for
-// reuse in both scoped_ptr and its specializations.
-template <class T, class D>
-class scoped_ptr_impl {
- public:
- explicit scoped_ptr_impl(T* p) : data_(p) {}
-
- // Initializer for deleters that have data parameters.
- scoped_ptr_impl(T* p, const D& d) : data_(p, d) {}
-
- // Templated constructor that destructively takes the value from another
- // scoped_ptr_impl.
- template <typename U, typename V>
- scoped_ptr_impl(scoped_ptr_impl<U, V>* other)
- : data_(other->release(), other->get_deleter()) {
- // We do not support move-only deleters. We could modify our move
- // emulation to have base::subtle::move() and base::subtle::forward()
- // functions that are imperfect emulations of their C++11 equivalents,
- // but until there's a requirement, just assume deleters are copyable.
- }
-
- template <typename U, typename V>
- void TakeState(scoped_ptr_impl<U, V>* other) {
- // See comment in templated constructor above regarding lack of support
- // for move-only deleters.
- reset(other->release());
- get_deleter() = other->get_deleter();
- }
-
- ~scoped_ptr_impl() {
- // Match libc++, which calls reset() in its destructor.
- // Use nullptr as the new value for three reasons:
- // 1. libc++ does it.
- // 2. Avoids infinitely recursing into destructors if two classes are owned
- // in a reference cycle (see ScopedPtrTest.ReferenceCycle).
- // 3. If |this| is accessed in the future, in a use-after-free bug, attempts
- // to dereference |this|'s pointer should cause either a failure or a
- // segfault closer to the problem. If |this| wasn't reset to nullptr,
- // the access would cause the deleted memory to be read or written
- // leading to other more subtle issues.
- reset(nullptr);
- }
-
- void reset(T* p) {
- // Match C++11's definition of unique_ptr::reset(), which requires changing
- // the pointer before invoking the deleter on the old pointer. This prevents
- // |this| from being accessed after the deleter is run, which may destroy
- // |this|.
- T* old = data_.ptr;
- data_.ptr = p;
- if (old != nullptr)
- static_cast<D&>(data_)(old);
- }
-
- T* get() const { return data_.ptr; }
-
- D& get_deleter() { return data_; }
- const D& get_deleter() const { return data_; }
-
- void swap(scoped_ptr_impl& p2) {
- // Standard swap idiom: 'using std::swap' ensures that std::swap is
- // present in the overload set, but we call swap unqualified so that
- // any more-specific overloads can be used, if available.
- using std::swap;
- swap(static_cast<D&>(data_), static_cast<D&>(p2.data_));
- swap(data_.ptr, p2.data_.ptr);
- }
-
- T* release() {
- T* old_ptr = data_.ptr;
- data_.ptr = nullptr;
- return old_ptr;
- }
-
- private:
- // Needed to allow type-converting constructor.
- template <typename U, typename V> friend class scoped_ptr_impl;
-
- // Use the empty base class optimization to allow us to have a D
- // member, while avoiding any space overhead for it when D is an
- // empty class. See e.g. http://www.cantrip.org/emptyopt.html for a good
- // discussion of this technique.
- struct Data : public D {
- explicit Data(T* ptr_in) : ptr(ptr_in) {}
- Data(T* ptr_in, const D& other) : D(other), ptr(ptr_in) {}
- T* ptr;
- };
-
- Data data_;
-
- DISALLOW_COPY_AND_ASSIGN(scoped_ptr_impl);
-};
-
-} // namespace internal
-
-} // namespace base
-
-// A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
-// automatically deletes the pointer it holds (if any).
-// That is, scoped_ptr<T> owns the T object that it points to.
-// Like a T*, a scoped_ptr<T> may hold either nullptr or a pointer to a T
-// object. Also like T*, scoped_ptr<T> is thread-compatible, and once you
-// dereference it, you get the thread safety guarantees of T.
-//
-// The size of scoped_ptr is small. On most compilers, when using the
-// std::default_delete, sizeof(scoped_ptr<T>) == sizeof(T*). Custom deleters
-// will increase the size proportional to whatever state they need to have. See
-// comments inside scoped_ptr_impl<> for details.
-//
-// Current implementation targets having a strict subset of C++11's
-// unique_ptr<> features. Known deficiencies include not supporting move-only
-// deleteres, function pointers as deleters, and deleters with reference
-// types.
-template <class T, class D = std::default_delete<T>>
-class scoped_ptr {
- DISALLOW_COPY_AND_ASSIGN_WITH_MOVE_FOR_BIND(scoped_ptr)
-
- static_assert(!std::is_array<T>::value,
- "scoped_ptr doesn't support array with size");
- static_assert(base::internal::IsNotRefCounted<T>::value,
- "T is a refcounted type and needs a scoped_refptr");
-
- public:
- // The element and deleter types.
- using element_type = T;
- using deleter_type = D;
-
- // Constructor. Defaults to initializing with nullptr.
- scoped_ptr() : impl_(nullptr) {}
-
- // Constructor. Takes ownership of p.
- explicit scoped_ptr(element_type* p) : impl_(p) {}
-
- // Constructor. Allows initialization of a stateful deleter.
- scoped_ptr(element_type* p, const D& d) : impl_(p, d) {}
-
- // Constructor. Allows construction from a nullptr.
- scoped_ptr(std::nullptr_t) : impl_(nullptr) {}
-
- // Move constructor.
- //
- // IMPLEMENTATION NOTE: Clang requires a move constructor to be defined (and
- // not just the conversion constructor) in order to warn on pessimizing moves.
- // The requirements for the move constructor are specified in C++11
- // 20.7.1.2.1.15-17, which has some subtleties around reference deleters. As
- // we don't support reference (or move-only) deleters, the post conditions are
- // trivially true: we always copy construct the deleter from other's deleter.
- scoped_ptr(scoped_ptr&& other) : impl_(&other.impl_) {}
-
- // Conversion constructor. Allows construction from a scoped_ptr rvalue for a
- // convertible type and deleter.
- //
- // IMPLEMENTATION NOTE: C++ 20.7.1.2.1.19 requires this constructor to only
- // participate in overload resolution if all the following are true:
- // - U is implicitly convertible to T: this is important for 2 reasons:
- // 1. So type traits don't incorrectly return true, e.g.
- // std::is_convertible<scoped_ptr<Base>, scoped_ptr<Derived>>::value
- // should be false.
- // 2. To make sure code like this compiles:
- // void F(scoped_ptr<int>);
- // void F(scoped_ptr<Base>);
- // // Ambiguous since both conversion constructors match.
- // F(scoped_ptr<Derived>());
- // - U is not an array type: to prevent conversions from scoped_ptr<T[]> to
- // scoped_ptr<T>.
- // - D is a reference type and E is the same type, or D is not a reference
- // type and E is implicitly convertible to D: again, we don't support
- // reference deleters, so we only worry about the latter requirement.
- template <typename U,
- typename E,
- typename std::enable_if<!std::is_array<U>::value &&
- std::is_convertible<U*, T*>::value &&
- std::is_convertible<E, D>::value>::type* =
- nullptr>
- scoped_ptr(scoped_ptr<U, E>&& other)
- : impl_(&other.impl_) {}
-
- // operator=.
- //
- // IMPLEMENTATION NOTE: Unlike the move constructor, Clang does not appear to
- // require a move assignment operator to trigger the pessimizing move warning:
- // in this case, the warning triggers when moving a temporary. For consistency
- // with the move constructor, we define it anyway. C++11 20.7.1.2.3.1-3
- // defines several requirements around this: like the move constructor, the
- // requirements are simplified by the fact that we don't support move-only or
- // reference deleters.
- scoped_ptr& operator=(scoped_ptr&& rhs) {
- impl_.TakeState(&rhs.impl_);
- return *this;
- }
-
- // operator=. Allows assignment from a scoped_ptr rvalue for a convertible
- // type and deleter.
- //
- // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this operator= distinct from
- // the normal move assignment operator. C++11 20.7.1.2.3.4-7 contains the
- // requirement for this operator, but like the conversion constructor, the
- // requirements are greatly simplified by not supporting move-only or
- // reference deleters.
- template <typename U,
- typename E,
- typename std::enable_if<!std::is_array<U>::value &&
- std::is_convertible<U*, T*>::value &&
- // Note that this really should be
- // std::is_assignable, but <type_traits>
- // appears to be missing this on some
- // platforms. This is close enough (though
- // it's not the same).
- std::is_convertible<D, E>::value>::type* =
- nullptr>
- scoped_ptr& operator=(scoped_ptr<U, E>&& rhs) {
- impl_.TakeState(&rhs.impl_);
- return *this;
- }
-
- // operator=. Allows assignment from a nullptr. Deletes the currently owned
- // object, if any.
- scoped_ptr& operator=(std::nullptr_t) {
- reset();
- return *this;
- }
-
- // Reset. Deletes the currently owned object, if any.
- // Then takes ownership of a new object, if given.
- void reset(element_type* p = nullptr) { impl_.reset(p); }
-
- // Accessors to get the owned object.
- // operator* and operator-> will assert() if there is no current object.
- element_type& operator*() const {
- assert(impl_.get() != nullptr);
- return *impl_.get();
- }
- element_type* operator->() const {
- assert(impl_.get() != nullptr);
- return impl_.get();
- }
- element_type* get() const { return impl_.get(); }
-
- // Access to the deleter.
- deleter_type& get_deleter() { return impl_.get_deleter(); }
- const deleter_type& get_deleter() const { return impl_.get_deleter(); }
-
- // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
- // implicitly convertible to a real bool (which is dangerous).
- //
- // Note that this trick is only safe when the == and != operators
- // are declared explicitly, as otherwise "scoped_ptr1 ==
- // scoped_ptr2" will compile but do the wrong thing (i.e., convert
- // to Testable and then do the comparison).
- private:
- typedef base::internal::scoped_ptr_impl<element_type, deleter_type>
- scoped_ptr::*Testable;
-
- public:
- operator Testable() const {
- return impl_.get() ? &scoped_ptr::impl_ : nullptr;
- }
-
- // Swap two scoped pointers.
- void swap(scoped_ptr& p2) {
- impl_.swap(p2.impl_);
- }
-
- // Release a pointer.
- // The return value is the current pointer held by this object. If this object
- // holds a nullptr, the return value is nullptr. After this operation, this
- // object will hold a nullptr, and will not own the object any more.
- element_type* release() WARN_UNUSED_RESULT {
- return impl_.release();
- }
-
- private:
- // Needed to reach into |impl_| in the constructor.
- template <typename U, typename V> friend class scoped_ptr;
- base::internal::scoped_ptr_impl<element_type, deleter_type> impl_;
-
- // Forbidden for API compatibility with std::unique_ptr.
- explicit scoped_ptr(int disallow_construction_from_null);
-};
-
-template <class T, class D>
-class scoped_ptr<T[], D> {
- DISALLOW_COPY_AND_ASSIGN_WITH_MOVE_FOR_BIND(scoped_ptr)
-
- public:
- // The element and deleter types.
- using element_type = T;
- using deleter_type = D;
-
- // Constructor. Defaults to initializing with nullptr.
- scoped_ptr() : impl_(nullptr) {}
-
- // Constructor. Stores the given array. Note that the argument's type
- // must exactly match T*. In particular:
- // - it cannot be a pointer to a type derived from T, because it is
- // inherently unsafe in the general case to access an array through a
- // pointer whose dynamic type does not match its static type (eg., if
- // T and the derived types had different sizes access would be
- // incorrectly calculated). Deletion is also always undefined
- // (C++98 [expr.delete]p3). If you're doing this, fix your code.
- // - it cannot be const-qualified differently from T per unique_ptr spec
- // (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting
- // to work around this may use const_cast<const T*>().
- explicit scoped_ptr(element_type* array) : impl_(array) {}
-
- // Constructor. Allows construction from a nullptr.
- scoped_ptr(std::nullptr_t) : impl_(nullptr) {}
-
- // Constructor. Allows construction from a scoped_ptr rvalue.
- scoped_ptr(scoped_ptr&& other) : impl_(&other.impl_) {}
-
- // operator=. Allows assignment from a scoped_ptr rvalue.
- scoped_ptr& operator=(scoped_ptr&& rhs) {
- impl_.TakeState(&rhs.impl_);
- return *this;
- }
-
- // operator=. Allows assignment from a nullptr. Deletes the currently owned
- // array, if any.
- scoped_ptr& operator=(std::nullptr_t) {
- reset();
- return *this;
- }
-
- // Reset. Deletes the currently owned array, if any.
- // Then takes ownership of a new object, if given.
- void reset(element_type* array = nullptr) { impl_.reset(array); }
-
- // Accessors to get the owned array.
- element_type& operator[](size_t i) const {
- assert(impl_.get() != nullptr);
- return impl_.get()[i];
- }
- element_type* get() const { return impl_.get(); }
-
- // Access to the deleter.
- deleter_type& get_deleter() { return impl_.get_deleter(); }
- const deleter_type& get_deleter() const { return impl_.get_deleter(); }
-
- // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
- // implicitly convertible to a real bool (which is dangerous).
- private:
- typedef base::internal::scoped_ptr_impl<element_type, deleter_type>
- scoped_ptr::*Testable;
-
- public:
- operator Testable() const {
- return impl_.get() ? &scoped_ptr::impl_ : nullptr;
- }
-
- // Swap two scoped pointers.
- void swap(scoped_ptr& p2) {
- impl_.swap(p2.impl_);
- }
-
- // Release a pointer.
- // The return value is the current pointer held by this object. If this object
- // holds a nullptr, the return value is nullptr. After this operation, this
- // object will hold a nullptr, and will not own the object any more.
- element_type* release() WARN_UNUSED_RESULT {
- return impl_.release();
- }
-
- private:
- // Force element_type to be a complete type.
- enum { type_must_be_complete = sizeof(element_type) };
-
- // Actually hold the data.
- base::internal::scoped_ptr_impl<element_type, deleter_type> impl_;
-
- // Disable initialization from any type other than element_type*, by
- // providing a constructor that matches such an initialization, but is
- // private and has no definition. This is disabled because it is not safe to
- // call delete[] on an array whose static type does not match its dynamic
- // type.
- template <typename U> explicit scoped_ptr(U* array);
- explicit scoped_ptr(int disallow_construction_from_null);
-
- // Disable reset() from any type other than element_type*, for the same
- // reasons as the constructor above.
- template <typename U> void reset(U* array);
- void reset(int disallow_reset_from_null);
-};
-
-// Free functions
-template <class T, class D>
-void swap(scoped_ptr<T, D>& p1, scoped_ptr<T, D>& p2) {
- p1.swap(p2);
-}
-
-template <class T1, class D1, class T2, class D2>
-bool operator==(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) {
- return p1.get() == p2.get();
-}
-template <class T, class D>
-bool operator==(const scoped_ptr<T, D>& p, std::nullptr_t) {
- return p.get() == nullptr;
-}
-template <class T, class D>
-bool operator==(std::nullptr_t, const scoped_ptr<T, D>& p) {
- return p.get() == nullptr;
-}
-
-template <class T1, class D1, class T2, class D2>
-bool operator!=(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) {
- return !(p1 == p2);
-}
-template <class T, class D>
-bool operator!=(const scoped_ptr<T, D>& p, std::nullptr_t) {
- return !(p == nullptr);
-}
-template <class T, class D>
-bool operator!=(std::nullptr_t, const scoped_ptr<T, D>& p) {
- return !(p == nullptr);
-}
-
-template <class T1, class D1, class T2, class D2>
-bool operator<(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) {
- return p1.get() < p2.get();
-}
-template <class T, class D>
-bool operator<(const scoped_ptr<T, D>& p, std::nullptr_t) {
- return p.get() < nullptr;
-}
-template <class T, class D>
-bool operator<(std::nullptr_t, const scoped_ptr<T, D>& p) {
- return nullptr < p.get();
-}
-
-template <class T1, class D1, class T2, class D2>
-bool operator>(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) {
- return p2 < p1;
-}
-template <class T, class D>
-bool operator>(const scoped_ptr<T, D>& p, std::nullptr_t) {
- return nullptr < p;
-}
-template <class T, class D>
-bool operator>(std::nullptr_t, const scoped_ptr<T, D>& p) {
- return p < nullptr;
-}
-
-template <class T1, class D1, class T2, class D2>
-bool operator<=(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) {
- return !(p1 > p2);
-}
-template <class T, class D>
-bool operator<=(const scoped_ptr<T, D>& p, std::nullptr_t) {
- return !(p > nullptr);
-}
-template <class T, class D>
-bool operator<=(std::nullptr_t, const scoped_ptr<T, D>& p) {
- return !(nullptr > p);
-}
-
-template <class T1, class D1, class T2, class D2>
-bool operator>=(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) {
- return !(p1 < p2);
-}
-template <class T, class D>
-bool operator>=(const scoped_ptr<T, D>& p, std::nullptr_t) {
- return !(p < nullptr);
-}
-template <class T, class D>
-bool operator>=(std::nullptr_t, const scoped_ptr<T, D>& p) {
- return !(nullptr < p);
-}
-
-// A function to convert T* into scoped_ptr<T>
-// Doing e.g. make_scoped_ptr(new FooBarBaz<type>(arg)) is a shorter notation
-// for scoped_ptr<FooBarBaz<type> >(new FooBarBaz<type>(arg))
-template <typename T>
-scoped_ptr<T> make_scoped_ptr(T* ptr) {
- return scoped_ptr<T>(ptr);
-}
-
-template <typename T>
-std::ostream& operator<<(std::ostream& out, const scoped_ptr<T>& p) {
- return out << p.get();
-}
-
-#endif // BASE_MEMORY_SCOPED_PTR_H_
diff --git a/security/sandbox/chromium/base/memory/singleton.cc b/security/sandbox/chromium/base/memory/singleton.cc
deleted file mode 100644
index f68ecaa8d..000000000
--- a/security/sandbox/chromium/base/memory/singleton.cc
+++ /dev/null
@@ -1,34 +0,0 @@
-// Copyright (c) 2011 The Chromium Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-#include "base/memory/singleton.h"
-#include "base/threading/platform_thread.h"
-
-namespace base {
-namespace internal {
-
-subtle::AtomicWord WaitForInstance(subtle::AtomicWord* instance) {
- // Handle the race. Another thread beat us and either:
- // - Has the object in BeingCreated state
- // - Already has the object created...
- // We know value != NULL. It could be kBeingCreatedMarker, or a valid ptr.
- // Unless your constructor can be very time consuming, it is very unlikely
- // to hit this race. When it does, we just spin and yield the thread until
- // the object has been created.
- subtle::AtomicWord value;
- while (true) {
- // The load has acquire memory ordering as the thread which reads the
- // instance pointer must acquire visibility over the associated data.
- // The pairing Release_Store operation is in Singleton::get().
- value = subtle::Acquire_Load(instance);
- if (value != kBeingCreatedMarker)
- break;
- PlatformThread::YieldCurrentThread();
- }
- return value;
-}
-
-} // namespace internal
-} // namespace base
-
diff --git a/security/sandbox/chromium/base/memory/singleton.h b/security/sandbox/chromium/base/memory/singleton.h
deleted file mode 100644
index 79e4441a8..000000000
--- a/security/sandbox/chromium/base/memory/singleton.h
+++ /dev/null
@@ -1,284 +0,0 @@
-// Copyright (c) 2011 The Chromium Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-// PLEASE READ: Do you really need a singleton?
-//
-// Singletons make it hard to determine the lifetime of an object, which can
-// lead to buggy code and spurious crashes.
-//
-// Instead of adding another singleton into the mix, try to identify either:
-// a) An existing singleton that can manage your object's lifetime
-// b) Locations where you can deterministically create the object and pass
-// into other objects
-//
-// If you absolutely need a singleton, please keep them as trivial as possible
-// and ideally a leaf dependency. Singletons get problematic when they attempt
-// to do too much in their destructor or have circular dependencies.
-
-#ifndef BASE_MEMORY_SINGLETON_H_
-#define BASE_MEMORY_SINGLETON_H_
-
-#include "base/at_exit.h"
-#include "base/atomicops.h"
-#include "base/base_export.h"
-#include "base/macros.h"
-#include "base/memory/aligned_memory.h"
-#include "base/threading/thread_restrictions.h"
-
-namespace base {
-namespace internal {
-
-// Our AtomicWord doubles as a spinlock, where a value of
-// kBeingCreatedMarker means the spinlock is being held for creation.
-static const subtle::AtomicWord kBeingCreatedMarker = 1;
-
-// We pull out some of the functionality into a non-templated function, so that
-// we can implement the more complicated pieces out of line in the .cc file.
-BASE_EXPORT subtle::AtomicWord WaitForInstance(subtle::AtomicWord* instance);
-
-class DeleteTraceLogForTesting;
-
-} // namespace internal
-
-
-// Default traits for Singleton<Type>. Calls operator new and operator delete on
-// the object. Registers automatic deletion at process exit.
-// Overload if you need arguments or another memory allocation function.
-template<typename Type>
-struct DefaultSingletonTraits {
- // Allocates the object.
- static Type* New() {
- // The parenthesis is very important here; it forces POD type
- // initialization.
- return new Type();
- }
-
- // Destroys the object.
- static void Delete(Type* x) {
- delete x;
- }
-
- // Set to true to automatically register deletion of the object on process
- // exit. See below for the required call that makes this happen.
- static const bool kRegisterAtExit = true;
-
-#ifndef NDEBUG
- // Set to false to disallow access on a non-joinable thread. This is
- // different from kRegisterAtExit because StaticMemorySingletonTraits allows
- // access on non-joinable threads, and gracefully handles this.
- static const bool kAllowedToAccessOnNonjoinableThread = false;
-#endif
-};
-
-
-// Alternate traits for use with the Singleton<Type>. Identical to
-// DefaultSingletonTraits except that the Singleton will not be cleaned up
-// at exit.
-template<typename Type>
-struct LeakySingletonTraits : public DefaultSingletonTraits<Type> {
- static const bool kRegisterAtExit = false;
-#ifndef NDEBUG
- static const bool kAllowedToAccessOnNonjoinableThread = true;
-#endif
-};
-
-
-// Alternate traits for use with the Singleton<Type>. Allocates memory
-// for the singleton instance from a static buffer. The singleton will
-// be cleaned up at exit, but can't be revived after destruction unless
-// the Resurrect() method is called.
-//
-// This is useful for a certain category of things, notably logging and
-// tracing, where the singleton instance is of a type carefully constructed to
-// be safe to access post-destruction.
-// In logging and tracing you'll typically get stray calls at odd times, like
-// during static destruction, thread teardown and the like, and there's a
-// termination race on the heap-based singleton - e.g. if one thread calls
-// get(), but then another thread initiates AtExit processing, the first thread
-// may call into an object residing in unallocated memory. If the instance is
-// allocated from the data segment, then this is survivable.
-//
-// The destructor is to deallocate system resources, in this case to unregister
-// a callback the system will invoke when logging levels change. Note that
-// this is also used in e.g. Chrome Frame, where you have to allow for the
-// possibility of loading briefly into someone else's process space, and
-// so leaking is not an option, as that would sabotage the state of your host
-// process once you've unloaded.
-template <typename Type>
-struct StaticMemorySingletonTraits {
- // WARNING: User has to deal with get() in the singleton class
- // this is traits for returning NULL.
- static Type* New() {
- // Only constructs once and returns pointer; otherwise returns NULL.
- if (subtle::NoBarrier_AtomicExchange(&dead_, 1))
- return NULL;
-
- return new(buffer_.void_data()) Type();
- }
-
- static void Delete(Type* p) {
- if (p != NULL)
- p->Type::~Type();
- }
-
- static const bool kRegisterAtExit = true;
- static const bool kAllowedToAccessOnNonjoinableThread = true;
-
- // Exposed for unittesting.
- static void Resurrect() { subtle::NoBarrier_Store(&dead_, 0); }
-
- private:
- static AlignedMemory<sizeof(Type), ALIGNOF(Type)> buffer_;
- // Signal the object was already deleted, so it is not revived.
- static subtle::Atomic32 dead_;
-};
-
-template <typename Type>
-AlignedMemory<sizeof(Type), ALIGNOF(Type)>
- StaticMemorySingletonTraits<Type>::buffer_;
-template <typename Type>
-subtle::Atomic32 StaticMemorySingletonTraits<Type>::dead_ = 0;
-
-// The Singleton<Type, Traits, DifferentiatingType> class manages a single
-// instance of Type which will be created on first use and will be destroyed at
-// normal process exit). The Trait::Delete function will not be called on
-// abnormal process exit.
-//
-// DifferentiatingType is used as a key to differentiate two different
-// singletons having the same memory allocation functions but serving a
-// different purpose. This is mainly used for Locks serving different purposes.
-//
-// Example usage:
-//
-// In your header:
-// template <typename T> struct DefaultSingletonTraits;
-// class FooClass {
-// public:
-// static FooClass* GetInstance(); <-- See comment below on this.
-// void Bar() { ... }
-// private:
-// FooClass() { ... }
-// friend struct DefaultSingletonTraits<FooClass>;
-//
-// DISALLOW_COPY_AND_ASSIGN(FooClass);
-// };
-//
-// In your source file:
-// #include "base/memory/singleton.h"
-// FooClass* FooClass::GetInstance() {
-// return Singleton<FooClass>::get();
-// }
-//
-// And to call methods on FooClass:
-// FooClass::GetInstance()->Bar();
-//
-// NOTE: The method accessing Singleton<T>::get() has to be named as GetInstance
-// and it is important that FooClass::GetInstance() is not inlined in the
-// header. This makes sure that when source files from multiple targets include
-// this header they don't end up with different copies of the inlined code
-// creating multiple copies of the singleton.
-//
-// Singleton<> has no non-static members and doesn't need to actually be
-// instantiated.
-//
-// This class is itself thread-safe. The underlying Type must of course be
-// thread-safe if you want to use it concurrently. Two parameters may be tuned
-// depending on the user's requirements.
-//
-// Glossary:
-// RAE = kRegisterAtExit
-//
-// On every platform, if Traits::RAE is true, the singleton will be destroyed at
-// process exit. More precisely it uses AtExitManager which requires an
-// object of this type to be instantiated. AtExitManager mimics the semantics
-// of atexit() such as LIFO order but under Windows is safer to call. For more
-// information see at_exit.h.
-//
-// If Traits::RAE is false, the singleton will not be freed at process exit,
-// thus the singleton will be leaked if it is ever accessed. Traits::RAE
-// shouldn't be false unless absolutely necessary. Remember that the heap where
-// the object is allocated may be destroyed by the CRT anyway.
-//
-// Caveats:
-// (a) Every call to get(), operator->() and operator*() incurs some overhead
-// (16ns on my P4/2.8GHz) to check whether the object has already been
-// initialized. You may wish to cache the result of get(); it will not
-// change.
-//
-// (b) Your factory function must never throw an exception. This class is not
-// exception-safe.
-//
-
-template <typename Type,
- typename Traits = DefaultSingletonTraits<Type>,
- typename DifferentiatingType = Type>
-class Singleton {
- private:
- // Classes using the Singleton<T> pattern should declare a GetInstance()
- // method and call Singleton::get() from within that.
- friend Type* Type::GetInstance();
-
- // Allow TraceLog tests to test tracing after OnExit.
- friend class internal::DeleteTraceLogForTesting;
-
- // This class is safe to be constructed and copy-constructed since it has no
- // member.
-
- // Return a pointer to the one true instance of the class.
- static Type* get() {
-#ifndef NDEBUG
- // Avoid making TLS lookup on release builds.
- if (!Traits::kAllowedToAccessOnNonjoinableThread)
- ThreadRestrictions::AssertSingletonAllowed();
-#endif
-
- // The load has acquire memory ordering as the thread which reads the
- // instance_ pointer must acquire visibility over the singleton data.
- subtle::AtomicWord value = subtle::Acquire_Load(&instance_);
- if (value != 0 && value != internal::kBeingCreatedMarker) {
- return reinterpret_cast<Type*>(value);
- }
-
- // Object isn't created yet, maybe we will get to create it, let's try...
- if (subtle::Acquire_CompareAndSwap(&instance_, 0,
- internal::kBeingCreatedMarker) == 0) {
- // instance_ was NULL and is now kBeingCreatedMarker. Only one thread
- // will ever get here. Threads might be spinning on us, and they will
- // stop right after we do this store.
- Type* newval = Traits::New();
-
- // Releases the visibility over instance_ to the readers.
- subtle::Release_Store(&instance_,
- reinterpret_cast<subtle::AtomicWord>(newval));
-
- if (newval != NULL && Traits::kRegisterAtExit)
- AtExitManager::RegisterCallback(OnExit, NULL);
-
- return newval;
- }
-
- // We hit a race. Wait for the other thread to complete it.
- value = internal::WaitForInstance(&instance_);
-
- return reinterpret_cast<Type*>(value);
- }
-
- // Adapter function for use with AtExit(). This should be called single
- // threaded, so don't use atomic operations.
- // Calling OnExit while singleton is in use by other threads is a mistake.
- static void OnExit(void* /*unused*/) {
- // AtExit should only ever be register after the singleton instance was
- // created. We should only ever get here with a valid instance_ pointer.
- Traits::Delete(reinterpret_cast<Type*>(subtle::NoBarrier_Load(&instance_)));
- instance_ = 0;
- }
- static subtle::AtomicWord instance_;
-};
-
-template <typename Type, typename Traits, typename DifferentiatingType>
-subtle::AtomicWord Singleton<Type, Traits, DifferentiatingType>::instance_ = 0;
-
-} // namespace base
-
-#endif // BASE_MEMORY_SINGLETON_H_
diff --git a/security/sandbox/chromium/base/memory/weak_ptr.h b/security/sandbox/chromium/base/memory/weak_ptr.h
deleted file mode 100644
index 33d1e4736..000000000
--- a/security/sandbox/chromium/base/memory/weak_ptr.h
+++ /dev/null
@@ -1,345 +0,0 @@
-// Copyright (c) 2012 The Chromium Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-// Weak pointers are pointers to an object that do not affect its lifetime,
-// and which may be invalidated (i.e. reset to NULL) by the object, or its
-// owner, at any time, most commonly when the object is about to be deleted.
-
-// Weak pointers are useful when an object needs to be accessed safely by one
-// or more objects other than its owner, and those callers can cope with the
-// object vanishing and e.g. tasks posted to it being silently dropped.
-// Reference-counting such an object would complicate the ownership graph and
-// make it harder to reason about the object's lifetime.
-
-// EXAMPLE:
-//
-// class Controller {
-// public:
-// Controller() : weak_factory_(this) {}
-// void SpawnWorker() { Worker::StartNew(weak_factory_.GetWeakPtr()); }
-// void WorkComplete(const Result& result) { ... }
-// private:
-// // Member variables should appear before the WeakPtrFactory, to ensure
-// // that any WeakPtrs to Controller are invalidated before its members
-// // variable's destructors are executed, rendering them invalid.
-// WeakPtrFactory<Controller> weak_factory_;
-// };
-//
-// class Worker {
-// public:
-// static void StartNew(const WeakPtr<Controller>& controller) {
-// Worker* worker = new Worker(controller);
-// // Kick off asynchronous processing...
-// }
-// private:
-// Worker(const WeakPtr<Controller>& controller)
-// : controller_(controller) {}
-// void DidCompleteAsynchronousProcessing(const Result& result) {
-// if (controller_)
-// controller_->WorkComplete(result);
-// }
-// WeakPtr<Controller> controller_;
-// };
-//
-// With this implementation a caller may use SpawnWorker() to dispatch multiple
-// Workers and subsequently delete the Controller, without waiting for all
-// Workers to have completed.
-
-// ------------------------- IMPORTANT: Thread-safety -------------------------
-
-// Weak pointers may be passed safely between threads, but must always be
-// dereferenced and invalidated on the same SequencedTaskRunner otherwise
-// checking the pointer would be racey.
-//
-// To ensure correct use, the first time a WeakPtr issued by a WeakPtrFactory
-// is dereferenced, the factory and its WeakPtrs become bound to the calling
-// thread or current SequencedWorkerPool token, and cannot be dereferenced or
-// invalidated on any other task runner. Bound WeakPtrs can still be handed
-// off to other task runners, e.g. to use to post tasks back to object on the
-// bound sequence.
-//
-// If all WeakPtr objects are destroyed or invalidated then the factory is
-// unbound from the SequencedTaskRunner/Thread. The WeakPtrFactory may then be
-// destroyed, or new WeakPtr objects may be used, from a different sequence.
-//
-// Thus, at least one WeakPtr object must exist and have been dereferenced on
-// the correct thread to enforce that other WeakPtr objects will enforce they
-// are used on the desired thread.
-
-#ifndef BASE_MEMORY_WEAK_PTR_H_
-#define BASE_MEMORY_WEAK_PTR_H_
-
-#include "base/base_export.h"
-#include "base/logging.h"
-#include "base/macros.h"
-#include "base/memory/ref_counted.h"
-#include "base/sequence_checker.h"
-#include "base/template_util.h"
-
-namespace base {
-
-template <typename T> class SupportsWeakPtr;
-template <typename T> class WeakPtr;
-
-namespace internal {
-// These classes are part of the WeakPtr implementation.
-// DO NOT USE THESE CLASSES DIRECTLY YOURSELF.
-
-class BASE_EXPORT WeakReference {
- public:
- // Although Flag is bound to a specific SequencedTaskRunner, it may be
- // deleted from another via base::WeakPtr::~WeakPtr().
- class BASE_EXPORT Flag : public RefCountedThreadSafe<Flag> {
- public:
- Flag();
-
- void Invalidate();
- bool IsValid() const;
-
- private:
- friend class base::RefCountedThreadSafe<Flag>;
-
- ~Flag();
-
- SequenceChecker sequence_checker_;
- bool is_valid_;
- };
-
- WeakReference();
- explicit WeakReference(const Flag* flag);
- ~WeakReference();
-
- bool is_valid() const;
-
- private:
- scoped_refptr<const Flag> flag_;
-};
-
-class BASE_EXPORT WeakReferenceOwner {
- public:
- WeakReferenceOwner();
- ~WeakReferenceOwner();
-
- WeakReference GetRef() const;
-
- bool HasRefs() const {
- return flag_.get() && !flag_->HasOneRef();
- }
-
- void Invalidate();
-
- private:
- mutable scoped_refptr<WeakReference::Flag> flag_;
-};
-
-// This class simplifies the implementation of WeakPtr's type conversion
-// constructor by avoiding the need for a public accessor for ref_. A
-// WeakPtr<T> cannot access the private members of WeakPtr<U>, so this
-// base class gives us a way to access ref_ in a protected fashion.
-class BASE_EXPORT WeakPtrBase {
- public:
- WeakPtrBase();
- ~WeakPtrBase();
-
- protected:
- explicit WeakPtrBase(const WeakReference& ref);
-
- WeakReference ref_;
-};
-
-// This class provides a common implementation of common functions that would
-// otherwise get instantiated separately for each distinct instantiation of
-// SupportsWeakPtr<>.
-class SupportsWeakPtrBase {
- public:
- // A safe static downcast of a WeakPtr<Base> to WeakPtr<Derived>. This
- // conversion will only compile if there is exists a Base which inherits
- // from SupportsWeakPtr<Base>. See base::AsWeakPtr() below for a helper
- // function that makes calling this easier.
- template<typename Derived>
- static WeakPtr<Derived> StaticAsWeakPtr(Derived* t) {
- typedef
- is_convertible<Derived, internal::SupportsWeakPtrBase&> convertible;
- static_assert(convertible::value,
- "AsWeakPtr argument must inherit from SupportsWeakPtr");
- return AsWeakPtrImpl<Derived>(t, *t);
- }
-
- private:
- // This template function uses type inference to find a Base of Derived
- // which is an instance of SupportsWeakPtr<Base>. We can then safely
- // static_cast the Base* to a Derived*.
- template <typename Derived, typename Base>
- static WeakPtr<Derived> AsWeakPtrImpl(
- Derived* t, const SupportsWeakPtr<Base>&) {
- WeakPtr<Base> ptr = t->Base::AsWeakPtr();
- return WeakPtr<Derived>(ptr.ref_, static_cast<Derived*>(ptr.ptr_));
- }
-};
-
-} // namespace internal
-
-template <typename T> class WeakPtrFactory;
-
-// The WeakPtr class holds a weak reference to |T*|.
-//
-// This class is designed to be used like a normal pointer. You should always
-// null-test an object of this class before using it or invoking a method that
-// may result in the underlying object being destroyed.
-//
-// EXAMPLE:
-//
-// class Foo { ... };
-// WeakPtr<Foo> foo;
-// if (foo)
-// foo->method();
-//
-template <typename T>
-class WeakPtr : public internal::WeakPtrBase {
- public:
- WeakPtr() : ptr_(NULL) {
- }
-
- // Allow conversion from U to T provided U "is a" T. Note that this
- // is separate from the (implicit) copy constructor.
- template <typename U>
- WeakPtr(const WeakPtr<U>& other) : WeakPtrBase(other), ptr_(other.ptr_) {
- }
-
- T* get() const { return ref_.is_valid() ? ptr_ : NULL; }
-
- T& operator*() const {
- DCHECK(get() != NULL);
- return *get();
- }
- T* operator->() const {
- DCHECK(get() != NULL);
- return get();
- }
-
- // Allow WeakPtr<element_type> to be used in boolean expressions, but not
- // implicitly convertible to a real bool (which is dangerous).
- //
- // Note that this trick is only safe when the == and != operators
- // are declared explicitly, as otherwise "weak_ptr1 == weak_ptr2"
- // will compile but do the wrong thing (i.e., convert to Testable
- // and then do the comparison).
- private:
- typedef T* WeakPtr::*Testable;
-
- public:
- operator Testable() const { return get() ? &WeakPtr::ptr_ : NULL; }
-
- void reset() {
- ref_ = internal::WeakReference();
- ptr_ = NULL;
- }
-
- private:
- // Explicitly declare comparison operators as required by the bool
- // trick, but keep them private.
- template <class U> bool operator==(WeakPtr<U> const&) const;
- template <class U> bool operator!=(WeakPtr<U> const&) const;
-
- friend class internal::SupportsWeakPtrBase;
- template <typename U> friend class WeakPtr;
- friend class SupportsWeakPtr<T>;
- friend class WeakPtrFactory<T>;
-
- WeakPtr(const internal::WeakReference& ref, T* ptr)
- : WeakPtrBase(ref),
- ptr_(ptr) {
- }
-
- // This pointer is only valid when ref_.is_valid() is true. Otherwise, its
- // value is undefined (as opposed to NULL).
- T* ptr_;
-};
-
-// A class may be composed of a WeakPtrFactory and thereby
-// control how it exposes weak pointers to itself. This is helpful if you only
-// need weak pointers within the implementation of a class. This class is also
-// useful when working with primitive types. For example, you could have a
-// WeakPtrFactory<bool> that is used to pass around a weak reference to a bool.
-template <class T>
-class WeakPtrFactory {
- public:
- explicit WeakPtrFactory(T* ptr) : ptr_(ptr) {
- }
-
- ~WeakPtrFactory() {
- ptr_ = NULL;
- }
-
- WeakPtr<T> GetWeakPtr() {
- DCHECK(ptr_);
- return WeakPtr<T>(weak_reference_owner_.GetRef(), ptr_);
- }
-
- // Call this method to invalidate all existing weak pointers.
- void InvalidateWeakPtrs() {
- DCHECK(ptr_);
- weak_reference_owner_.Invalidate();
- }
-
- // Call this method to determine if any weak pointers exist.
- bool HasWeakPtrs() const {
- DCHECK(ptr_);
- return weak_reference_owner_.HasRefs();
- }
-
- private:
- internal::WeakReferenceOwner weak_reference_owner_;
- T* ptr_;
- DISALLOW_IMPLICIT_CONSTRUCTORS(WeakPtrFactory);
-};
-
-// A class may extend from SupportsWeakPtr to let others take weak pointers to
-// it. This avoids the class itself implementing boilerplate to dispense weak
-// pointers. However, since SupportsWeakPtr's destructor won't invalidate
-// weak pointers to the class until after the derived class' members have been
-// destroyed, its use can lead to subtle use-after-destroy issues.
-template <class T>
-class SupportsWeakPtr : public internal::SupportsWeakPtrBase {
- public:
- SupportsWeakPtr() {}
-
- WeakPtr<T> AsWeakPtr() {
- return WeakPtr<T>(weak_reference_owner_.GetRef(), static_cast<T*>(this));
- }
-
- protected:
- ~SupportsWeakPtr() {}
-
- private:
- internal::WeakReferenceOwner weak_reference_owner_;
- DISALLOW_COPY_AND_ASSIGN(SupportsWeakPtr);
-};
-
-// Helper function that uses type deduction to safely return a WeakPtr<Derived>
-// when Derived doesn't directly extend SupportsWeakPtr<Derived>, instead it
-// extends a Base that extends SupportsWeakPtr<Base>.
-//
-// EXAMPLE:
-// class Base : public base::SupportsWeakPtr<Producer> {};
-// class Derived : public Base {};
-//
-// Derived derived;
-// base::WeakPtr<Derived> ptr = base::AsWeakPtr(&derived);
-//
-// Note that the following doesn't work (invalid type conversion) since
-// Derived::AsWeakPtr() is WeakPtr<Base> SupportsWeakPtr<Base>::AsWeakPtr(),
-// and there's no way to safely cast WeakPtr<Base> to WeakPtr<Derived> at
-// the caller.
-//
-// base::WeakPtr<Derived> ptr = derived.AsWeakPtr(); // Fails.
-
-template <typename Derived>
-WeakPtr<Derived> AsWeakPtr(Derived* t) {
- return internal::SupportsWeakPtrBase::StaticAsWeakPtr<Derived>(t);
-}
-
-} // namespace base
-
-#endif // BASE_MEMORY_WEAK_PTR_H_