diff options
Diffstat (limited to 'security/sandbox/chromium/base/memory/scoped_ptr.h')
-rw-r--r-- | security/sandbox/chromium/base/memory/scoped_ptr.h | 607 |
1 files changed, 0 insertions, 607 deletions
diff --git a/security/sandbox/chromium/base/memory/scoped_ptr.h b/security/sandbox/chromium/base/memory/scoped_ptr.h deleted file mode 100644 index 282a01486..000000000 --- a/security/sandbox/chromium/base/memory/scoped_ptr.h +++ /dev/null @@ -1,607 +0,0 @@ -// Copyright (c) 2012 The Chromium Authors. All rights reserved. -// Use of this source code is governed by a BSD-style license that can be -// found in the LICENSE file. - -// Scopers help you manage ownership of a pointer, helping you easily manage a -// pointer within a scope, and automatically destroying the pointer at the end -// of a scope. There are two main classes you will use, which correspond to the -// operators new/delete and new[]/delete[]. -// -// Example usage (scoped_ptr<T>): -// { -// scoped_ptr<Foo> foo(new Foo("wee")); -// } // foo goes out of scope, releasing the pointer with it. -// -// { -// scoped_ptr<Foo> foo; // No pointer managed. -// foo.reset(new Foo("wee")); // Now a pointer is managed. -// foo.reset(new Foo("wee2")); // Foo("wee") was destroyed. -// foo.reset(new Foo("wee3")); // Foo("wee2") was destroyed. -// foo->Method(); // Foo::Method() called. -// foo.get()->Method(); // Foo::Method() called. -// SomeFunc(foo.release()); // SomeFunc takes ownership, foo no longer -// // manages a pointer. -// foo.reset(new Foo("wee4")); // foo manages a pointer again. -// foo.reset(); // Foo("wee4") destroyed, foo no longer -// // manages a pointer. -// } // foo wasn't managing a pointer, so nothing was destroyed. -// -// Example usage (scoped_ptr<T[]>): -// { -// scoped_ptr<Foo[]> foo(new Foo[100]); -// foo.get()->Method(); // Foo::Method on the 0th element. -// foo[10].Method(); // Foo::Method on the 10th element. -// } -// -// These scopers also implement part of the functionality of C++11 unique_ptr -// in that they are "movable but not copyable." You can use the scopers in -// the parameter and return types of functions to signify ownership transfer -// in to and out of a function. When calling a function that has a scoper -// as the argument type, it must be called with an rvalue of a scoper, which -// can be created by using std::move(), or the result of another function that -// generates a temporary; passing by copy will NOT work. Here is an example -// using scoped_ptr: -// -// void TakesOwnership(scoped_ptr<Foo> arg) { -// // Do something with arg. -// } -// scoped_ptr<Foo> CreateFoo() { -// // No need for calling std::move() for returning a move-only value, or -// // when you already have an rvalue as we do here. -// return scoped_ptr<Foo>(new Foo("new")); -// } -// scoped_ptr<Foo> PassThru(scoped_ptr<Foo> arg) { -// return arg; -// } -// -// { -// scoped_ptr<Foo> ptr(new Foo("yay")); // ptr manages Foo("yay"). -// TakesOwnership(std::move(ptr)); // ptr no longer owns Foo("yay"). -// scoped_ptr<Foo> ptr2 = CreateFoo(); // ptr2 owns the return Foo. -// scoped_ptr<Foo> ptr3 = // ptr3 now owns what was in ptr2. -// PassThru(std::move(ptr2)); // ptr2 is correspondingly nullptr. -// } -// -// Notice that if you do not call std::move() when returning from PassThru(), or -// when invoking TakesOwnership(), the code will not compile because scopers -// are not copyable; they only implement move semantics which require calling -// the std::move() function to signify a destructive transfer of state. -// CreateFoo() is different though because we are constructing a temporary on -// the return line and thus can avoid needing to call std::move(). -// -// The conversion move-constructor properly handles upcast in initialization, -// i.e. you can use a scoped_ptr<Child> to initialize a scoped_ptr<Parent>: -// -// scoped_ptr<Foo> foo(new Foo()); -// scoped_ptr<FooParent> parent(std::move(foo)); - -#ifndef BASE_MEMORY_SCOPED_PTR_H_ -#define BASE_MEMORY_SCOPED_PTR_H_ - -// This is an implementation designed to match the anticipated future TR2 -// implementation of the scoped_ptr class. - -#include <assert.h> -#include <stddef.h> -#include <stdlib.h> - -#include <iosfwd> -#include <memory> -#include <type_traits> -#include <utility> - -#include "base/compiler_specific.h" -#include "base/macros.h" -#include "base/move.h" -#include "base/template_util.h" - -namespace base { - -namespace subtle { -class RefCountedBase; -class RefCountedThreadSafeBase; -} // namespace subtle - -// Function object which invokes 'free' on its parameter, which must be -// a pointer. Can be used to store malloc-allocated pointers in scoped_ptr: -// -// scoped_ptr<int, base::FreeDeleter> foo_ptr( -// static_cast<int*>(malloc(sizeof(int)))); -struct FreeDeleter { - inline void operator()(void* ptr) const { - free(ptr); - } -}; - -namespace internal { - -template <typename T> struct IsNotRefCounted { - enum { - value = !base::is_convertible<T*, base::subtle::RefCountedBase*>::value && - !base::is_convertible<T*, base::subtle::RefCountedThreadSafeBase*>:: - value - }; -}; - -// Minimal implementation of the core logic of scoped_ptr, suitable for -// reuse in both scoped_ptr and its specializations. -template <class T, class D> -class scoped_ptr_impl { - public: - explicit scoped_ptr_impl(T* p) : data_(p) {} - - // Initializer for deleters that have data parameters. - scoped_ptr_impl(T* p, const D& d) : data_(p, d) {} - - // Templated constructor that destructively takes the value from another - // scoped_ptr_impl. - template <typename U, typename V> - scoped_ptr_impl(scoped_ptr_impl<U, V>* other) - : data_(other->release(), other->get_deleter()) { - // We do not support move-only deleters. We could modify our move - // emulation to have base::subtle::move() and base::subtle::forward() - // functions that are imperfect emulations of their C++11 equivalents, - // but until there's a requirement, just assume deleters are copyable. - } - - template <typename U, typename V> - void TakeState(scoped_ptr_impl<U, V>* other) { - // See comment in templated constructor above regarding lack of support - // for move-only deleters. - reset(other->release()); - get_deleter() = other->get_deleter(); - } - - ~scoped_ptr_impl() { - // Match libc++, which calls reset() in its destructor. - // Use nullptr as the new value for three reasons: - // 1. libc++ does it. - // 2. Avoids infinitely recursing into destructors if two classes are owned - // in a reference cycle (see ScopedPtrTest.ReferenceCycle). - // 3. If |this| is accessed in the future, in a use-after-free bug, attempts - // to dereference |this|'s pointer should cause either a failure or a - // segfault closer to the problem. If |this| wasn't reset to nullptr, - // the access would cause the deleted memory to be read or written - // leading to other more subtle issues. - reset(nullptr); - } - - void reset(T* p) { - // Match C++11's definition of unique_ptr::reset(), which requires changing - // the pointer before invoking the deleter on the old pointer. This prevents - // |this| from being accessed after the deleter is run, which may destroy - // |this|. - T* old = data_.ptr; - data_.ptr = p; - if (old != nullptr) - static_cast<D&>(data_)(old); - } - - T* get() const { return data_.ptr; } - - D& get_deleter() { return data_; } - const D& get_deleter() const { return data_; } - - void swap(scoped_ptr_impl& p2) { - // Standard swap idiom: 'using std::swap' ensures that std::swap is - // present in the overload set, but we call swap unqualified so that - // any more-specific overloads can be used, if available. - using std::swap; - swap(static_cast<D&>(data_), static_cast<D&>(p2.data_)); - swap(data_.ptr, p2.data_.ptr); - } - - T* release() { - T* old_ptr = data_.ptr; - data_.ptr = nullptr; - return old_ptr; - } - - private: - // Needed to allow type-converting constructor. - template <typename U, typename V> friend class scoped_ptr_impl; - - // Use the empty base class optimization to allow us to have a D - // member, while avoiding any space overhead for it when D is an - // empty class. See e.g. http://www.cantrip.org/emptyopt.html for a good - // discussion of this technique. - struct Data : public D { - explicit Data(T* ptr_in) : ptr(ptr_in) {} - Data(T* ptr_in, const D& other) : D(other), ptr(ptr_in) {} - T* ptr; - }; - - Data data_; - - DISALLOW_COPY_AND_ASSIGN(scoped_ptr_impl); -}; - -} // namespace internal - -} // namespace base - -// A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T> -// automatically deletes the pointer it holds (if any). -// That is, scoped_ptr<T> owns the T object that it points to. -// Like a T*, a scoped_ptr<T> may hold either nullptr or a pointer to a T -// object. Also like T*, scoped_ptr<T> is thread-compatible, and once you -// dereference it, you get the thread safety guarantees of T. -// -// The size of scoped_ptr is small. On most compilers, when using the -// std::default_delete, sizeof(scoped_ptr<T>) == sizeof(T*). Custom deleters -// will increase the size proportional to whatever state they need to have. See -// comments inside scoped_ptr_impl<> for details. -// -// Current implementation targets having a strict subset of C++11's -// unique_ptr<> features. Known deficiencies include not supporting move-only -// deleteres, function pointers as deleters, and deleters with reference -// types. -template <class T, class D = std::default_delete<T>> -class scoped_ptr { - DISALLOW_COPY_AND_ASSIGN_WITH_MOVE_FOR_BIND(scoped_ptr) - - static_assert(!std::is_array<T>::value, - "scoped_ptr doesn't support array with size"); - static_assert(base::internal::IsNotRefCounted<T>::value, - "T is a refcounted type and needs a scoped_refptr"); - - public: - // The element and deleter types. - using element_type = T; - using deleter_type = D; - - // Constructor. Defaults to initializing with nullptr. - scoped_ptr() : impl_(nullptr) {} - - // Constructor. Takes ownership of p. - explicit scoped_ptr(element_type* p) : impl_(p) {} - - // Constructor. Allows initialization of a stateful deleter. - scoped_ptr(element_type* p, const D& d) : impl_(p, d) {} - - // Constructor. Allows construction from a nullptr. - scoped_ptr(std::nullptr_t) : impl_(nullptr) {} - - // Move constructor. - // - // IMPLEMENTATION NOTE: Clang requires a move constructor to be defined (and - // not just the conversion constructor) in order to warn on pessimizing moves. - // The requirements for the move constructor are specified in C++11 - // 20.7.1.2.1.15-17, which has some subtleties around reference deleters. As - // we don't support reference (or move-only) deleters, the post conditions are - // trivially true: we always copy construct the deleter from other's deleter. - scoped_ptr(scoped_ptr&& other) : impl_(&other.impl_) {} - - // Conversion constructor. Allows construction from a scoped_ptr rvalue for a - // convertible type and deleter. - // - // IMPLEMENTATION NOTE: C++ 20.7.1.2.1.19 requires this constructor to only - // participate in overload resolution if all the following are true: - // - U is implicitly convertible to T: this is important for 2 reasons: - // 1. So type traits don't incorrectly return true, e.g. - // std::is_convertible<scoped_ptr<Base>, scoped_ptr<Derived>>::value - // should be false. - // 2. To make sure code like this compiles: - // void F(scoped_ptr<int>); - // void F(scoped_ptr<Base>); - // // Ambiguous since both conversion constructors match. - // F(scoped_ptr<Derived>()); - // - U is not an array type: to prevent conversions from scoped_ptr<T[]> to - // scoped_ptr<T>. - // - D is a reference type and E is the same type, or D is not a reference - // type and E is implicitly convertible to D: again, we don't support - // reference deleters, so we only worry about the latter requirement. - template <typename U, - typename E, - typename std::enable_if<!std::is_array<U>::value && - std::is_convertible<U*, T*>::value && - std::is_convertible<E, D>::value>::type* = - nullptr> - scoped_ptr(scoped_ptr<U, E>&& other) - : impl_(&other.impl_) {} - - // operator=. - // - // IMPLEMENTATION NOTE: Unlike the move constructor, Clang does not appear to - // require a move assignment operator to trigger the pessimizing move warning: - // in this case, the warning triggers when moving a temporary. For consistency - // with the move constructor, we define it anyway. C++11 20.7.1.2.3.1-3 - // defines several requirements around this: like the move constructor, the - // requirements are simplified by the fact that we don't support move-only or - // reference deleters. - scoped_ptr& operator=(scoped_ptr&& rhs) { - impl_.TakeState(&rhs.impl_); - return *this; - } - - // operator=. Allows assignment from a scoped_ptr rvalue for a convertible - // type and deleter. - // - // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this operator= distinct from - // the normal move assignment operator. C++11 20.7.1.2.3.4-7 contains the - // requirement for this operator, but like the conversion constructor, the - // requirements are greatly simplified by not supporting move-only or - // reference deleters. - template <typename U, - typename E, - typename std::enable_if<!std::is_array<U>::value && - std::is_convertible<U*, T*>::value && - // Note that this really should be - // std::is_assignable, but <type_traits> - // appears to be missing this on some - // platforms. This is close enough (though - // it's not the same). - std::is_convertible<D, E>::value>::type* = - nullptr> - scoped_ptr& operator=(scoped_ptr<U, E>&& rhs) { - impl_.TakeState(&rhs.impl_); - return *this; - } - - // operator=. Allows assignment from a nullptr. Deletes the currently owned - // object, if any. - scoped_ptr& operator=(std::nullptr_t) { - reset(); - return *this; - } - - // Reset. Deletes the currently owned object, if any. - // Then takes ownership of a new object, if given. - void reset(element_type* p = nullptr) { impl_.reset(p); } - - // Accessors to get the owned object. - // operator* and operator-> will assert() if there is no current object. - element_type& operator*() const { - assert(impl_.get() != nullptr); - return *impl_.get(); - } - element_type* operator->() const { - assert(impl_.get() != nullptr); - return impl_.get(); - } - element_type* get() const { return impl_.get(); } - - // Access to the deleter. - deleter_type& get_deleter() { return impl_.get_deleter(); } - const deleter_type& get_deleter() const { return impl_.get_deleter(); } - - // Allow scoped_ptr<element_type> to be used in boolean expressions, but not - // implicitly convertible to a real bool (which is dangerous). - // - // Note that this trick is only safe when the == and != operators - // are declared explicitly, as otherwise "scoped_ptr1 == - // scoped_ptr2" will compile but do the wrong thing (i.e., convert - // to Testable and then do the comparison). - private: - typedef base::internal::scoped_ptr_impl<element_type, deleter_type> - scoped_ptr::*Testable; - - public: - operator Testable() const { - return impl_.get() ? &scoped_ptr::impl_ : nullptr; - } - - // Swap two scoped pointers. - void swap(scoped_ptr& p2) { - impl_.swap(p2.impl_); - } - - // Release a pointer. - // The return value is the current pointer held by this object. If this object - // holds a nullptr, the return value is nullptr. After this operation, this - // object will hold a nullptr, and will not own the object any more. - element_type* release() WARN_UNUSED_RESULT { - return impl_.release(); - } - - private: - // Needed to reach into |impl_| in the constructor. - template <typename U, typename V> friend class scoped_ptr; - base::internal::scoped_ptr_impl<element_type, deleter_type> impl_; - - // Forbidden for API compatibility with std::unique_ptr. - explicit scoped_ptr(int disallow_construction_from_null); -}; - -template <class T, class D> -class scoped_ptr<T[], D> { - DISALLOW_COPY_AND_ASSIGN_WITH_MOVE_FOR_BIND(scoped_ptr) - - public: - // The element and deleter types. - using element_type = T; - using deleter_type = D; - - // Constructor. Defaults to initializing with nullptr. - scoped_ptr() : impl_(nullptr) {} - - // Constructor. Stores the given array. Note that the argument's type - // must exactly match T*. In particular: - // - it cannot be a pointer to a type derived from T, because it is - // inherently unsafe in the general case to access an array through a - // pointer whose dynamic type does not match its static type (eg., if - // T and the derived types had different sizes access would be - // incorrectly calculated). Deletion is also always undefined - // (C++98 [expr.delete]p3). If you're doing this, fix your code. - // - it cannot be const-qualified differently from T per unique_ptr spec - // (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting - // to work around this may use const_cast<const T*>(). - explicit scoped_ptr(element_type* array) : impl_(array) {} - - // Constructor. Allows construction from a nullptr. - scoped_ptr(std::nullptr_t) : impl_(nullptr) {} - - // Constructor. Allows construction from a scoped_ptr rvalue. - scoped_ptr(scoped_ptr&& other) : impl_(&other.impl_) {} - - // operator=. Allows assignment from a scoped_ptr rvalue. - scoped_ptr& operator=(scoped_ptr&& rhs) { - impl_.TakeState(&rhs.impl_); - return *this; - } - - // operator=. Allows assignment from a nullptr. Deletes the currently owned - // array, if any. - scoped_ptr& operator=(std::nullptr_t) { - reset(); - return *this; - } - - // Reset. Deletes the currently owned array, if any. - // Then takes ownership of a new object, if given. - void reset(element_type* array = nullptr) { impl_.reset(array); } - - // Accessors to get the owned array. - element_type& operator[](size_t i) const { - assert(impl_.get() != nullptr); - return impl_.get()[i]; - } - element_type* get() const { return impl_.get(); } - - // Access to the deleter. - deleter_type& get_deleter() { return impl_.get_deleter(); } - const deleter_type& get_deleter() const { return impl_.get_deleter(); } - - // Allow scoped_ptr<element_type> to be used in boolean expressions, but not - // implicitly convertible to a real bool (which is dangerous). - private: - typedef base::internal::scoped_ptr_impl<element_type, deleter_type> - scoped_ptr::*Testable; - - public: - operator Testable() const { - return impl_.get() ? &scoped_ptr::impl_ : nullptr; - } - - // Swap two scoped pointers. - void swap(scoped_ptr& p2) { - impl_.swap(p2.impl_); - } - - // Release a pointer. - // The return value is the current pointer held by this object. If this object - // holds a nullptr, the return value is nullptr. After this operation, this - // object will hold a nullptr, and will not own the object any more. - element_type* release() WARN_UNUSED_RESULT { - return impl_.release(); - } - - private: - // Force element_type to be a complete type. - enum { type_must_be_complete = sizeof(element_type) }; - - // Actually hold the data. - base::internal::scoped_ptr_impl<element_type, deleter_type> impl_; - - // Disable initialization from any type other than element_type*, by - // providing a constructor that matches such an initialization, but is - // private and has no definition. This is disabled because it is not safe to - // call delete[] on an array whose static type does not match its dynamic - // type. - template <typename U> explicit scoped_ptr(U* array); - explicit scoped_ptr(int disallow_construction_from_null); - - // Disable reset() from any type other than element_type*, for the same - // reasons as the constructor above. - template <typename U> void reset(U* array); - void reset(int disallow_reset_from_null); -}; - -// Free functions -template <class T, class D> -void swap(scoped_ptr<T, D>& p1, scoped_ptr<T, D>& p2) { - p1.swap(p2); -} - -template <class T1, class D1, class T2, class D2> -bool operator==(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) { - return p1.get() == p2.get(); -} -template <class T, class D> -bool operator==(const scoped_ptr<T, D>& p, std::nullptr_t) { - return p.get() == nullptr; -} -template <class T, class D> -bool operator==(std::nullptr_t, const scoped_ptr<T, D>& p) { - return p.get() == nullptr; -} - -template <class T1, class D1, class T2, class D2> -bool operator!=(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) { - return !(p1 == p2); -} -template <class T, class D> -bool operator!=(const scoped_ptr<T, D>& p, std::nullptr_t) { - return !(p == nullptr); -} -template <class T, class D> -bool operator!=(std::nullptr_t, const scoped_ptr<T, D>& p) { - return !(p == nullptr); -} - -template <class T1, class D1, class T2, class D2> -bool operator<(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) { - return p1.get() < p2.get(); -} -template <class T, class D> -bool operator<(const scoped_ptr<T, D>& p, std::nullptr_t) { - return p.get() < nullptr; -} -template <class T, class D> -bool operator<(std::nullptr_t, const scoped_ptr<T, D>& p) { - return nullptr < p.get(); -} - -template <class T1, class D1, class T2, class D2> -bool operator>(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) { - return p2 < p1; -} -template <class T, class D> -bool operator>(const scoped_ptr<T, D>& p, std::nullptr_t) { - return nullptr < p; -} -template <class T, class D> -bool operator>(std::nullptr_t, const scoped_ptr<T, D>& p) { - return p < nullptr; -} - -template <class T1, class D1, class T2, class D2> -bool operator<=(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) { - return !(p1 > p2); -} -template <class T, class D> -bool operator<=(const scoped_ptr<T, D>& p, std::nullptr_t) { - return !(p > nullptr); -} -template <class T, class D> -bool operator<=(std::nullptr_t, const scoped_ptr<T, D>& p) { - return !(nullptr > p); -} - -template <class T1, class D1, class T2, class D2> -bool operator>=(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) { - return !(p1 < p2); -} -template <class T, class D> -bool operator>=(const scoped_ptr<T, D>& p, std::nullptr_t) { - return !(p < nullptr); -} -template <class T, class D> -bool operator>=(std::nullptr_t, const scoped_ptr<T, D>& p) { - return !(nullptr < p); -} - -// A function to convert T* into scoped_ptr<T> -// Doing e.g. make_scoped_ptr(new FooBarBaz<type>(arg)) is a shorter notation -// for scoped_ptr<FooBarBaz<type> >(new FooBarBaz<type>(arg)) -template <typename T> -scoped_ptr<T> make_scoped_ptr(T* ptr) { - return scoped_ptr<T>(ptr); -} - -template <typename T> -std::ostream& operator<<(std::ostream& out, const scoped_ptr<T>& p) { - return out << p.get(); -} - -#endif // BASE_MEMORY_SCOPED_PTR_H_ |