summaryrefslogtreecommitdiffstats
path: root/security/sandbox/chromium/base/memory/scoped_ptr.h
diff options
context:
space:
mode:
Diffstat (limited to 'security/sandbox/chromium/base/memory/scoped_ptr.h')
-rw-r--r--security/sandbox/chromium/base/memory/scoped_ptr.h607
1 files changed, 607 insertions, 0 deletions
diff --git a/security/sandbox/chromium/base/memory/scoped_ptr.h b/security/sandbox/chromium/base/memory/scoped_ptr.h
new file mode 100644
index 000000000..282a01486
--- /dev/null
+++ b/security/sandbox/chromium/base/memory/scoped_ptr.h
@@ -0,0 +1,607 @@
+// Copyright (c) 2012 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+// Scopers help you manage ownership of a pointer, helping you easily manage a
+// pointer within a scope, and automatically destroying the pointer at the end
+// of a scope. There are two main classes you will use, which correspond to the
+// operators new/delete and new[]/delete[].
+//
+// Example usage (scoped_ptr<T>):
+// {
+// scoped_ptr<Foo> foo(new Foo("wee"));
+// } // foo goes out of scope, releasing the pointer with it.
+//
+// {
+// scoped_ptr<Foo> foo; // No pointer managed.
+// foo.reset(new Foo("wee")); // Now a pointer is managed.
+// foo.reset(new Foo("wee2")); // Foo("wee") was destroyed.
+// foo.reset(new Foo("wee3")); // Foo("wee2") was destroyed.
+// foo->Method(); // Foo::Method() called.
+// foo.get()->Method(); // Foo::Method() called.
+// SomeFunc(foo.release()); // SomeFunc takes ownership, foo no longer
+// // manages a pointer.
+// foo.reset(new Foo("wee4")); // foo manages a pointer again.
+// foo.reset(); // Foo("wee4") destroyed, foo no longer
+// // manages a pointer.
+// } // foo wasn't managing a pointer, so nothing was destroyed.
+//
+// Example usage (scoped_ptr<T[]>):
+// {
+// scoped_ptr<Foo[]> foo(new Foo[100]);
+// foo.get()->Method(); // Foo::Method on the 0th element.
+// foo[10].Method(); // Foo::Method on the 10th element.
+// }
+//
+// These scopers also implement part of the functionality of C++11 unique_ptr
+// in that they are "movable but not copyable." You can use the scopers in
+// the parameter and return types of functions to signify ownership transfer
+// in to and out of a function. When calling a function that has a scoper
+// as the argument type, it must be called with an rvalue of a scoper, which
+// can be created by using std::move(), or the result of another function that
+// generates a temporary; passing by copy will NOT work. Here is an example
+// using scoped_ptr:
+//
+// void TakesOwnership(scoped_ptr<Foo> arg) {
+// // Do something with arg.
+// }
+// scoped_ptr<Foo> CreateFoo() {
+// // No need for calling std::move() for returning a move-only value, or
+// // when you already have an rvalue as we do here.
+// return scoped_ptr<Foo>(new Foo("new"));
+// }
+// scoped_ptr<Foo> PassThru(scoped_ptr<Foo> arg) {
+// return arg;
+// }
+//
+// {
+// scoped_ptr<Foo> ptr(new Foo("yay")); // ptr manages Foo("yay").
+// TakesOwnership(std::move(ptr)); // ptr no longer owns Foo("yay").
+// scoped_ptr<Foo> ptr2 = CreateFoo(); // ptr2 owns the return Foo.
+// scoped_ptr<Foo> ptr3 = // ptr3 now owns what was in ptr2.
+// PassThru(std::move(ptr2)); // ptr2 is correspondingly nullptr.
+// }
+//
+// Notice that if you do not call std::move() when returning from PassThru(), or
+// when invoking TakesOwnership(), the code will not compile because scopers
+// are not copyable; they only implement move semantics which require calling
+// the std::move() function to signify a destructive transfer of state.
+// CreateFoo() is different though because we are constructing a temporary on
+// the return line and thus can avoid needing to call std::move().
+//
+// The conversion move-constructor properly handles upcast in initialization,
+// i.e. you can use a scoped_ptr<Child> to initialize a scoped_ptr<Parent>:
+//
+// scoped_ptr<Foo> foo(new Foo());
+// scoped_ptr<FooParent> parent(std::move(foo));
+
+#ifndef BASE_MEMORY_SCOPED_PTR_H_
+#define BASE_MEMORY_SCOPED_PTR_H_
+
+// This is an implementation designed to match the anticipated future TR2
+// implementation of the scoped_ptr class.
+
+#include <assert.h>
+#include <stddef.h>
+#include <stdlib.h>
+
+#include <iosfwd>
+#include <memory>
+#include <type_traits>
+#include <utility>
+
+#include "base/compiler_specific.h"
+#include "base/macros.h"
+#include "base/move.h"
+#include "base/template_util.h"
+
+namespace base {
+
+namespace subtle {
+class RefCountedBase;
+class RefCountedThreadSafeBase;
+} // namespace subtle
+
+// Function object which invokes 'free' on its parameter, which must be
+// a pointer. Can be used to store malloc-allocated pointers in scoped_ptr:
+//
+// scoped_ptr<int, base::FreeDeleter> foo_ptr(
+// static_cast<int*>(malloc(sizeof(int))));
+struct FreeDeleter {
+ inline void operator()(void* ptr) const {
+ free(ptr);
+ }
+};
+
+namespace internal {
+
+template <typename T> struct IsNotRefCounted {
+ enum {
+ value = !base::is_convertible<T*, base::subtle::RefCountedBase*>::value &&
+ !base::is_convertible<T*, base::subtle::RefCountedThreadSafeBase*>::
+ value
+ };
+};
+
+// Minimal implementation of the core logic of scoped_ptr, suitable for
+// reuse in both scoped_ptr and its specializations.
+template <class T, class D>
+class scoped_ptr_impl {
+ public:
+ explicit scoped_ptr_impl(T* p) : data_(p) {}
+
+ // Initializer for deleters that have data parameters.
+ scoped_ptr_impl(T* p, const D& d) : data_(p, d) {}
+
+ // Templated constructor that destructively takes the value from another
+ // scoped_ptr_impl.
+ template <typename U, typename V>
+ scoped_ptr_impl(scoped_ptr_impl<U, V>* other)
+ : data_(other->release(), other->get_deleter()) {
+ // We do not support move-only deleters. We could modify our move
+ // emulation to have base::subtle::move() and base::subtle::forward()
+ // functions that are imperfect emulations of their C++11 equivalents,
+ // but until there's a requirement, just assume deleters are copyable.
+ }
+
+ template <typename U, typename V>
+ void TakeState(scoped_ptr_impl<U, V>* other) {
+ // See comment in templated constructor above regarding lack of support
+ // for move-only deleters.
+ reset(other->release());
+ get_deleter() = other->get_deleter();
+ }
+
+ ~scoped_ptr_impl() {
+ // Match libc++, which calls reset() in its destructor.
+ // Use nullptr as the new value for three reasons:
+ // 1. libc++ does it.
+ // 2. Avoids infinitely recursing into destructors if two classes are owned
+ // in a reference cycle (see ScopedPtrTest.ReferenceCycle).
+ // 3. If |this| is accessed in the future, in a use-after-free bug, attempts
+ // to dereference |this|'s pointer should cause either a failure or a
+ // segfault closer to the problem. If |this| wasn't reset to nullptr,
+ // the access would cause the deleted memory to be read or written
+ // leading to other more subtle issues.
+ reset(nullptr);
+ }
+
+ void reset(T* p) {
+ // Match C++11's definition of unique_ptr::reset(), which requires changing
+ // the pointer before invoking the deleter on the old pointer. This prevents
+ // |this| from being accessed after the deleter is run, which may destroy
+ // |this|.
+ T* old = data_.ptr;
+ data_.ptr = p;
+ if (old != nullptr)
+ static_cast<D&>(data_)(old);
+ }
+
+ T* get() const { return data_.ptr; }
+
+ D& get_deleter() { return data_; }
+ const D& get_deleter() const { return data_; }
+
+ void swap(scoped_ptr_impl& p2) {
+ // Standard swap idiom: 'using std::swap' ensures that std::swap is
+ // present in the overload set, but we call swap unqualified so that
+ // any more-specific overloads can be used, if available.
+ using std::swap;
+ swap(static_cast<D&>(data_), static_cast<D&>(p2.data_));
+ swap(data_.ptr, p2.data_.ptr);
+ }
+
+ T* release() {
+ T* old_ptr = data_.ptr;
+ data_.ptr = nullptr;
+ return old_ptr;
+ }
+
+ private:
+ // Needed to allow type-converting constructor.
+ template <typename U, typename V> friend class scoped_ptr_impl;
+
+ // Use the empty base class optimization to allow us to have a D
+ // member, while avoiding any space overhead for it when D is an
+ // empty class. See e.g. http://www.cantrip.org/emptyopt.html for a good
+ // discussion of this technique.
+ struct Data : public D {
+ explicit Data(T* ptr_in) : ptr(ptr_in) {}
+ Data(T* ptr_in, const D& other) : D(other), ptr(ptr_in) {}
+ T* ptr;
+ };
+
+ Data data_;
+
+ DISALLOW_COPY_AND_ASSIGN(scoped_ptr_impl);
+};
+
+} // namespace internal
+
+} // namespace base
+
+// A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
+// automatically deletes the pointer it holds (if any).
+// That is, scoped_ptr<T> owns the T object that it points to.
+// Like a T*, a scoped_ptr<T> may hold either nullptr or a pointer to a T
+// object. Also like T*, scoped_ptr<T> is thread-compatible, and once you
+// dereference it, you get the thread safety guarantees of T.
+//
+// The size of scoped_ptr is small. On most compilers, when using the
+// std::default_delete, sizeof(scoped_ptr<T>) == sizeof(T*). Custom deleters
+// will increase the size proportional to whatever state they need to have. See
+// comments inside scoped_ptr_impl<> for details.
+//
+// Current implementation targets having a strict subset of C++11's
+// unique_ptr<> features. Known deficiencies include not supporting move-only
+// deleteres, function pointers as deleters, and deleters with reference
+// types.
+template <class T, class D = std::default_delete<T>>
+class scoped_ptr {
+ DISALLOW_COPY_AND_ASSIGN_WITH_MOVE_FOR_BIND(scoped_ptr)
+
+ static_assert(!std::is_array<T>::value,
+ "scoped_ptr doesn't support array with size");
+ static_assert(base::internal::IsNotRefCounted<T>::value,
+ "T is a refcounted type and needs a scoped_refptr");
+
+ public:
+ // The element and deleter types.
+ using element_type = T;
+ using deleter_type = D;
+
+ // Constructor. Defaults to initializing with nullptr.
+ scoped_ptr() : impl_(nullptr) {}
+
+ // Constructor. Takes ownership of p.
+ explicit scoped_ptr(element_type* p) : impl_(p) {}
+
+ // Constructor. Allows initialization of a stateful deleter.
+ scoped_ptr(element_type* p, const D& d) : impl_(p, d) {}
+
+ // Constructor. Allows construction from a nullptr.
+ scoped_ptr(std::nullptr_t) : impl_(nullptr) {}
+
+ // Move constructor.
+ //
+ // IMPLEMENTATION NOTE: Clang requires a move constructor to be defined (and
+ // not just the conversion constructor) in order to warn on pessimizing moves.
+ // The requirements for the move constructor are specified in C++11
+ // 20.7.1.2.1.15-17, which has some subtleties around reference deleters. As
+ // we don't support reference (or move-only) deleters, the post conditions are
+ // trivially true: we always copy construct the deleter from other's deleter.
+ scoped_ptr(scoped_ptr&& other) : impl_(&other.impl_) {}
+
+ // Conversion constructor. Allows construction from a scoped_ptr rvalue for a
+ // convertible type and deleter.
+ //
+ // IMPLEMENTATION NOTE: C++ 20.7.1.2.1.19 requires this constructor to only
+ // participate in overload resolution if all the following are true:
+ // - U is implicitly convertible to T: this is important for 2 reasons:
+ // 1. So type traits don't incorrectly return true, e.g.
+ // std::is_convertible<scoped_ptr<Base>, scoped_ptr<Derived>>::value
+ // should be false.
+ // 2. To make sure code like this compiles:
+ // void F(scoped_ptr<int>);
+ // void F(scoped_ptr<Base>);
+ // // Ambiguous since both conversion constructors match.
+ // F(scoped_ptr<Derived>());
+ // - U is not an array type: to prevent conversions from scoped_ptr<T[]> to
+ // scoped_ptr<T>.
+ // - D is a reference type and E is the same type, or D is not a reference
+ // type and E is implicitly convertible to D: again, we don't support
+ // reference deleters, so we only worry about the latter requirement.
+ template <typename U,
+ typename E,
+ typename std::enable_if<!std::is_array<U>::value &&
+ std::is_convertible<U*, T*>::value &&
+ std::is_convertible<E, D>::value>::type* =
+ nullptr>
+ scoped_ptr(scoped_ptr<U, E>&& other)
+ : impl_(&other.impl_) {}
+
+ // operator=.
+ //
+ // IMPLEMENTATION NOTE: Unlike the move constructor, Clang does not appear to
+ // require a move assignment operator to trigger the pessimizing move warning:
+ // in this case, the warning triggers when moving a temporary. For consistency
+ // with the move constructor, we define it anyway. C++11 20.7.1.2.3.1-3
+ // defines several requirements around this: like the move constructor, the
+ // requirements are simplified by the fact that we don't support move-only or
+ // reference deleters.
+ scoped_ptr& operator=(scoped_ptr&& rhs) {
+ impl_.TakeState(&rhs.impl_);
+ return *this;
+ }
+
+ // operator=. Allows assignment from a scoped_ptr rvalue for a convertible
+ // type and deleter.
+ //
+ // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this operator= distinct from
+ // the normal move assignment operator. C++11 20.7.1.2.3.4-7 contains the
+ // requirement for this operator, but like the conversion constructor, the
+ // requirements are greatly simplified by not supporting move-only or
+ // reference deleters.
+ template <typename U,
+ typename E,
+ typename std::enable_if<!std::is_array<U>::value &&
+ std::is_convertible<U*, T*>::value &&
+ // Note that this really should be
+ // std::is_assignable, but <type_traits>
+ // appears to be missing this on some
+ // platforms. This is close enough (though
+ // it's not the same).
+ std::is_convertible<D, E>::value>::type* =
+ nullptr>
+ scoped_ptr& operator=(scoped_ptr<U, E>&& rhs) {
+ impl_.TakeState(&rhs.impl_);
+ return *this;
+ }
+
+ // operator=. Allows assignment from a nullptr. Deletes the currently owned
+ // object, if any.
+ scoped_ptr& operator=(std::nullptr_t) {
+ reset();
+ return *this;
+ }
+
+ // Reset. Deletes the currently owned object, if any.
+ // Then takes ownership of a new object, if given.
+ void reset(element_type* p = nullptr) { impl_.reset(p); }
+
+ // Accessors to get the owned object.
+ // operator* and operator-> will assert() if there is no current object.
+ element_type& operator*() const {
+ assert(impl_.get() != nullptr);
+ return *impl_.get();
+ }
+ element_type* operator->() const {
+ assert(impl_.get() != nullptr);
+ return impl_.get();
+ }
+ element_type* get() const { return impl_.get(); }
+
+ // Access to the deleter.
+ deleter_type& get_deleter() { return impl_.get_deleter(); }
+ const deleter_type& get_deleter() const { return impl_.get_deleter(); }
+
+ // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
+ // implicitly convertible to a real bool (which is dangerous).
+ //
+ // Note that this trick is only safe when the == and != operators
+ // are declared explicitly, as otherwise "scoped_ptr1 ==
+ // scoped_ptr2" will compile but do the wrong thing (i.e., convert
+ // to Testable and then do the comparison).
+ private:
+ typedef base::internal::scoped_ptr_impl<element_type, deleter_type>
+ scoped_ptr::*Testable;
+
+ public:
+ operator Testable() const {
+ return impl_.get() ? &scoped_ptr::impl_ : nullptr;
+ }
+
+ // Swap two scoped pointers.
+ void swap(scoped_ptr& p2) {
+ impl_.swap(p2.impl_);
+ }
+
+ // Release a pointer.
+ // The return value is the current pointer held by this object. If this object
+ // holds a nullptr, the return value is nullptr. After this operation, this
+ // object will hold a nullptr, and will not own the object any more.
+ element_type* release() WARN_UNUSED_RESULT {
+ return impl_.release();
+ }
+
+ private:
+ // Needed to reach into |impl_| in the constructor.
+ template <typename U, typename V> friend class scoped_ptr;
+ base::internal::scoped_ptr_impl<element_type, deleter_type> impl_;
+
+ // Forbidden for API compatibility with std::unique_ptr.
+ explicit scoped_ptr(int disallow_construction_from_null);
+};
+
+template <class T, class D>
+class scoped_ptr<T[], D> {
+ DISALLOW_COPY_AND_ASSIGN_WITH_MOVE_FOR_BIND(scoped_ptr)
+
+ public:
+ // The element and deleter types.
+ using element_type = T;
+ using deleter_type = D;
+
+ // Constructor. Defaults to initializing with nullptr.
+ scoped_ptr() : impl_(nullptr) {}
+
+ // Constructor. Stores the given array. Note that the argument's type
+ // must exactly match T*. In particular:
+ // - it cannot be a pointer to a type derived from T, because it is
+ // inherently unsafe in the general case to access an array through a
+ // pointer whose dynamic type does not match its static type (eg., if
+ // T and the derived types had different sizes access would be
+ // incorrectly calculated). Deletion is also always undefined
+ // (C++98 [expr.delete]p3). If you're doing this, fix your code.
+ // - it cannot be const-qualified differently from T per unique_ptr spec
+ // (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting
+ // to work around this may use const_cast<const T*>().
+ explicit scoped_ptr(element_type* array) : impl_(array) {}
+
+ // Constructor. Allows construction from a nullptr.
+ scoped_ptr(std::nullptr_t) : impl_(nullptr) {}
+
+ // Constructor. Allows construction from a scoped_ptr rvalue.
+ scoped_ptr(scoped_ptr&& other) : impl_(&other.impl_) {}
+
+ // operator=. Allows assignment from a scoped_ptr rvalue.
+ scoped_ptr& operator=(scoped_ptr&& rhs) {
+ impl_.TakeState(&rhs.impl_);
+ return *this;
+ }
+
+ // operator=. Allows assignment from a nullptr. Deletes the currently owned
+ // array, if any.
+ scoped_ptr& operator=(std::nullptr_t) {
+ reset();
+ return *this;
+ }
+
+ // Reset. Deletes the currently owned array, if any.
+ // Then takes ownership of a new object, if given.
+ void reset(element_type* array = nullptr) { impl_.reset(array); }
+
+ // Accessors to get the owned array.
+ element_type& operator[](size_t i) const {
+ assert(impl_.get() != nullptr);
+ return impl_.get()[i];
+ }
+ element_type* get() const { return impl_.get(); }
+
+ // Access to the deleter.
+ deleter_type& get_deleter() { return impl_.get_deleter(); }
+ const deleter_type& get_deleter() const { return impl_.get_deleter(); }
+
+ // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
+ // implicitly convertible to a real bool (which is dangerous).
+ private:
+ typedef base::internal::scoped_ptr_impl<element_type, deleter_type>
+ scoped_ptr::*Testable;
+
+ public:
+ operator Testable() const {
+ return impl_.get() ? &scoped_ptr::impl_ : nullptr;
+ }
+
+ // Swap two scoped pointers.
+ void swap(scoped_ptr& p2) {
+ impl_.swap(p2.impl_);
+ }
+
+ // Release a pointer.
+ // The return value is the current pointer held by this object. If this object
+ // holds a nullptr, the return value is nullptr. After this operation, this
+ // object will hold a nullptr, and will not own the object any more.
+ element_type* release() WARN_UNUSED_RESULT {
+ return impl_.release();
+ }
+
+ private:
+ // Force element_type to be a complete type.
+ enum { type_must_be_complete = sizeof(element_type) };
+
+ // Actually hold the data.
+ base::internal::scoped_ptr_impl<element_type, deleter_type> impl_;
+
+ // Disable initialization from any type other than element_type*, by
+ // providing a constructor that matches such an initialization, but is
+ // private and has no definition. This is disabled because it is not safe to
+ // call delete[] on an array whose static type does not match its dynamic
+ // type.
+ template <typename U> explicit scoped_ptr(U* array);
+ explicit scoped_ptr(int disallow_construction_from_null);
+
+ // Disable reset() from any type other than element_type*, for the same
+ // reasons as the constructor above.
+ template <typename U> void reset(U* array);
+ void reset(int disallow_reset_from_null);
+};
+
+// Free functions
+template <class T, class D>
+void swap(scoped_ptr<T, D>& p1, scoped_ptr<T, D>& p2) {
+ p1.swap(p2);
+}
+
+template <class T1, class D1, class T2, class D2>
+bool operator==(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) {
+ return p1.get() == p2.get();
+}
+template <class T, class D>
+bool operator==(const scoped_ptr<T, D>& p, std::nullptr_t) {
+ return p.get() == nullptr;
+}
+template <class T, class D>
+bool operator==(std::nullptr_t, const scoped_ptr<T, D>& p) {
+ return p.get() == nullptr;
+}
+
+template <class T1, class D1, class T2, class D2>
+bool operator!=(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) {
+ return !(p1 == p2);
+}
+template <class T, class D>
+bool operator!=(const scoped_ptr<T, D>& p, std::nullptr_t) {
+ return !(p == nullptr);
+}
+template <class T, class D>
+bool operator!=(std::nullptr_t, const scoped_ptr<T, D>& p) {
+ return !(p == nullptr);
+}
+
+template <class T1, class D1, class T2, class D2>
+bool operator<(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) {
+ return p1.get() < p2.get();
+}
+template <class T, class D>
+bool operator<(const scoped_ptr<T, D>& p, std::nullptr_t) {
+ return p.get() < nullptr;
+}
+template <class T, class D>
+bool operator<(std::nullptr_t, const scoped_ptr<T, D>& p) {
+ return nullptr < p.get();
+}
+
+template <class T1, class D1, class T2, class D2>
+bool operator>(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) {
+ return p2 < p1;
+}
+template <class T, class D>
+bool operator>(const scoped_ptr<T, D>& p, std::nullptr_t) {
+ return nullptr < p;
+}
+template <class T, class D>
+bool operator>(std::nullptr_t, const scoped_ptr<T, D>& p) {
+ return p < nullptr;
+}
+
+template <class T1, class D1, class T2, class D2>
+bool operator<=(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) {
+ return !(p1 > p2);
+}
+template <class T, class D>
+bool operator<=(const scoped_ptr<T, D>& p, std::nullptr_t) {
+ return !(p > nullptr);
+}
+template <class T, class D>
+bool operator<=(std::nullptr_t, const scoped_ptr<T, D>& p) {
+ return !(nullptr > p);
+}
+
+template <class T1, class D1, class T2, class D2>
+bool operator>=(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) {
+ return !(p1 < p2);
+}
+template <class T, class D>
+bool operator>=(const scoped_ptr<T, D>& p, std::nullptr_t) {
+ return !(p < nullptr);
+}
+template <class T, class D>
+bool operator>=(std::nullptr_t, const scoped_ptr<T, D>& p) {
+ return !(nullptr < p);
+}
+
+// A function to convert T* into scoped_ptr<T>
+// Doing e.g. make_scoped_ptr(new FooBarBaz<type>(arg)) is a shorter notation
+// for scoped_ptr<FooBarBaz<type> >(new FooBarBaz<type>(arg))
+template <typename T>
+scoped_ptr<T> make_scoped_ptr(T* ptr) {
+ return scoped_ptr<T>(ptr);
+}
+
+template <typename T>
+std::ostream& operator<<(std::ostream& out, const scoped_ptr<T>& p) {
+ return out << p.get();
+}
+
+#endif // BASE_MEMORY_SCOPED_PTR_H_