diff options
Diffstat (limited to 'security/sandbox/chromium/base/memory/scoped_ptr.h')
-rw-r--r-- | security/sandbox/chromium/base/memory/scoped_ptr.h | 607 |
1 files changed, 607 insertions, 0 deletions
diff --git a/security/sandbox/chromium/base/memory/scoped_ptr.h b/security/sandbox/chromium/base/memory/scoped_ptr.h new file mode 100644 index 000000000..282a01486 --- /dev/null +++ b/security/sandbox/chromium/base/memory/scoped_ptr.h @@ -0,0 +1,607 @@ +// Copyright (c) 2012 The Chromium Authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +// Scopers help you manage ownership of a pointer, helping you easily manage a +// pointer within a scope, and automatically destroying the pointer at the end +// of a scope. There are two main classes you will use, which correspond to the +// operators new/delete and new[]/delete[]. +// +// Example usage (scoped_ptr<T>): +// { +// scoped_ptr<Foo> foo(new Foo("wee")); +// } // foo goes out of scope, releasing the pointer with it. +// +// { +// scoped_ptr<Foo> foo; // No pointer managed. +// foo.reset(new Foo("wee")); // Now a pointer is managed. +// foo.reset(new Foo("wee2")); // Foo("wee") was destroyed. +// foo.reset(new Foo("wee3")); // Foo("wee2") was destroyed. +// foo->Method(); // Foo::Method() called. +// foo.get()->Method(); // Foo::Method() called. +// SomeFunc(foo.release()); // SomeFunc takes ownership, foo no longer +// // manages a pointer. +// foo.reset(new Foo("wee4")); // foo manages a pointer again. +// foo.reset(); // Foo("wee4") destroyed, foo no longer +// // manages a pointer. +// } // foo wasn't managing a pointer, so nothing was destroyed. +// +// Example usage (scoped_ptr<T[]>): +// { +// scoped_ptr<Foo[]> foo(new Foo[100]); +// foo.get()->Method(); // Foo::Method on the 0th element. +// foo[10].Method(); // Foo::Method on the 10th element. +// } +// +// These scopers also implement part of the functionality of C++11 unique_ptr +// in that they are "movable but not copyable." You can use the scopers in +// the parameter and return types of functions to signify ownership transfer +// in to and out of a function. When calling a function that has a scoper +// as the argument type, it must be called with an rvalue of a scoper, which +// can be created by using std::move(), or the result of another function that +// generates a temporary; passing by copy will NOT work. Here is an example +// using scoped_ptr: +// +// void TakesOwnership(scoped_ptr<Foo> arg) { +// // Do something with arg. +// } +// scoped_ptr<Foo> CreateFoo() { +// // No need for calling std::move() for returning a move-only value, or +// // when you already have an rvalue as we do here. +// return scoped_ptr<Foo>(new Foo("new")); +// } +// scoped_ptr<Foo> PassThru(scoped_ptr<Foo> arg) { +// return arg; +// } +// +// { +// scoped_ptr<Foo> ptr(new Foo("yay")); // ptr manages Foo("yay"). +// TakesOwnership(std::move(ptr)); // ptr no longer owns Foo("yay"). +// scoped_ptr<Foo> ptr2 = CreateFoo(); // ptr2 owns the return Foo. +// scoped_ptr<Foo> ptr3 = // ptr3 now owns what was in ptr2. +// PassThru(std::move(ptr2)); // ptr2 is correspondingly nullptr. +// } +// +// Notice that if you do not call std::move() when returning from PassThru(), or +// when invoking TakesOwnership(), the code will not compile because scopers +// are not copyable; they only implement move semantics which require calling +// the std::move() function to signify a destructive transfer of state. +// CreateFoo() is different though because we are constructing a temporary on +// the return line and thus can avoid needing to call std::move(). +// +// The conversion move-constructor properly handles upcast in initialization, +// i.e. you can use a scoped_ptr<Child> to initialize a scoped_ptr<Parent>: +// +// scoped_ptr<Foo> foo(new Foo()); +// scoped_ptr<FooParent> parent(std::move(foo)); + +#ifndef BASE_MEMORY_SCOPED_PTR_H_ +#define BASE_MEMORY_SCOPED_PTR_H_ + +// This is an implementation designed to match the anticipated future TR2 +// implementation of the scoped_ptr class. + +#include <assert.h> +#include <stddef.h> +#include <stdlib.h> + +#include <iosfwd> +#include <memory> +#include <type_traits> +#include <utility> + +#include "base/compiler_specific.h" +#include "base/macros.h" +#include "base/move.h" +#include "base/template_util.h" + +namespace base { + +namespace subtle { +class RefCountedBase; +class RefCountedThreadSafeBase; +} // namespace subtle + +// Function object which invokes 'free' on its parameter, which must be +// a pointer. Can be used to store malloc-allocated pointers in scoped_ptr: +// +// scoped_ptr<int, base::FreeDeleter> foo_ptr( +// static_cast<int*>(malloc(sizeof(int)))); +struct FreeDeleter { + inline void operator()(void* ptr) const { + free(ptr); + } +}; + +namespace internal { + +template <typename T> struct IsNotRefCounted { + enum { + value = !base::is_convertible<T*, base::subtle::RefCountedBase*>::value && + !base::is_convertible<T*, base::subtle::RefCountedThreadSafeBase*>:: + value + }; +}; + +// Minimal implementation of the core logic of scoped_ptr, suitable for +// reuse in both scoped_ptr and its specializations. +template <class T, class D> +class scoped_ptr_impl { + public: + explicit scoped_ptr_impl(T* p) : data_(p) {} + + // Initializer for deleters that have data parameters. + scoped_ptr_impl(T* p, const D& d) : data_(p, d) {} + + // Templated constructor that destructively takes the value from another + // scoped_ptr_impl. + template <typename U, typename V> + scoped_ptr_impl(scoped_ptr_impl<U, V>* other) + : data_(other->release(), other->get_deleter()) { + // We do not support move-only deleters. We could modify our move + // emulation to have base::subtle::move() and base::subtle::forward() + // functions that are imperfect emulations of their C++11 equivalents, + // but until there's a requirement, just assume deleters are copyable. + } + + template <typename U, typename V> + void TakeState(scoped_ptr_impl<U, V>* other) { + // See comment in templated constructor above regarding lack of support + // for move-only deleters. + reset(other->release()); + get_deleter() = other->get_deleter(); + } + + ~scoped_ptr_impl() { + // Match libc++, which calls reset() in its destructor. + // Use nullptr as the new value for three reasons: + // 1. libc++ does it. + // 2. Avoids infinitely recursing into destructors if two classes are owned + // in a reference cycle (see ScopedPtrTest.ReferenceCycle). + // 3. If |this| is accessed in the future, in a use-after-free bug, attempts + // to dereference |this|'s pointer should cause either a failure or a + // segfault closer to the problem. If |this| wasn't reset to nullptr, + // the access would cause the deleted memory to be read or written + // leading to other more subtle issues. + reset(nullptr); + } + + void reset(T* p) { + // Match C++11's definition of unique_ptr::reset(), which requires changing + // the pointer before invoking the deleter on the old pointer. This prevents + // |this| from being accessed after the deleter is run, which may destroy + // |this|. + T* old = data_.ptr; + data_.ptr = p; + if (old != nullptr) + static_cast<D&>(data_)(old); + } + + T* get() const { return data_.ptr; } + + D& get_deleter() { return data_; } + const D& get_deleter() const { return data_; } + + void swap(scoped_ptr_impl& p2) { + // Standard swap idiom: 'using std::swap' ensures that std::swap is + // present in the overload set, but we call swap unqualified so that + // any more-specific overloads can be used, if available. + using std::swap; + swap(static_cast<D&>(data_), static_cast<D&>(p2.data_)); + swap(data_.ptr, p2.data_.ptr); + } + + T* release() { + T* old_ptr = data_.ptr; + data_.ptr = nullptr; + return old_ptr; + } + + private: + // Needed to allow type-converting constructor. + template <typename U, typename V> friend class scoped_ptr_impl; + + // Use the empty base class optimization to allow us to have a D + // member, while avoiding any space overhead for it when D is an + // empty class. See e.g. http://www.cantrip.org/emptyopt.html for a good + // discussion of this technique. + struct Data : public D { + explicit Data(T* ptr_in) : ptr(ptr_in) {} + Data(T* ptr_in, const D& other) : D(other), ptr(ptr_in) {} + T* ptr; + }; + + Data data_; + + DISALLOW_COPY_AND_ASSIGN(scoped_ptr_impl); +}; + +} // namespace internal + +} // namespace base + +// A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T> +// automatically deletes the pointer it holds (if any). +// That is, scoped_ptr<T> owns the T object that it points to. +// Like a T*, a scoped_ptr<T> may hold either nullptr or a pointer to a T +// object. Also like T*, scoped_ptr<T> is thread-compatible, and once you +// dereference it, you get the thread safety guarantees of T. +// +// The size of scoped_ptr is small. On most compilers, when using the +// std::default_delete, sizeof(scoped_ptr<T>) == sizeof(T*). Custom deleters +// will increase the size proportional to whatever state they need to have. See +// comments inside scoped_ptr_impl<> for details. +// +// Current implementation targets having a strict subset of C++11's +// unique_ptr<> features. Known deficiencies include not supporting move-only +// deleteres, function pointers as deleters, and deleters with reference +// types. +template <class T, class D = std::default_delete<T>> +class scoped_ptr { + DISALLOW_COPY_AND_ASSIGN_WITH_MOVE_FOR_BIND(scoped_ptr) + + static_assert(!std::is_array<T>::value, + "scoped_ptr doesn't support array with size"); + static_assert(base::internal::IsNotRefCounted<T>::value, + "T is a refcounted type and needs a scoped_refptr"); + + public: + // The element and deleter types. + using element_type = T; + using deleter_type = D; + + // Constructor. Defaults to initializing with nullptr. + scoped_ptr() : impl_(nullptr) {} + + // Constructor. Takes ownership of p. + explicit scoped_ptr(element_type* p) : impl_(p) {} + + // Constructor. Allows initialization of a stateful deleter. + scoped_ptr(element_type* p, const D& d) : impl_(p, d) {} + + // Constructor. Allows construction from a nullptr. + scoped_ptr(std::nullptr_t) : impl_(nullptr) {} + + // Move constructor. + // + // IMPLEMENTATION NOTE: Clang requires a move constructor to be defined (and + // not just the conversion constructor) in order to warn on pessimizing moves. + // The requirements for the move constructor are specified in C++11 + // 20.7.1.2.1.15-17, which has some subtleties around reference deleters. As + // we don't support reference (or move-only) deleters, the post conditions are + // trivially true: we always copy construct the deleter from other's deleter. + scoped_ptr(scoped_ptr&& other) : impl_(&other.impl_) {} + + // Conversion constructor. Allows construction from a scoped_ptr rvalue for a + // convertible type and deleter. + // + // IMPLEMENTATION NOTE: C++ 20.7.1.2.1.19 requires this constructor to only + // participate in overload resolution if all the following are true: + // - U is implicitly convertible to T: this is important for 2 reasons: + // 1. So type traits don't incorrectly return true, e.g. + // std::is_convertible<scoped_ptr<Base>, scoped_ptr<Derived>>::value + // should be false. + // 2. To make sure code like this compiles: + // void F(scoped_ptr<int>); + // void F(scoped_ptr<Base>); + // // Ambiguous since both conversion constructors match. + // F(scoped_ptr<Derived>()); + // - U is not an array type: to prevent conversions from scoped_ptr<T[]> to + // scoped_ptr<T>. + // - D is a reference type and E is the same type, or D is not a reference + // type and E is implicitly convertible to D: again, we don't support + // reference deleters, so we only worry about the latter requirement. + template <typename U, + typename E, + typename std::enable_if<!std::is_array<U>::value && + std::is_convertible<U*, T*>::value && + std::is_convertible<E, D>::value>::type* = + nullptr> + scoped_ptr(scoped_ptr<U, E>&& other) + : impl_(&other.impl_) {} + + // operator=. + // + // IMPLEMENTATION NOTE: Unlike the move constructor, Clang does not appear to + // require a move assignment operator to trigger the pessimizing move warning: + // in this case, the warning triggers when moving a temporary. For consistency + // with the move constructor, we define it anyway. C++11 20.7.1.2.3.1-3 + // defines several requirements around this: like the move constructor, the + // requirements are simplified by the fact that we don't support move-only or + // reference deleters. + scoped_ptr& operator=(scoped_ptr&& rhs) { + impl_.TakeState(&rhs.impl_); + return *this; + } + + // operator=. Allows assignment from a scoped_ptr rvalue for a convertible + // type and deleter. + // + // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this operator= distinct from + // the normal move assignment operator. C++11 20.7.1.2.3.4-7 contains the + // requirement for this operator, but like the conversion constructor, the + // requirements are greatly simplified by not supporting move-only or + // reference deleters. + template <typename U, + typename E, + typename std::enable_if<!std::is_array<U>::value && + std::is_convertible<U*, T*>::value && + // Note that this really should be + // std::is_assignable, but <type_traits> + // appears to be missing this on some + // platforms. This is close enough (though + // it's not the same). + std::is_convertible<D, E>::value>::type* = + nullptr> + scoped_ptr& operator=(scoped_ptr<U, E>&& rhs) { + impl_.TakeState(&rhs.impl_); + return *this; + } + + // operator=. Allows assignment from a nullptr. Deletes the currently owned + // object, if any. + scoped_ptr& operator=(std::nullptr_t) { + reset(); + return *this; + } + + // Reset. Deletes the currently owned object, if any. + // Then takes ownership of a new object, if given. + void reset(element_type* p = nullptr) { impl_.reset(p); } + + // Accessors to get the owned object. + // operator* and operator-> will assert() if there is no current object. + element_type& operator*() const { + assert(impl_.get() != nullptr); + return *impl_.get(); + } + element_type* operator->() const { + assert(impl_.get() != nullptr); + return impl_.get(); + } + element_type* get() const { return impl_.get(); } + + // Access to the deleter. + deleter_type& get_deleter() { return impl_.get_deleter(); } + const deleter_type& get_deleter() const { return impl_.get_deleter(); } + + // Allow scoped_ptr<element_type> to be used in boolean expressions, but not + // implicitly convertible to a real bool (which is dangerous). + // + // Note that this trick is only safe when the == and != operators + // are declared explicitly, as otherwise "scoped_ptr1 == + // scoped_ptr2" will compile but do the wrong thing (i.e., convert + // to Testable and then do the comparison). + private: + typedef base::internal::scoped_ptr_impl<element_type, deleter_type> + scoped_ptr::*Testable; + + public: + operator Testable() const { + return impl_.get() ? &scoped_ptr::impl_ : nullptr; + } + + // Swap two scoped pointers. + void swap(scoped_ptr& p2) { + impl_.swap(p2.impl_); + } + + // Release a pointer. + // The return value is the current pointer held by this object. If this object + // holds a nullptr, the return value is nullptr. After this operation, this + // object will hold a nullptr, and will not own the object any more. + element_type* release() WARN_UNUSED_RESULT { + return impl_.release(); + } + + private: + // Needed to reach into |impl_| in the constructor. + template <typename U, typename V> friend class scoped_ptr; + base::internal::scoped_ptr_impl<element_type, deleter_type> impl_; + + // Forbidden for API compatibility with std::unique_ptr. + explicit scoped_ptr(int disallow_construction_from_null); +}; + +template <class T, class D> +class scoped_ptr<T[], D> { + DISALLOW_COPY_AND_ASSIGN_WITH_MOVE_FOR_BIND(scoped_ptr) + + public: + // The element and deleter types. + using element_type = T; + using deleter_type = D; + + // Constructor. Defaults to initializing with nullptr. + scoped_ptr() : impl_(nullptr) {} + + // Constructor. Stores the given array. Note that the argument's type + // must exactly match T*. In particular: + // - it cannot be a pointer to a type derived from T, because it is + // inherently unsafe in the general case to access an array through a + // pointer whose dynamic type does not match its static type (eg., if + // T and the derived types had different sizes access would be + // incorrectly calculated). Deletion is also always undefined + // (C++98 [expr.delete]p3). If you're doing this, fix your code. + // - it cannot be const-qualified differently from T per unique_ptr spec + // (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting + // to work around this may use const_cast<const T*>(). + explicit scoped_ptr(element_type* array) : impl_(array) {} + + // Constructor. Allows construction from a nullptr. + scoped_ptr(std::nullptr_t) : impl_(nullptr) {} + + // Constructor. Allows construction from a scoped_ptr rvalue. + scoped_ptr(scoped_ptr&& other) : impl_(&other.impl_) {} + + // operator=. Allows assignment from a scoped_ptr rvalue. + scoped_ptr& operator=(scoped_ptr&& rhs) { + impl_.TakeState(&rhs.impl_); + return *this; + } + + // operator=. Allows assignment from a nullptr. Deletes the currently owned + // array, if any. + scoped_ptr& operator=(std::nullptr_t) { + reset(); + return *this; + } + + // Reset. Deletes the currently owned array, if any. + // Then takes ownership of a new object, if given. + void reset(element_type* array = nullptr) { impl_.reset(array); } + + // Accessors to get the owned array. + element_type& operator[](size_t i) const { + assert(impl_.get() != nullptr); + return impl_.get()[i]; + } + element_type* get() const { return impl_.get(); } + + // Access to the deleter. + deleter_type& get_deleter() { return impl_.get_deleter(); } + const deleter_type& get_deleter() const { return impl_.get_deleter(); } + + // Allow scoped_ptr<element_type> to be used in boolean expressions, but not + // implicitly convertible to a real bool (which is dangerous). + private: + typedef base::internal::scoped_ptr_impl<element_type, deleter_type> + scoped_ptr::*Testable; + + public: + operator Testable() const { + return impl_.get() ? &scoped_ptr::impl_ : nullptr; + } + + // Swap two scoped pointers. + void swap(scoped_ptr& p2) { + impl_.swap(p2.impl_); + } + + // Release a pointer. + // The return value is the current pointer held by this object. If this object + // holds a nullptr, the return value is nullptr. After this operation, this + // object will hold a nullptr, and will not own the object any more. + element_type* release() WARN_UNUSED_RESULT { + return impl_.release(); + } + + private: + // Force element_type to be a complete type. + enum { type_must_be_complete = sizeof(element_type) }; + + // Actually hold the data. + base::internal::scoped_ptr_impl<element_type, deleter_type> impl_; + + // Disable initialization from any type other than element_type*, by + // providing a constructor that matches such an initialization, but is + // private and has no definition. This is disabled because it is not safe to + // call delete[] on an array whose static type does not match its dynamic + // type. + template <typename U> explicit scoped_ptr(U* array); + explicit scoped_ptr(int disallow_construction_from_null); + + // Disable reset() from any type other than element_type*, for the same + // reasons as the constructor above. + template <typename U> void reset(U* array); + void reset(int disallow_reset_from_null); +}; + +// Free functions +template <class T, class D> +void swap(scoped_ptr<T, D>& p1, scoped_ptr<T, D>& p2) { + p1.swap(p2); +} + +template <class T1, class D1, class T2, class D2> +bool operator==(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) { + return p1.get() == p2.get(); +} +template <class T, class D> +bool operator==(const scoped_ptr<T, D>& p, std::nullptr_t) { + return p.get() == nullptr; +} +template <class T, class D> +bool operator==(std::nullptr_t, const scoped_ptr<T, D>& p) { + return p.get() == nullptr; +} + +template <class T1, class D1, class T2, class D2> +bool operator!=(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) { + return !(p1 == p2); +} +template <class T, class D> +bool operator!=(const scoped_ptr<T, D>& p, std::nullptr_t) { + return !(p == nullptr); +} +template <class T, class D> +bool operator!=(std::nullptr_t, const scoped_ptr<T, D>& p) { + return !(p == nullptr); +} + +template <class T1, class D1, class T2, class D2> +bool operator<(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) { + return p1.get() < p2.get(); +} +template <class T, class D> +bool operator<(const scoped_ptr<T, D>& p, std::nullptr_t) { + return p.get() < nullptr; +} +template <class T, class D> +bool operator<(std::nullptr_t, const scoped_ptr<T, D>& p) { + return nullptr < p.get(); +} + +template <class T1, class D1, class T2, class D2> +bool operator>(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) { + return p2 < p1; +} +template <class T, class D> +bool operator>(const scoped_ptr<T, D>& p, std::nullptr_t) { + return nullptr < p; +} +template <class T, class D> +bool operator>(std::nullptr_t, const scoped_ptr<T, D>& p) { + return p < nullptr; +} + +template <class T1, class D1, class T2, class D2> +bool operator<=(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) { + return !(p1 > p2); +} +template <class T, class D> +bool operator<=(const scoped_ptr<T, D>& p, std::nullptr_t) { + return !(p > nullptr); +} +template <class T, class D> +bool operator<=(std::nullptr_t, const scoped_ptr<T, D>& p) { + return !(nullptr > p); +} + +template <class T1, class D1, class T2, class D2> +bool operator>=(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) { + return !(p1 < p2); +} +template <class T, class D> +bool operator>=(const scoped_ptr<T, D>& p, std::nullptr_t) { + return !(p < nullptr); +} +template <class T, class D> +bool operator>=(std::nullptr_t, const scoped_ptr<T, D>& p) { + return !(nullptr < p); +} + +// A function to convert T* into scoped_ptr<T> +// Doing e.g. make_scoped_ptr(new FooBarBaz<type>(arg)) is a shorter notation +// for scoped_ptr<FooBarBaz<type> >(new FooBarBaz<type>(arg)) +template <typename T> +scoped_ptr<T> make_scoped_ptr(T* ptr) { + return scoped_ptr<T>(ptr); +} + +template <typename T> +std::ostream& operator<<(std::ostream& out, const scoped_ptr<T>& p) { + return out << p.get(); +} + +#endif // BASE_MEMORY_SCOPED_PTR_H_ |