diff options
Diffstat (limited to 'netwerk/srtp/src/crypto/hash/sha1.c')
-rw-r--r-- | netwerk/srtp/src/crypto/hash/sha1.c | 405 |
1 files changed, 405 insertions, 0 deletions
diff --git a/netwerk/srtp/src/crypto/hash/sha1.c b/netwerk/srtp/src/crypto/hash/sha1.c new file mode 100644 index 000000000..b9a8d1050 --- /dev/null +++ b/netwerk/srtp/src/crypto/hash/sha1.c @@ -0,0 +1,405 @@ +/* + * sha1.c + * + * an implementation of the Secure Hash Algorithm v.1 (SHA-1), + * specified in FIPS 180-1 + * + * David A. McGrew + * Cisco Systems, Inc. + */ + +/* + * + * Copyright (c) 2001-2006, Cisco Systems, Inc. + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * + * Redistributions in binary form must reproduce the above + * copyright notice, this list of conditions and the following + * disclaimer in the documentation and/or other materials provided + * with the distribution. + * + * Neither the name of the Cisco Systems, Inc. nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS + * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE + * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, + * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED + * OF THE POSSIBILITY OF SUCH DAMAGE. + * + */ + + +#include "sha1.h" + +debug_module_t mod_sha1 = { + 0, /* debugging is off by default */ + "sha-1" /* printable module name */ +}; + +/* SN == Rotate left N bits */ +#define S1(X) ((X << 1) | (X >> 31)) +#define S5(X) ((X << 5) | (X >> 27)) +#define S30(X) ((X << 30) | (X >> 2)) + +#define f0(B,C,D) ((B & C) | (~B & D)) +#define f1(B,C,D) (B ^ C ^ D) +#define f2(B,C,D) ((B & C) | (B & D) | (C & D)) +#define f3(B,C,D) (B ^ C ^ D) + +/* + * nota bene: the variable K0 appears in the curses library, so we + * give longer names to these variables to avoid spurious warnings + * on systems that uses curses + */ + +uint32_t SHA_K0 = 0x5A827999; /* Kt for 0 <= t <= 19 */ +uint32_t SHA_K1 = 0x6ED9EBA1; /* Kt for 20 <= t <= 39 */ +uint32_t SHA_K2 = 0x8F1BBCDC; /* Kt for 40 <= t <= 59 */ +uint32_t SHA_K3 = 0xCA62C1D6; /* Kt for 60 <= t <= 79 */ + +void +sha1(const uint8_t *msg, int octets_in_msg, uint32_t hash_value[5]) { + sha1_ctx_t ctx; + + sha1_init(&ctx); + sha1_update(&ctx, msg, octets_in_msg); + sha1_final(&ctx, hash_value); + +} + +/* + * sha1_core(M, H) computes the core compression function, where M is + * the next part of the message (in network byte order) and H is the + * intermediate state { H0, H1, ...} (in host byte order) + * + * this function does not do any of the padding required in the + * complete SHA1 function + * + * this function is used in the SEAL 3.0 key setup routines + * (crypto/cipher/seal.c) + */ + +void +sha1_core(const uint32_t M[16], uint32_t hash_value[5]) { + uint32_t H0; + uint32_t H1; + uint32_t H2; + uint32_t H3; + uint32_t H4; + uint32_t W[80]; + uint32_t A, B, C, D, E, TEMP; + int t; + + /* copy hash_value into H0, H1, H2, H3, H4 */ + H0 = hash_value[0]; + H1 = hash_value[1]; + H2 = hash_value[2]; + H3 = hash_value[3]; + H4 = hash_value[4]; + + /* copy/xor message into array */ + + W[0] = be32_to_cpu(M[0]); + W[1] = be32_to_cpu(M[1]); + W[2] = be32_to_cpu(M[2]); + W[3] = be32_to_cpu(M[3]); + W[4] = be32_to_cpu(M[4]); + W[5] = be32_to_cpu(M[5]); + W[6] = be32_to_cpu(M[6]); + W[7] = be32_to_cpu(M[7]); + W[8] = be32_to_cpu(M[8]); + W[9] = be32_to_cpu(M[9]); + W[10] = be32_to_cpu(M[10]); + W[11] = be32_to_cpu(M[11]); + W[12] = be32_to_cpu(M[12]); + W[13] = be32_to_cpu(M[13]); + W[14] = be32_to_cpu(M[14]); + W[15] = be32_to_cpu(M[15]); + TEMP = W[13] ^ W[8] ^ W[2] ^ W[0]; W[16] = S1(TEMP); + TEMP = W[14] ^ W[9] ^ W[3] ^ W[1]; W[17] = S1(TEMP); + TEMP = W[15] ^ W[10] ^ W[4] ^ W[2]; W[18] = S1(TEMP); + TEMP = W[16] ^ W[11] ^ W[5] ^ W[3]; W[19] = S1(TEMP); + TEMP = W[17] ^ W[12] ^ W[6] ^ W[4]; W[20] = S1(TEMP); + TEMP = W[18] ^ W[13] ^ W[7] ^ W[5]; W[21] = S1(TEMP); + TEMP = W[19] ^ W[14] ^ W[8] ^ W[6]; W[22] = S1(TEMP); + TEMP = W[20] ^ W[15] ^ W[9] ^ W[7]; W[23] = S1(TEMP); + TEMP = W[21] ^ W[16] ^ W[10] ^ W[8]; W[24] = S1(TEMP); + TEMP = W[22] ^ W[17] ^ W[11] ^ W[9]; W[25] = S1(TEMP); + TEMP = W[23] ^ W[18] ^ W[12] ^ W[10]; W[26] = S1(TEMP); + TEMP = W[24] ^ W[19] ^ W[13] ^ W[11]; W[27] = S1(TEMP); + TEMP = W[25] ^ W[20] ^ W[14] ^ W[12]; W[28] = S1(TEMP); + TEMP = W[26] ^ W[21] ^ W[15] ^ W[13]; W[29] = S1(TEMP); + TEMP = W[27] ^ W[22] ^ W[16] ^ W[14]; W[30] = S1(TEMP); + TEMP = W[28] ^ W[23] ^ W[17] ^ W[15]; W[31] = S1(TEMP); + + /* process the remainder of the array */ + for (t=32; t < 80; t++) { + TEMP = W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16]; + W[t] = S1(TEMP); + } + + A = H0; B = H1; C = H2; D = H3; E = H4; + + for (t=0; t < 20; t++) { + TEMP = S5(A) + f0(B,C,D) + E + W[t] + SHA_K0; + E = D; D = C; C = S30(B); B = A; A = TEMP; + } + for ( ; t < 40; t++) { + TEMP = S5(A) + f1(B,C,D) + E + W[t] + SHA_K1; + E = D; D = C; C = S30(B); B = A; A = TEMP; + } + for ( ; t < 60; t++) { + TEMP = S5(A) + f2(B,C,D) + E + W[t] + SHA_K2; + E = D; D = C; C = S30(B); B = A; A = TEMP; + } + for ( ; t < 80; t++) { + TEMP = S5(A) + f3(B,C,D) + E + W[t] + SHA_K3; + E = D; D = C; C = S30(B); B = A; A = TEMP; + } + + hash_value[0] = H0 + A; + hash_value[1] = H1 + B; + hash_value[2] = H2 + C; + hash_value[3] = H3 + D; + hash_value[4] = H4 + E; + + return; +} + +void +sha1_init(sha1_ctx_t *ctx) { + + /* initialize state vector */ + ctx->H[0] = 0x67452301; + ctx->H[1] = 0xefcdab89; + ctx->H[2] = 0x98badcfe; + ctx->H[3] = 0x10325476; + ctx->H[4] = 0xc3d2e1f0; + + /* indicate that message buffer is empty */ + ctx->octets_in_buffer = 0; + + /* reset message bit-count to zero */ + ctx->num_bits_in_msg = 0; + +} + +void +sha1_update(sha1_ctx_t *ctx, const uint8_t *msg, int octets_in_msg) { + int i; + uint8_t *buf = (uint8_t *)ctx->M; + + /* update message bit-count */ + ctx->num_bits_in_msg += octets_in_msg * 8; + + /* loop over 16-word blocks of M */ + while (octets_in_msg > 0) { + + if (octets_in_msg + ctx->octets_in_buffer >= 64) { + + /* + * copy words of M into msg buffer until that buffer is full, + * converting them into host byte order as needed + */ + octets_in_msg -= (64 - ctx->octets_in_buffer); + for (i=ctx->octets_in_buffer; i < 64; i++) + buf[i] = *msg++; + ctx->octets_in_buffer = 0; + + /* process a whole block */ + + debug_print(mod_sha1, "(update) running sha1_core()", NULL); + + sha1_core(ctx->M, ctx->H); + + } else { + + debug_print(mod_sha1, "(update) not running sha1_core()", NULL); + + for (i=ctx->octets_in_buffer; + i < (ctx->octets_in_buffer + octets_in_msg); i++) + buf[i] = *msg++; + ctx->octets_in_buffer += octets_in_msg; + octets_in_msg = 0; + } + + } + +} + +/* + * sha1_final(ctx, output) computes the result for ctx and copies it + * into the twenty octets located at *output + */ + +void +sha1_final(sha1_ctx_t *ctx, uint32_t *output) { + uint32_t A, B, C, D, E, TEMP; + uint32_t W[80]; + int i, t; + + /* + * process the remaining octets_in_buffer, padding and terminating as + * necessary + */ + { + int tail = ctx->octets_in_buffer % 4; + + /* copy/xor message into array */ + for (i=0; i < (ctx->octets_in_buffer+3)/4; i++) + W[i] = be32_to_cpu(ctx->M[i]); + + /* set the high bit of the octet immediately following the message */ + switch (tail) { + case (3): + W[i-1] = (be32_to_cpu(ctx->M[i-1]) & 0xffffff00) | 0x80; + W[i] = 0x0; + break; + case (2): + W[i-1] = (be32_to_cpu(ctx->M[i-1]) & 0xffff0000) | 0x8000; + W[i] = 0x0; + break; + case (1): + W[i-1] = (be32_to_cpu(ctx->M[i-1]) & 0xff000000) | 0x800000; + W[i] = 0x0; + break; + case (0): + W[i] = 0x80000000; + break; + } + + /* zeroize remaining words */ + for (i++ ; i < 15; i++) + W[i] = 0x0; + + /* + * if there is room at the end of the word array, then set the + * last word to the bit-length of the message; otherwise, set that + * word to zero and then we need to do one more run of the + * compression algo. + */ + if (ctx->octets_in_buffer < 56) + W[15] = ctx->num_bits_in_msg; + else if (ctx->octets_in_buffer < 60) + W[15] = 0x0; + + /* process the word array */ + for (t=16; t < 80; t++) { + TEMP = W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16]; + W[t] = S1(TEMP); + } + + A = ctx->H[0]; + B = ctx->H[1]; + C = ctx->H[2]; + D = ctx->H[3]; + E = ctx->H[4]; + + for (t=0; t < 20; t++) { + TEMP = S5(A) + f0(B,C,D) + E + W[t] + SHA_K0; + E = D; D = C; C = S30(B); B = A; A = TEMP; + } + for ( ; t < 40; t++) { + TEMP = S5(A) + f1(B,C,D) + E + W[t] + SHA_K1; + E = D; D = C; C = S30(B); B = A; A = TEMP; + } + for ( ; t < 60; t++) { + TEMP = S5(A) + f2(B,C,D) + E + W[t] + SHA_K2; + E = D; D = C; C = S30(B); B = A; A = TEMP; + } + for ( ; t < 80; t++) { + TEMP = S5(A) + f3(B,C,D) + E + W[t] + SHA_K3; + E = D; D = C; C = S30(B); B = A; A = TEMP; + } + + ctx->H[0] += A; + ctx->H[1] += B; + ctx->H[2] += C; + ctx->H[3] += D; + ctx->H[4] += E; + + } + + debug_print(mod_sha1, "(final) running sha1_core()", NULL); + + if (ctx->octets_in_buffer >= 56) { + + debug_print(mod_sha1, "(final) running sha1_core() again", NULL); + + /* we need to do one final run of the compression algo */ + + /* + * set initial part of word array to zeros, and set the + * final part to the number of bits in the message + */ + for (i=0; i < 15; i++) + W[i] = 0x0; + W[15] = ctx->num_bits_in_msg; + + /* process the word array */ + for (t=16; t < 80; t++) { + TEMP = W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16]; + W[t] = S1(TEMP); + } + + A = ctx->H[0]; + B = ctx->H[1]; + C = ctx->H[2]; + D = ctx->H[3]; + E = ctx->H[4]; + + for (t=0; t < 20; t++) { + TEMP = S5(A) + f0(B,C,D) + E + W[t] + SHA_K0; + E = D; D = C; C = S30(B); B = A; A = TEMP; + } + for ( ; t < 40; t++) { + TEMP = S5(A) + f1(B,C,D) + E + W[t] + SHA_K1; + E = D; D = C; C = S30(B); B = A; A = TEMP; + } + for ( ; t < 60; t++) { + TEMP = S5(A) + f2(B,C,D) + E + W[t] + SHA_K2; + E = D; D = C; C = S30(B); B = A; A = TEMP; + } + for ( ; t < 80; t++) { + TEMP = S5(A) + f3(B,C,D) + E + W[t] + SHA_K3; + E = D; D = C; C = S30(B); B = A; A = TEMP; + } + + ctx->H[0] += A; + ctx->H[1] += B; + ctx->H[2] += C; + ctx->H[3] += D; + ctx->H[4] += E; + } + + /* copy result into output buffer */ + output[0] = be32_to_cpu(ctx->H[0]); + output[1] = be32_to_cpu(ctx->H[1]); + output[2] = be32_to_cpu(ctx->H[2]); + output[3] = be32_to_cpu(ctx->H[3]); + output[4] = be32_to_cpu(ctx->H[4]); + + /* indicate that message buffer in context is empty */ + ctx->octets_in_buffer = 0; + + return; +} + + + |