summaryrefslogtreecommitdiffstats
path: root/other-licenses/snappy/src/snappy.cc
diff options
context:
space:
mode:
Diffstat (limited to 'other-licenses/snappy/src/snappy.cc')
-rw-r--r--other-licenses/snappy/src/snappy.cc1400
1 files changed, 1400 insertions, 0 deletions
diff --git a/other-licenses/snappy/src/snappy.cc b/other-licenses/snappy/src/snappy.cc
new file mode 100644
index 000000000..8a3668c69
--- /dev/null
+++ b/other-licenses/snappy/src/snappy.cc
@@ -0,0 +1,1400 @@
+// Copyright 2005 Google Inc. All Rights Reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include "snappy.h"
+#include "snappy-internal.h"
+#include "snappy-sinksource.h"
+
+#include <stdio.h>
+
+#include <algorithm>
+#include <string>
+#include <vector>
+
+
+namespace snappy {
+
+using internal::COPY_1_BYTE_OFFSET;
+using internal::COPY_2_BYTE_OFFSET;
+using internal::COPY_4_BYTE_OFFSET;
+using internal::LITERAL;
+using internal::char_table;
+using internal::kMaximumTagLength;
+using internal::wordmask;
+
+// Any hash function will produce a valid compressed bitstream, but a good
+// hash function reduces the number of collisions and thus yields better
+// compression for compressible input, and more speed for incompressible
+// input. Of course, it doesn't hurt if the hash function is reasonably fast
+// either, as it gets called a lot.
+static inline uint32 HashBytes(uint32 bytes, int shift) {
+ uint32 kMul = 0x1e35a7bd;
+ return (bytes * kMul) >> shift;
+}
+static inline uint32 Hash(const char* p, int shift) {
+ return HashBytes(UNALIGNED_LOAD32(p), shift);
+}
+
+size_t MaxCompressedLength(size_t source_len) {
+ // Compressed data can be defined as:
+ // compressed := item* literal*
+ // item := literal* copy
+ //
+ // The trailing literal sequence has a space blowup of at most 62/60
+ // since a literal of length 60 needs one tag byte + one extra byte
+ // for length information.
+ //
+ // Item blowup is trickier to measure. Suppose the "copy" op copies
+ // 4 bytes of data. Because of a special check in the encoding code,
+ // we produce a 4-byte copy only if the offset is < 65536. Therefore
+ // the copy op takes 3 bytes to encode, and this type of item leads
+ // to at most the 62/60 blowup for representing literals.
+ //
+ // Suppose the "copy" op copies 5 bytes of data. If the offset is big
+ // enough, it will take 5 bytes to encode the copy op. Therefore the
+ // worst case here is a one-byte literal followed by a five-byte copy.
+ // I.e., 6 bytes of input turn into 7 bytes of "compressed" data.
+ //
+ // This last factor dominates the blowup, so the final estimate is:
+ return 32 + source_len + source_len/6;
+}
+
+// Copy "len" bytes from "src" to "op", one byte at a time. Used for
+// handling COPY operations where the input and output regions may
+// overlap. For example, suppose:
+// src == "ab"
+// op == src + 2
+// len == 20
+// After IncrementalCopy(src, op, len), the result will have
+// eleven copies of "ab"
+// ababababababababababab
+// Note that this does not match the semantics of either memcpy()
+// or memmove().
+static inline void IncrementalCopy(const char* src, char* op, ssize_t len) {
+ assert(len > 0);
+ do {
+ *op++ = *src++;
+ } while (--len > 0);
+}
+
+// Equivalent to IncrementalCopy except that it can write up to ten extra
+// bytes after the end of the copy, and that it is faster.
+//
+// The main part of this loop is a simple copy of eight bytes at a time until
+// we've copied (at least) the requested amount of bytes. However, if op and
+// src are less than eight bytes apart (indicating a repeating pattern of
+// length < 8), we first need to expand the pattern in order to get the correct
+// results. For instance, if the buffer looks like this, with the eight-byte
+// <src> and <op> patterns marked as intervals:
+//
+// abxxxxxxxxxxxx
+// [------] src
+// [------] op
+//
+// a single eight-byte copy from <src> to <op> will repeat the pattern once,
+// after which we can move <op> two bytes without moving <src>:
+//
+// ababxxxxxxxxxx
+// [------] src
+// [------] op
+//
+// and repeat the exercise until the two no longer overlap.
+//
+// This allows us to do very well in the special case of one single byte
+// repeated many times, without taking a big hit for more general cases.
+//
+// The worst case of extra writing past the end of the match occurs when
+// op - src == 1 and len == 1; the last copy will read from byte positions
+// [0..7] and write to [4..11], whereas it was only supposed to write to
+// position 1. Thus, ten excess bytes.
+
+namespace {
+
+const int kMaxIncrementCopyOverflow = 10;
+
+inline void IncrementalCopyFastPath(const char* src, char* op, ssize_t len) {
+ while (PREDICT_FALSE(op - src < 8)) {
+ UnalignedCopy64(src, op);
+ len -= op - src;
+ op += op - src;
+ }
+ while (len > 0) {
+ UnalignedCopy64(src, op);
+ src += 8;
+ op += 8;
+ len -= 8;
+ }
+}
+
+} // namespace
+
+static inline char* EmitLiteral(char* op,
+ const char* literal,
+ int len,
+ bool allow_fast_path) {
+ int n = len - 1; // Zero-length literals are disallowed
+ if (n < 60) {
+ // Fits in tag byte
+ *op++ = LITERAL | (n << 2);
+
+ // The vast majority of copies are below 16 bytes, for which a
+ // call to memcpy is overkill. This fast path can sometimes
+ // copy up to 15 bytes too much, but that is okay in the
+ // main loop, since we have a bit to go on for both sides:
+ //
+ // - The input will always have kInputMarginBytes = 15 extra
+ // available bytes, as long as we're in the main loop, and
+ // if not, allow_fast_path = false.
+ // - The output will always have 32 spare bytes (see
+ // MaxCompressedLength).
+ if (allow_fast_path && len <= 16) {
+ UnalignedCopy64(literal, op);
+ UnalignedCopy64(literal + 8, op + 8);
+ return op + len;
+ }
+ } else {
+ // Encode in upcoming bytes
+ char* base = op;
+ int count = 0;
+ op++;
+ while (n > 0) {
+ *op++ = n & 0xff;
+ n >>= 8;
+ count++;
+ }
+ assert(count >= 1);
+ assert(count <= 4);
+ *base = LITERAL | ((59+count) << 2);
+ }
+ memcpy(op, literal, len);
+ return op + len;
+}
+
+static inline char* EmitCopyLessThan64(char* op, size_t offset, int len) {
+ assert(len <= 64);
+ assert(len >= 4);
+ assert(offset < 65536);
+
+ if ((len < 12) && (offset < 2048)) {
+ size_t len_minus_4 = len - 4;
+ assert(len_minus_4 < 8); // Must fit in 3 bits
+ *op++ = COPY_1_BYTE_OFFSET + ((len_minus_4) << 2) + ((offset >> 8) << 5);
+ *op++ = offset & 0xff;
+ } else {
+ *op++ = COPY_2_BYTE_OFFSET + ((len-1) << 2);
+ LittleEndian::Store16(op, offset);
+ op += 2;
+ }
+ return op;
+}
+
+static inline char* EmitCopy(char* op, size_t offset, int len) {
+ // Emit 64 byte copies but make sure to keep at least four bytes reserved
+ while (PREDICT_FALSE(len >= 68)) {
+ op = EmitCopyLessThan64(op, offset, 64);
+ len -= 64;
+ }
+
+ // Emit an extra 60 byte copy if have too much data to fit in one copy
+ if (len > 64) {
+ op = EmitCopyLessThan64(op, offset, 60);
+ len -= 60;
+ }
+
+ // Emit remainder
+ op = EmitCopyLessThan64(op, offset, len);
+ return op;
+}
+
+
+bool GetUncompressedLength(const char* start, size_t n, size_t* result) {
+ uint32 v = 0;
+ const char* limit = start + n;
+ if (Varint::Parse32WithLimit(start, limit, &v) != NULL) {
+ *result = v;
+ return true;
+ } else {
+ return false;
+ }
+}
+
+namespace internal {
+uint16* WorkingMemory::GetHashTable(size_t input_size, int* table_size) {
+ // Use smaller hash table when input.size() is smaller, since we
+ // fill the table, incurring O(hash table size) overhead for
+ // compression, and if the input is short, we won't need that
+ // many hash table entries anyway.
+ assert(kMaxHashTableSize >= 256);
+ size_t htsize = 256;
+ while (htsize < kMaxHashTableSize && htsize < input_size) {
+ htsize <<= 1;
+ }
+
+ uint16* table;
+ if (htsize <= ARRAYSIZE(small_table_)) {
+ table = small_table_;
+ } else {
+ if (large_table_ == NULL) {
+ large_table_ = new uint16[kMaxHashTableSize];
+ }
+ table = large_table_;
+ }
+
+ *table_size = htsize;
+ memset(table, 0, htsize * sizeof(*table));
+ return table;
+}
+} // end namespace internal
+
+// For 0 <= offset <= 4, GetUint32AtOffset(GetEightBytesAt(p), offset) will
+// equal UNALIGNED_LOAD32(p + offset). Motivation: On x86-64 hardware we have
+// empirically found that overlapping loads such as
+// UNALIGNED_LOAD32(p) ... UNALIGNED_LOAD32(p+1) ... UNALIGNED_LOAD32(p+2)
+// are slower than UNALIGNED_LOAD64(p) followed by shifts and casts to uint32.
+//
+// We have different versions for 64- and 32-bit; ideally we would avoid the
+// two functions and just inline the UNALIGNED_LOAD64 call into
+// GetUint32AtOffset, but GCC (at least not as of 4.6) is seemingly not clever
+// enough to avoid loading the value multiple times then. For 64-bit, the load
+// is done when GetEightBytesAt() is called, whereas for 32-bit, the load is
+// done at GetUint32AtOffset() time.
+
+#ifdef ARCH_K8
+
+typedef uint64 EightBytesReference;
+
+static inline EightBytesReference GetEightBytesAt(const char* ptr) {
+ return UNALIGNED_LOAD64(ptr);
+}
+
+static inline uint32 GetUint32AtOffset(uint64 v, int offset) {
+ assert(offset >= 0);
+ assert(offset <= 4);
+ return v >> (LittleEndian::IsLittleEndian() ? 8 * offset : 32 - 8 * offset);
+}
+
+#else
+
+typedef const char* EightBytesReference;
+
+static inline EightBytesReference GetEightBytesAt(const char* ptr) {
+ return ptr;
+}
+
+static inline uint32 GetUint32AtOffset(const char* v, int offset) {
+ assert(offset >= 0);
+ assert(offset <= 4);
+ return UNALIGNED_LOAD32(v + offset);
+}
+
+#endif
+
+// Flat array compression that does not emit the "uncompressed length"
+// prefix. Compresses "input" string to the "*op" buffer.
+//
+// REQUIRES: "input" is at most "kBlockSize" bytes long.
+// REQUIRES: "op" points to an array of memory that is at least
+// "MaxCompressedLength(input.size())" in size.
+// REQUIRES: All elements in "table[0..table_size-1]" are initialized to zero.
+// REQUIRES: "table_size" is a power of two
+//
+// Returns an "end" pointer into "op" buffer.
+// "end - op" is the compressed size of "input".
+namespace internal {
+char* CompressFragment(const char* input,
+ size_t input_size,
+ char* op,
+ uint16* table,
+ const int table_size) {
+ // "ip" is the input pointer, and "op" is the output pointer.
+ const char* ip = input;
+ assert(input_size <= kBlockSize);
+ assert((table_size & (table_size - 1)) == 0); // table must be power of two
+ const int shift = 32 - Bits::Log2Floor(table_size);
+ assert(static_cast<int>(kuint32max >> shift) == table_size - 1);
+ const char* ip_end = input + input_size;
+ const char* base_ip = ip;
+ // Bytes in [next_emit, ip) will be emitted as literal bytes. Or
+ // [next_emit, ip_end) after the main loop.
+ const char* next_emit = ip;
+
+ const size_t kInputMarginBytes = 15;
+ if (PREDICT_TRUE(input_size >= kInputMarginBytes)) {
+ const char* ip_limit = input + input_size - kInputMarginBytes;
+
+ for (uint32 next_hash = Hash(++ip, shift); ; ) {
+ assert(next_emit < ip);
+ // The body of this loop calls EmitLiteral once and then EmitCopy one or
+ // more times. (The exception is that when we're close to exhausting
+ // the input we goto emit_remainder.)
+ //
+ // In the first iteration of this loop we're just starting, so
+ // there's nothing to copy, so calling EmitLiteral once is
+ // necessary. And we only start a new iteration when the
+ // current iteration has determined that a call to EmitLiteral will
+ // precede the next call to EmitCopy (if any).
+ //
+ // Step 1: Scan forward in the input looking for a 4-byte-long match.
+ // If we get close to exhausting the input then goto emit_remainder.
+ //
+ // Heuristic match skipping: If 32 bytes are scanned with no matches
+ // found, start looking only at every other byte. If 32 more bytes are
+ // scanned (or skipped), look at every third byte, etc.. When a match is
+ // found, immediately go back to looking at every byte. This is a small
+ // loss (~5% performance, ~0.1% density) for compressible data due to more
+ // bookkeeping, but for non-compressible data (such as JPEG) it's a huge
+ // win since the compressor quickly "realizes" the data is incompressible
+ // and doesn't bother looking for matches everywhere.
+ //
+ // The "skip" variable keeps track of how many bytes there are since the
+ // last match; dividing it by 32 (ie. right-shifting by five) gives the
+ // number of bytes to move ahead for each iteration.
+ uint32 skip = 32;
+
+ const char* next_ip = ip;
+ const char* candidate;
+ do {
+ ip = next_ip;
+ uint32 hash = next_hash;
+ assert(hash == Hash(ip, shift));
+ uint32 bytes_between_hash_lookups = skip >> 5;
+ skip += bytes_between_hash_lookups;
+ next_ip = ip + bytes_between_hash_lookups;
+ if (PREDICT_FALSE(next_ip > ip_limit)) {
+ goto emit_remainder;
+ }
+ next_hash = Hash(next_ip, shift);
+ candidate = base_ip + table[hash];
+ assert(candidate >= base_ip);
+ assert(candidate < ip);
+
+ table[hash] = ip - base_ip;
+ } while (PREDICT_TRUE(UNALIGNED_LOAD32(ip) !=
+ UNALIGNED_LOAD32(candidate)));
+
+ // Step 2: A 4-byte match has been found. We'll later see if more
+ // than 4 bytes match. But, prior to the match, input
+ // bytes [next_emit, ip) are unmatched. Emit them as "literal bytes."
+ assert(next_emit + 16 <= ip_end);
+ op = EmitLiteral(op, next_emit, ip - next_emit, true);
+
+ // Step 3: Call EmitCopy, and then see if another EmitCopy could
+ // be our next move. Repeat until we find no match for the
+ // input immediately after what was consumed by the last EmitCopy call.
+ //
+ // If we exit this loop normally then we need to call EmitLiteral next,
+ // though we don't yet know how big the literal will be. We handle that
+ // by proceeding to the next iteration of the main loop. We also can exit
+ // this loop via goto if we get close to exhausting the input.
+ EightBytesReference input_bytes;
+ uint32 candidate_bytes = 0;
+
+ do {
+ // We have a 4-byte match at ip, and no need to emit any
+ // "literal bytes" prior to ip.
+ const char* base = ip;
+ int matched = 4 + FindMatchLength(candidate + 4, ip + 4, ip_end);
+ ip += matched;
+ size_t offset = base - candidate;
+ assert(0 == memcmp(base, candidate, matched));
+ op = EmitCopy(op, offset, matched);
+ // We could immediately start working at ip now, but to improve
+ // compression we first update table[Hash(ip - 1, ...)].
+ const char* insert_tail = ip - 1;
+ next_emit = ip;
+ if (PREDICT_FALSE(ip >= ip_limit)) {
+ goto emit_remainder;
+ }
+ input_bytes = GetEightBytesAt(insert_tail);
+ uint32 prev_hash = HashBytes(GetUint32AtOffset(input_bytes, 0), shift);
+ table[prev_hash] = ip - base_ip - 1;
+ uint32 cur_hash = HashBytes(GetUint32AtOffset(input_bytes, 1), shift);
+ candidate = base_ip + table[cur_hash];
+ candidate_bytes = UNALIGNED_LOAD32(candidate);
+ table[cur_hash] = ip - base_ip;
+ } while (GetUint32AtOffset(input_bytes, 1) == candidate_bytes);
+
+ next_hash = HashBytes(GetUint32AtOffset(input_bytes, 2), shift);
+ ++ip;
+ }
+ }
+
+ emit_remainder:
+ // Emit the remaining bytes as a literal
+ if (next_emit < ip_end) {
+ op = EmitLiteral(op, next_emit, ip_end - next_emit, false);
+ }
+
+ return op;
+}
+} // end namespace internal
+
+// Signature of output types needed by decompression code.
+// The decompression code is templatized on a type that obeys this
+// signature so that we do not pay virtual function call overhead in
+// the middle of a tight decompression loop.
+//
+// class DecompressionWriter {
+// public:
+// // Called before decompression
+// void SetExpectedLength(size_t length);
+//
+// // Called after decompression
+// bool CheckLength() const;
+//
+// // Called repeatedly during decompression
+// bool Append(const char* ip, size_t length);
+// bool AppendFromSelf(uint32 offset, size_t length);
+//
+// // The rules for how TryFastAppend differs from Append are somewhat
+// // convoluted:
+// //
+// // - TryFastAppend is allowed to decline (return false) at any
+// // time, for any reason -- just "return false" would be
+// // a perfectly legal implementation of TryFastAppend.
+// // The intention is for TryFastAppend to allow a fast path
+// // in the common case of a small append.
+// // - TryFastAppend is allowed to read up to <available> bytes
+// // from the input buffer, whereas Append is allowed to read
+// // <length>. However, if it returns true, it must leave
+// // at least five (kMaximumTagLength) bytes in the input buffer
+// // afterwards, so that there is always enough space to read the
+// // next tag without checking for a refill.
+// // - TryFastAppend must always return decline (return false)
+// // if <length> is 61 or more, as in this case the literal length is not
+// // decoded fully. In practice, this should not be a big problem,
+// // as it is unlikely that one would implement a fast path accepting
+// // this much data.
+// //
+// bool TryFastAppend(const char* ip, size_t available, size_t length);
+// };
+
+
+// Helper class for decompression
+class SnappyDecompressor {
+ private:
+ Source* reader_; // Underlying source of bytes to decompress
+ const char* ip_; // Points to next buffered byte
+ const char* ip_limit_; // Points just past buffered bytes
+ uint32 peeked_; // Bytes peeked from reader (need to skip)
+ bool eof_; // Hit end of input without an error?
+ char scratch_[kMaximumTagLength]; // See RefillTag().
+
+ // Ensure that all of the tag metadata for the next tag is available
+ // in [ip_..ip_limit_-1]. Also ensures that [ip,ip+4] is readable even
+ // if (ip_limit_ - ip_ < 5).
+ //
+ // Returns true on success, false on error or end of input.
+ bool RefillTag();
+
+ public:
+ explicit SnappyDecompressor(Source* reader)
+ : reader_(reader),
+ ip_(NULL),
+ ip_limit_(NULL),
+ peeked_(0),
+ eof_(false) {
+ }
+
+ ~SnappyDecompressor() {
+ // Advance past any bytes we peeked at from the reader
+ reader_->Skip(peeked_);
+ }
+
+ // Returns true iff we have hit the end of the input without an error.
+ bool eof() const {
+ return eof_;
+ }
+
+ // Read the uncompressed length stored at the start of the compressed data.
+ // On succcess, stores the length in *result and returns true.
+ // On failure, returns false.
+ bool ReadUncompressedLength(uint32* result) {
+ assert(ip_ == NULL); // Must not have read anything yet
+ // Length is encoded in 1..5 bytes
+ *result = 0;
+ uint32 shift = 0;
+ while (true) {
+ if (shift >= 32) return false;
+ size_t n;
+ const char* ip = reader_->Peek(&n);
+ if (n == 0) return false;
+ const unsigned char c = *(reinterpret_cast<const unsigned char*>(ip));
+ reader_->Skip(1);
+ uint32 val = c & 0x7f;
+ if (((val << shift) >> shift) != val) return false;
+ *result |= val << shift;
+ if (c < 128) {
+ break;
+ }
+ shift += 7;
+ }
+ return true;
+ }
+
+ // Process the next item found in the input.
+ // Returns true if successful, false on error or end of input.
+ template <class Writer>
+ void DecompressAllTags(Writer* writer) {
+ const char* ip = ip_;
+
+ // We could have put this refill fragment only at the beginning of the loop.
+ // However, duplicating it at the end of each branch gives the compiler more
+ // scope to optimize the <ip_limit_ - ip> expression based on the local
+ // context, which overall increases speed.
+ #define MAYBE_REFILL() \
+ if (ip_limit_ - ip < kMaximumTagLength) { \
+ ip_ = ip; \
+ if (!RefillTag()) return; \
+ ip = ip_; \
+ }
+
+ MAYBE_REFILL();
+ for ( ;; ) {
+ const unsigned char c = *(reinterpret_cast<const unsigned char*>(ip++));
+
+ if ((c & 0x3) == LITERAL) {
+ size_t literal_length = (c >> 2) + 1u;
+ if (writer->TryFastAppend(ip, ip_limit_ - ip, literal_length)) {
+ assert(literal_length < 61);
+ ip += literal_length;
+ // NOTE(user): There is no MAYBE_REFILL() here, as TryFastAppend()
+ // will not return true unless there's already at least five spare
+ // bytes in addition to the literal.
+ continue;
+ }
+ if (PREDICT_FALSE(literal_length >= 61)) {
+ // Long literal.
+ const size_t literal_length_length = literal_length - 60;
+ literal_length =
+ (LittleEndian::Load32(ip) & wordmask[literal_length_length]) + 1;
+ ip += literal_length_length;
+ }
+
+ size_t avail = ip_limit_ - ip;
+ while (avail < literal_length) {
+ if (!writer->Append(ip, avail)) return;
+ literal_length -= avail;
+ reader_->Skip(peeked_);
+ size_t n;
+ ip = reader_->Peek(&n);
+ avail = n;
+ peeked_ = avail;
+ if (avail == 0) return; // Premature end of input
+ ip_limit_ = ip + avail;
+ }
+ if (!writer->Append(ip, literal_length)) {
+ return;
+ }
+ ip += literal_length;
+ MAYBE_REFILL();
+ } else {
+ const uint32 entry = char_table[c];
+ const uint32 trailer = LittleEndian::Load32(ip) & wordmask[entry >> 11];
+ const uint32 length = entry & 0xff;
+ ip += entry >> 11;
+
+ // copy_offset/256 is encoded in bits 8..10. By just fetching
+ // those bits, we get copy_offset (since the bit-field starts at
+ // bit 8).
+ const uint32 copy_offset = entry & 0x700;
+ if (!writer->AppendFromSelf(copy_offset + trailer, length)) {
+ return;
+ }
+ MAYBE_REFILL();
+ }
+ }
+
+#undef MAYBE_REFILL
+ }
+};
+
+bool SnappyDecompressor::RefillTag() {
+ const char* ip = ip_;
+ if (ip == ip_limit_) {
+ // Fetch a new fragment from the reader
+ reader_->Skip(peeked_); // All peeked bytes are used up
+ size_t n;
+ ip = reader_->Peek(&n);
+ peeked_ = n;
+ if (n == 0) {
+ eof_ = true;
+ return false;
+ }
+ ip_limit_ = ip + n;
+ }
+
+ // Read the tag character
+ assert(ip < ip_limit_);
+ const unsigned char c = *(reinterpret_cast<const unsigned char*>(ip));
+ const uint32 entry = char_table[c];
+ const uint32 needed = (entry >> 11) + 1; // +1 byte for 'c'
+ assert(needed <= sizeof(scratch_));
+
+ // Read more bytes from reader if needed
+ uint32 nbuf = ip_limit_ - ip;
+ if (nbuf < needed) {
+ // Stitch together bytes from ip and reader to form the word
+ // contents. We store the needed bytes in "scratch_". They
+ // will be consumed immediately by the caller since we do not
+ // read more than we need.
+ memmove(scratch_, ip, nbuf);
+ reader_->Skip(peeked_); // All peeked bytes are used up
+ peeked_ = 0;
+ while (nbuf < needed) {
+ size_t length;
+ const char* src = reader_->Peek(&length);
+ if (length == 0) return false;
+ uint32 to_add = min<uint32>(needed - nbuf, length);
+ memcpy(scratch_ + nbuf, src, to_add);
+ nbuf += to_add;
+ reader_->Skip(to_add);
+ }
+ assert(nbuf == needed);
+ ip_ = scratch_;
+ ip_limit_ = scratch_ + needed;
+ } else if (nbuf < kMaximumTagLength) {
+ // Have enough bytes, but move into scratch_ so that we do not
+ // read past end of input
+ memmove(scratch_, ip, nbuf);
+ reader_->Skip(peeked_); // All peeked bytes are used up
+ peeked_ = 0;
+ ip_ = scratch_;
+ ip_limit_ = scratch_ + nbuf;
+ } else {
+ // Pass pointer to buffer returned by reader_.
+ ip_ = ip;
+ }
+ return true;
+}
+
+template <typename Writer>
+static bool InternalUncompress(Source* r, Writer* writer) {
+ // Read the uncompressed length from the front of the compressed input
+ SnappyDecompressor decompressor(r);
+ uint32 uncompressed_len = 0;
+ if (!decompressor.ReadUncompressedLength(&uncompressed_len)) return false;
+ return InternalUncompressAllTags(&decompressor, writer, uncompressed_len);
+}
+
+template <typename Writer>
+static bool InternalUncompressAllTags(SnappyDecompressor* decompressor,
+ Writer* writer,
+ uint32 uncompressed_len) {
+ writer->SetExpectedLength(uncompressed_len);
+
+ // Process the entire input
+ decompressor->DecompressAllTags(writer);
+ writer->Flush();
+ return (decompressor->eof() && writer->CheckLength());
+}
+
+bool GetUncompressedLength(Source* source, uint32* result) {
+ SnappyDecompressor decompressor(source);
+ return decompressor.ReadUncompressedLength(result);
+}
+
+size_t Compress(Source* reader, Sink* writer) {
+ size_t written = 0;
+ size_t N = reader->Available();
+ char ulength[Varint::kMax32];
+ char* p = Varint::Encode32(ulength, N);
+ writer->Append(ulength, p-ulength);
+ written += (p - ulength);
+
+ internal::WorkingMemory wmem;
+ char* scratch = NULL;
+ char* scratch_output = NULL;
+
+ while (N > 0) {
+ // Get next block to compress (without copying if possible)
+ size_t fragment_size;
+ const char* fragment = reader->Peek(&fragment_size);
+ assert(fragment_size != 0); // premature end of input
+ const size_t num_to_read = min(N, kBlockSize);
+ size_t bytes_read = fragment_size;
+
+ size_t pending_advance = 0;
+ if (bytes_read >= num_to_read) {
+ // Buffer returned by reader is large enough
+ pending_advance = num_to_read;
+ fragment_size = num_to_read;
+ } else {
+ // Read into scratch buffer
+ if (scratch == NULL) {
+ // If this is the last iteration, we want to allocate N bytes
+ // of space, otherwise the max possible kBlockSize space.
+ // num_to_read contains exactly the correct value
+ scratch = new char[num_to_read];
+ }
+ memcpy(scratch, fragment, bytes_read);
+ reader->Skip(bytes_read);
+
+ while (bytes_read < num_to_read) {
+ fragment = reader->Peek(&fragment_size);
+ size_t n = min<size_t>(fragment_size, num_to_read - bytes_read);
+ memcpy(scratch + bytes_read, fragment, n);
+ bytes_read += n;
+ reader->Skip(n);
+ }
+ assert(bytes_read == num_to_read);
+ fragment = scratch;
+ fragment_size = num_to_read;
+ }
+ assert(fragment_size == num_to_read);
+
+ // Get encoding table for compression
+ int table_size;
+ uint16* table = wmem.GetHashTable(num_to_read, &table_size);
+
+ // Compress input_fragment and append to dest
+ const int max_output = MaxCompressedLength(num_to_read);
+
+ // Need a scratch buffer for the output, in case the byte sink doesn't
+ // have room for us directly.
+ if (scratch_output == NULL) {
+ scratch_output = new char[max_output];
+ } else {
+ // Since we encode kBlockSize regions followed by a region
+ // which is <= kBlockSize in length, a previously allocated
+ // scratch_output[] region is big enough for this iteration.
+ }
+ char* dest = writer->GetAppendBuffer(max_output, scratch_output);
+ char* end = internal::CompressFragment(fragment, fragment_size,
+ dest, table, table_size);
+ writer->Append(dest, end - dest);
+ written += (end - dest);
+
+ N -= num_to_read;
+ reader->Skip(pending_advance);
+ }
+
+ delete[] scratch;
+ delete[] scratch_output;
+
+ return written;
+}
+
+// -----------------------------------------------------------------------
+// IOVec interfaces
+// -----------------------------------------------------------------------
+
+// A type that writes to an iovec.
+// Note that this is not a "ByteSink", but a type that matches the
+// Writer template argument to SnappyDecompressor::DecompressAllTags().
+class SnappyIOVecWriter {
+ private:
+ const struct iovec* output_iov_;
+ const size_t output_iov_count_;
+
+ // We are currently writing into output_iov_[curr_iov_index_].
+ size_t curr_iov_index_;
+
+ // Bytes written to output_iov_[curr_iov_index_] so far.
+ size_t curr_iov_written_;
+
+ // Total bytes decompressed into output_iov_ so far.
+ size_t total_written_;
+
+ // Maximum number of bytes that will be decompressed into output_iov_.
+ size_t output_limit_;
+
+ inline char* GetIOVecPointer(size_t index, size_t offset) {
+ return reinterpret_cast<char*>(output_iov_[index].iov_base) +
+ offset;
+ }
+
+ public:
+ // Does not take ownership of iov. iov must be valid during the
+ // entire lifetime of the SnappyIOVecWriter.
+ inline SnappyIOVecWriter(const struct iovec* iov, size_t iov_count)
+ : output_iov_(iov),
+ output_iov_count_(iov_count),
+ curr_iov_index_(0),
+ curr_iov_written_(0),
+ total_written_(0),
+ output_limit_(-1) {
+ }
+
+ inline void SetExpectedLength(size_t len) {
+ output_limit_ = len;
+ }
+
+ inline bool CheckLength() const {
+ return total_written_ == output_limit_;
+ }
+
+ inline bool Append(const char* ip, size_t len) {
+ if (total_written_ + len > output_limit_) {
+ return false;
+ }
+
+ while (len > 0) {
+ assert(curr_iov_written_ <= output_iov_[curr_iov_index_].iov_len);
+ if (curr_iov_written_ >= output_iov_[curr_iov_index_].iov_len) {
+ // This iovec is full. Go to the next one.
+ if (curr_iov_index_ + 1 >= output_iov_count_) {
+ return false;
+ }
+ curr_iov_written_ = 0;
+ ++curr_iov_index_;
+ }
+
+ const size_t to_write = std::min(
+ len, output_iov_[curr_iov_index_].iov_len - curr_iov_written_);
+ memcpy(GetIOVecPointer(curr_iov_index_, curr_iov_written_),
+ ip,
+ to_write);
+ curr_iov_written_ += to_write;
+ total_written_ += to_write;
+ ip += to_write;
+ len -= to_write;
+ }
+
+ return true;
+ }
+
+ inline bool TryFastAppend(const char* ip, size_t available, size_t len) {
+ const size_t space_left = output_limit_ - total_written_;
+ if (len <= 16 && available >= 16 + kMaximumTagLength && space_left >= 16 &&
+ output_iov_[curr_iov_index_].iov_len - curr_iov_written_ >= 16) {
+ // Fast path, used for the majority (about 95%) of invocations.
+ char* ptr = GetIOVecPointer(curr_iov_index_, curr_iov_written_);
+ UnalignedCopy64(ip, ptr);
+ UnalignedCopy64(ip + 8, ptr + 8);
+ curr_iov_written_ += len;
+ total_written_ += len;
+ return true;
+ }
+
+ return false;
+ }
+
+ inline bool AppendFromSelf(size_t offset, size_t len) {
+ if (offset > total_written_ || offset == 0) {
+ return false;
+ }
+ const size_t space_left = output_limit_ - total_written_;
+ if (len > space_left) {
+ return false;
+ }
+
+ // Locate the iovec from which we need to start the copy.
+ size_t from_iov_index = curr_iov_index_;
+ size_t from_iov_offset = curr_iov_written_;
+ while (offset > 0) {
+ if (from_iov_offset >= offset) {
+ from_iov_offset -= offset;
+ break;
+ }
+
+ offset -= from_iov_offset;
+ assert(from_iov_index > 0);
+ --from_iov_index;
+ from_iov_offset = output_iov_[from_iov_index].iov_len;
+ }
+
+ // Copy <len> bytes starting from the iovec pointed to by from_iov_index to
+ // the current iovec.
+ while (len > 0) {
+ assert(from_iov_index <= curr_iov_index_);
+ if (from_iov_index != curr_iov_index_) {
+ const size_t to_copy = std::min(
+ output_iov_[from_iov_index].iov_len - from_iov_offset,
+ len);
+ Append(GetIOVecPointer(from_iov_index, from_iov_offset), to_copy);
+ len -= to_copy;
+ if (len > 0) {
+ ++from_iov_index;
+ from_iov_offset = 0;
+ }
+ } else {
+ assert(curr_iov_written_ <= output_iov_[curr_iov_index_].iov_len);
+ size_t to_copy = std::min(output_iov_[curr_iov_index_].iov_len -
+ curr_iov_written_,
+ len);
+ if (to_copy == 0) {
+ // This iovec is full. Go to the next one.
+ if (curr_iov_index_ + 1 >= output_iov_count_) {
+ return false;
+ }
+ ++curr_iov_index_;
+ curr_iov_written_ = 0;
+ continue;
+ }
+ if (to_copy > len) {
+ to_copy = len;
+ }
+ IncrementalCopy(GetIOVecPointer(from_iov_index, from_iov_offset),
+ GetIOVecPointer(curr_iov_index_, curr_iov_written_),
+ to_copy);
+ curr_iov_written_ += to_copy;
+ from_iov_offset += to_copy;
+ total_written_ += to_copy;
+ len -= to_copy;
+ }
+ }
+
+ return true;
+ }
+
+ inline void Flush() {}
+};
+
+bool RawUncompressToIOVec(const char* compressed, size_t compressed_length,
+ const struct iovec* iov, size_t iov_cnt) {
+ ByteArraySource reader(compressed, compressed_length);
+ return RawUncompressToIOVec(&reader, iov, iov_cnt);
+}
+
+bool RawUncompressToIOVec(Source* compressed, const struct iovec* iov,
+ size_t iov_cnt) {
+ SnappyIOVecWriter output(iov, iov_cnt);
+ return InternalUncompress(compressed, &output);
+}
+
+// -----------------------------------------------------------------------
+// Flat array interfaces
+// -----------------------------------------------------------------------
+
+// A type that writes to a flat array.
+// Note that this is not a "ByteSink", but a type that matches the
+// Writer template argument to SnappyDecompressor::DecompressAllTags().
+class SnappyArrayWriter {
+ private:
+ char* base_;
+ char* op_;
+ char* op_limit_;
+
+ public:
+ inline explicit SnappyArrayWriter(char* dst)
+ : base_(dst),
+ op_(dst),
+ op_limit_(dst) {
+ }
+
+ inline void SetExpectedLength(size_t len) {
+ op_limit_ = op_ + len;
+ }
+
+ inline bool CheckLength() const {
+ return op_ == op_limit_;
+ }
+
+ inline bool Append(const char* ip, size_t len) {
+ char* op = op_;
+ const size_t space_left = op_limit_ - op;
+ if (space_left < len) {
+ return false;
+ }
+ memcpy(op, ip, len);
+ op_ = op + len;
+ return true;
+ }
+
+ inline bool TryFastAppend(const char* ip, size_t available, size_t len) {
+ char* op = op_;
+ const size_t space_left = op_limit_ - op;
+ if (len <= 16 && available >= 16 + kMaximumTagLength && space_left >= 16) {
+ // Fast path, used for the majority (about 95%) of invocations.
+ UnalignedCopy64(ip, op);
+ UnalignedCopy64(ip + 8, op + 8);
+ op_ = op + len;
+ return true;
+ } else {
+ return false;
+ }
+ }
+
+ inline bool AppendFromSelf(size_t offset, size_t len) {
+ char* op = op_;
+ const size_t space_left = op_limit_ - op;
+
+ // Check if we try to append from before the start of the buffer.
+ // Normally this would just be a check for "produced < offset",
+ // but "produced <= offset - 1u" is equivalent for every case
+ // except the one where offset==0, where the right side will wrap around
+ // to a very big number. This is convenient, as offset==0 is another
+ // invalid case that we also want to catch, so that we do not go
+ // into an infinite loop.
+ assert(op >= base_);
+ size_t produced = op - base_;
+ if (produced <= offset - 1u) {
+ return false;
+ }
+ if (len <= 16 && offset >= 8 && space_left >= 16) {
+ // Fast path, used for the majority (70-80%) of dynamic invocations.
+ UnalignedCopy64(op - offset, op);
+ UnalignedCopy64(op - offset + 8, op + 8);
+ } else {
+ if (space_left >= len + kMaxIncrementCopyOverflow) {
+ IncrementalCopyFastPath(op - offset, op, len);
+ } else {
+ if (space_left < len) {
+ return false;
+ }
+ IncrementalCopy(op - offset, op, len);
+ }
+ }
+
+ op_ = op + len;
+ return true;
+ }
+ inline size_t Produced() const {
+ return op_ - base_;
+ }
+ inline void Flush() {}
+};
+
+bool RawUncompress(const char* compressed, size_t n, char* uncompressed) {
+ ByteArraySource reader(compressed, n);
+ return RawUncompress(&reader, uncompressed);
+}
+
+bool RawUncompress(Source* compressed, char* uncompressed) {
+ SnappyArrayWriter output(uncompressed);
+ return InternalUncompress(compressed, &output);
+}
+
+bool Uncompress(const char* compressed, size_t n, string* uncompressed) {
+ size_t ulength;
+ if (!GetUncompressedLength(compressed, n, &ulength)) {
+ return false;
+ }
+ // On 32-bit builds: max_size() < kuint32max. Check for that instead
+ // of crashing (e.g., consider externally specified compressed data).
+ if (ulength > uncompressed->max_size()) {
+ return false;
+ }
+ STLStringResizeUninitialized(uncompressed, ulength);
+ return RawUncompress(compressed, n, string_as_array(uncompressed));
+}
+
+// A Writer that drops everything on the floor and just does validation
+class SnappyDecompressionValidator {
+ private:
+ size_t expected_;
+ size_t produced_;
+
+ public:
+ inline SnappyDecompressionValidator() : expected_(0), produced_(0) { }
+ inline void SetExpectedLength(size_t len) {
+ expected_ = len;
+ }
+ inline bool CheckLength() const {
+ return expected_ == produced_;
+ }
+ inline bool Append(const char* ip, size_t len) {
+ produced_ += len;
+ return produced_ <= expected_;
+ }
+ inline bool TryFastAppend(const char* ip, size_t available, size_t length) {
+ return false;
+ }
+ inline bool AppendFromSelf(size_t offset, size_t len) {
+ // See SnappyArrayWriter::AppendFromSelf for an explanation of
+ // the "offset - 1u" trick.
+ if (produced_ <= offset - 1u) return false;
+ produced_ += len;
+ return produced_ <= expected_;
+ }
+ inline void Flush() {}
+};
+
+bool IsValidCompressedBuffer(const char* compressed, size_t n) {
+ ByteArraySource reader(compressed, n);
+ SnappyDecompressionValidator writer;
+ return InternalUncompress(&reader, &writer);
+}
+
+bool IsValidCompressed(Source* compressed) {
+ SnappyDecompressionValidator writer;
+ return InternalUncompress(compressed, &writer);
+}
+
+void RawCompress(const char* input,
+ size_t input_length,
+ char* compressed,
+ size_t* compressed_length) {
+ ByteArraySource reader(input, input_length);
+ UncheckedByteArraySink writer(compressed);
+ Compress(&reader, &writer);
+
+ // Compute how many bytes were added
+ *compressed_length = (writer.CurrentDestination() - compressed);
+}
+
+size_t Compress(const char* input, size_t input_length, string* compressed) {
+ // Pre-grow the buffer to the max length of the compressed output
+ compressed->resize(MaxCompressedLength(input_length));
+
+ size_t compressed_length;
+ RawCompress(input, input_length, string_as_array(compressed),
+ &compressed_length);
+ compressed->resize(compressed_length);
+ return compressed_length;
+}
+
+// -----------------------------------------------------------------------
+// Sink interface
+// -----------------------------------------------------------------------
+
+// A type that decompresses into a Sink. The template parameter
+// Allocator must export one method "char* Allocate(int size);", which
+// allocates a buffer of "size" and appends that to the destination.
+template <typename Allocator>
+class SnappyScatteredWriter {
+ Allocator allocator_;
+
+ // We need random access into the data generated so far. Therefore
+ // we keep track of all of the generated data as an array of blocks.
+ // All of the blocks except the last have length kBlockSize.
+ vector<char*> blocks_;
+ size_t expected_;
+
+ // Total size of all fully generated blocks so far
+ size_t full_size_;
+
+ // Pointer into current output block
+ char* op_base_; // Base of output block
+ char* op_ptr_; // Pointer to next unfilled byte in block
+ char* op_limit_; // Pointer just past block
+
+ inline size_t Size() const {
+ return full_size_ + (op_ptr_ - op_base_);
+ }
+
+ bool SlowAppend(const char* ip, size_t len);
+ bool SlowAppendFromSelf(size_t offset, size_t len);
+
+ public:
+ inline explicit SnappyScatteredWriter(const Allocator& allocator)
+ : allocator_(allocator),
+ full_size_(0),
+ op_base_(NULL),
+ op_ptr_(NULL),
+ op_limit_(NULL) {
+ }
+
+ inline void SetExpectedLength(size_t len) {
+ assert(blocks_.empty());
+ expected_ = len;
+ }
+
+ inline bool CheckLength() const {
+ return Size() == expected_;
+ }
+
+ // Return the number of bytes actually uncompressed so far
+ inline size_t Produced() const {
+ return Size();
+ }
+
+ inline bool Append(const char* ip, size_t len) {
+ size_t avail = op_limit_ - op_ptr_;
+ if (len <= avail) {
+ // Fast path
+ memcpy(op_ptr_, ip, len);
+ op_ptr_ += len;
+ return true;
+ } else {
+ return SlowAppend(ip, len);
+ }
+ }
+
+ inline bool TryFastAppend(const char* ip, size_t available, size_t length) {
+ char* op = op_ptr_;
+ const int space_left = op_limit_ - op;
+ if (length <= 16 && available >= 16 + kMaximumTagLength &&
+ space_left >= 16) {
+ // Fast path, used for the majority (about 95%) of invocations.
+ UNALIGNED_STORE64(op, UNALIGNED_LOAD64(ip));
+ UNALIGNED_STORE64(op + 8, UNALIGNED_LOAD64(ip + 8));
+ op_ptr_ = op + length;
+ return true;
+ } else {
+ return false;
+ }
+ }
+
+ inline bool AppendFromSelf(size_t offset, size_t len) {
+ // See SnappyArrayWriter::AppendFromSelf for an explanation of
+ // the "offset - 1u" trick.
+ if (offset - 1u < op_ptr_ - op_base_) {
+ const size_t space_left = op_limit_ - op_ptr_;
+ if (space_left >= len + kMaxIncrementCopyOverflow) {
+ // Fast path: src and dst in current block.
+ IncrementalCopyFastPath(op_ptr_ - offset, op_ptr_, len);
+ op_ptr_ += len;
+ return true;
+ }
+ }
+ return SlowAppendFromSelf(offset, len);
+ }
+
+ // Called at the end of the decompress. We ask the allocator
+ // write all blocks to the sink.
+ inline void Flush() { allocator_.Flush(Produced()); }
+};
+
+template<typename Allocator>
+bool SnappyScatteredWriter<Allocator>::SlowAppend(const char* ip, size_t len) {
+ size_t avail = op_limit_ - op_ptr_;
+ while (len > avail) {
+ // Completely fill this block
+ memcpy(op_ptr_, ip, avail);
+ op_ptr_ += avail;
+ assert(op_limit_ - op_ptr_ == 0);
+ full_size_ += (op_ptr_ - op_base_);
+ len -= avail;
+ ip += avail;
+
+ // Bounds check
+ if (full_size_ + len > expected_) {
+ return false;
+ }
+
+ // Make new block
+ size_t bsize = min<size_t>(kBlockSize, expected_ - full_size_);
+ op_base_ = allocator_.Allocate(bsize);
+ op_ptr_ = op_base_;
+ op_limit_ = op_base_ + bsize;
+ blocks_.push_back(op_base_);
+ avail = bsize;
+ }
+
+ memcpy(op_ptr_, ip, len);
+ op_ptr_ += len;
+ return true;
+}
+
+template<typename Allocator>
+bool SnappyScatteredWriter<Allocator>::SlowAppendFromSelf(size_t offset,
+ size_t len) {
+ // Overflow check
+ // See SnappyArrayWriter::AppendFromSelf for an explanation of
+ // the "offset - 1u" trick.
+ const size_t cur = Size();
+ if (offset - 1u >= cur) return false;
+ if (expected_ - cur < len) return false;
+
+ // Currently we shouldn't ever hit this path because Compress() chops the
+ // input into blocks and does not create cross-block copies. However, it is
+ // nice if we do not rely on that, since we can get better compression if we
+ // allow cross-block copies and thus might want to change the compressor in
+ // the future.
+ size_t src = cur - offset;
+ while (len-- > 0) {
+ char c = blocks_[src >> kBlockLog][src & (kBlockSize-1)];
+ Append(&c, 1);
+ src++;
+ }
+ return true;
+}
+
+class SnappySinkAllocator {
+ public:
+ explicit SnappySinkAllocator(Sink* dest): dest_(dest) {}
+ ~SnappySinkAllocator() {}
+
+ char* Allocate(int size) {
+ Datablock block(new char[size], size);
+ blocks_.push_back(block);
+ return block.data;
+ }
+
+ // We flush only at the end, because the writer wants
+ // random access to the blocks and once we hand the
+ // block over to the sink, we can't access it anymore.
+ // Also we don't write more than has been actually written
+ // to the blocks.
+ void Flush(size_t size) {
+ size_t size_written = 0;
+ size_t block_size;
+ for (int i = 0; i < blocks_.size(); ++i) {
+ block_size = min<size_t>(blocks_[i].size, size - size_written);
+ dest_->AppendAndTakeOwnership(blocks_[i].data, block_size,
+ &SnappySinkAllocator::Deleter, NULL);
+ size_written += block_size;
+ }
+ blocks_.clear();
+ }
+
+ private:
+ struct Datablock {
+ char* data;
+ size_t size;
+ Datablock(char* p, size_t s) : data(p), size(s) {}
+ };
+
+ static void Deleter(void* arg, const char* bytes, size_t size) {
+ delete[] bytes;
+ }
+
+ Sink* dest_;
+ vector<Datablock> blocks_;
+
+ // Note: copying this object is allowed
+};
+
+size_t UncompressAsMuchAsPossible(Source* compressed, Sink* uncompressed) {
+ SnappySinkAllocator allocator(uncompressed);
+ SnappyScatteredWriter<SnappySinkAllocator> writer(allocator);
+ InternalUncompress(compressed, &writer);
+ return writer.Produced();
+}
+
+bool Uncompress(Source* compressed, Sink* uncompressed) {
+ // Read the uncompressed length from the front of the compressed input
+ SnappyDecompressor decompressor(compressed);
+ uint32 uncompressed_len = 0;
+ if (!decompressor.ReadUncompressedLength(&uncompressed_len)) {
+ return false;
+ }
+
+ char c;
+ size_t allocated_size;
+ char* buf = uncompressed->GetAppendBufferVariable(
+ 1, uncompressed_len, &c, 1, &allocated_size);
+
+ // If we can get a flat buffer, then use it, otherwise do block by block
+ // uncompression
+ if (allocated_size >= uncompressed_len) {
+ SnappyArrayWriter writer(buf);
+ bool result = InternalUncompressAllTags(
+ &decompressor, &writer, uncompressed_len);
+ uncompressed->Append(buf, writer.Produced());
+ return result;
+ } else {
+ SnappySinkAllocator allocator(uncompressed);
+ SnappyScatteredWriter<SnappySinkAllocator> writer(allocator);
+ return InternalUncompressAllTags(&decompressor, &writer, uncompressed_len);
+ }
+}
+
+} // end namespace snappy