summaryrefslogtreecommitdiffstats
path: root/memory/mozjemalloc
diff options
context:
space:
mode:
Diffstat (limited to 'memory/mozjemalloc')
-rw-r--r--memory/mozjemalloc/Makefile.in13
-rw-r--r--memory/mozjemalloc/jemalloc.c7188
-rw-r--r--memory/mozjemalloc/jemalloc_types.h91
-rw-r--r--memory/mozjemalloc/linkedlist.h77
-rw-r--r--memory/mozjemalloc/moz.build44
-rw-r--r--memory/mozjemalloc/osx_zone_types.h147
-rw-r--r--memory/mozjemalloc/ql.h114
-rw-r--r--memory/mozjemalloc/qr.h98
-rw-r--r--memory/mozjemalloc/rb.h982
9 files changed, 8754 insertions, 0 deletions
diff --git a/memory/mozjemalloc/Makefile.in b/memory/mozjemalloc/Makefile.in
new file mode 100644
index 000000000..6c47e1fa2
--- /dev/null
+++ b/memory/mozjemalloc/Makefile.in
@@ -0,0 +1,13 @@
+#
+# This Source Code Form is subject to the terms of the Mozilla Public
+# License, v. 2.0. If a copy of the MPL was not distributed with this
+# file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+ifndef MOZ_JEMALLOC4
+# Force optimize mozjemalloc on --disable-optimize builds.
+# This works around the issue that the Android NDK's definition of ffs is
+# broken when compiling without optimization, while avoiding to add yet another
+# configure test.
+MOZ_OPTIMIZE = 1
+endif
+
diff --git a/memory/mozjemalloc/jemalloc.c b/memory/mozjemalloc/jemalloc.c
new file mode 100644
index 000000000..5d4d83a24
--- /dev/null
+++ b/memory/mozjemalloc/jemalloc.c
@@ -0,0 +1,7188 @@
+/* -*- Mode: C; tab-width: 8; c-basic-offset: 8; indent-tabs-mode: t -*- */
+/* vim:set softtabstop=8 shiftwidth=8 noet: */
+/*-
+ * Copyright (C) 2006-2008 Jason Evans <jasone@FreeBSD.org>.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice(s), this list of conditions and the following disclaimer as
+ * the first lines of this file unmodified other than the possible
+ * addition of one or more copyright notices.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice(s), this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
+ * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
+ * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
+ * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
+ * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ *******************************************************************************
+ *
+ * This allocator implementation is designed to provide scalable performance
+ * for multi-threaded programs on multi-processor systems. The following
+ * features are included for this purpose:
+ *
+ * + Multiple arenas are used if there are multiple CPUs, which reduces lock
+ * contention and cache sloshing.
+ *
+ * + Cache line sharing between arenas is avoided for internal data
+ * structures.
+ *
+ * + Memory is managed in chunks and runs (chunks can be split into runs),
+ * rather than as individual pages. This provides a constant-time
+ * mechanism for associating allocations with particular arenas.
+ *
+ * Allocation requests are rounded up to the nearest size class, and no record
+ * of the original request size is maintained. Allocations are broken into
+ * categories according to size class. Assuming runtime defaults, 4 kB pages
+ * and a 16 byte quantum on a 32-bit system, the size classes in each category
+ * are as follows:
+ *
+ * |=====================================|
+ * | Category | Subcategory | Size |
+ * |=====================================|
+ * | Small | Tiny | 2 |
+ * | | | 4 |
+ * | | | 8 |
+ * | |----------------+---------|
+ * | | Quantum-spaced | 16 |
+ * | | | 32 |
+ * | | | 48 |
+ * | | | ... |
+ * | | | 480 |
+ * | | | 496 |
+ * | | | 512 |
+ * | |----------------+---------|
+ * | | Sub-page | 1 kB |
+ * | | | 2 kB |
+ * |=====================================|
+ * | Large | 4 kB |
+ * | | 8 kB |
+ * | | 12 kB |
+ * | | ... |
+ * | | 1012 kB |
+ * | | 1016 kB |
+ * | | 1020 kB |
+ * |=====================================|
+ * | Huge | 1 MB |
+ * | | 2 MB |
+ * | | 3 MB |
+ * | | ... |
+ * |=====================================|
+ *
+ * NOTE: Due to Mozilla bug 691003, we cannot reserve less than one word for an
+ * allocation on Linux or Mac. So on 32-bit *nix, the smallest bucket size is
+ * 4 bytes, and on 64-bit, the smallest bucket size is 8 bytes.
+ *
+ * A different mechanism is used for each category:
+ *
+ * Small : Each size class is segregated into its own set of runs. Each run
+ * maintains a bitmap of which regions are free/allocated.
+ *
+ * Large : Each allocation is backed by a dedicated run. Metadata are stored
+ * in the associated arena chunk header maps.
+ *
+ * Huge : Each allocation is backed by a dedicated contiguous set of chunks.
+ * Metadata are stored in a separate red-black tree.
+ *
+ *******************************************************************************
+ */
+
+#ifdef MOZ_MEMORY_ANDROID
+#define NO_TLS
+#define _pthread_self() pthread_self()
+#endif
+
+/*
+ * On Linux, we use madvise(MADV_DONTNEED) to release memory back to the
+ * operating system. If we release 1MB of live pages with MADV_DONTNEED, our
+ * RSS will decrease by 1MB (almost) immediately.
+ *
+ * On Mac, we use madvise(MADV_FREE). Unlike MADV_DONTNEED on Linux, MADV_FREE
+ * on Mac doesn't cause the OS to release the specified pages immediately; the
+ * OS keeps them in our process until the machine comes under memory pressure.
+ *
+ * It's therefore difficult to measure the process's RSS on Mac, since, in the
+ * absence of memory pressure, the contribution from the heap to RSS will not
+ * decrease due to our madvise calls.
+ *
+ * We therefore define MALLOC_DOUBLE_PURGE on Mac. This causes jemalloc to
+ * track which pages have been MADV_FREE'd. You can then call
+ * jemalloc_purge_freed_pages(), which will force the OS to release those
+ * MADV_FREE'd pages, making the process's RSS reflect its true memory usage.
+ *
+ * The jemalloc_purge_freed_pages definition in memory/build/mozmemory.h needs
+ * to be adjusted if MALLOC_DOUBLE_PURGE is ever enabled on Linux.
+ */
+#ifdef MOZ_MEMORY_DARWIN
+#define MALLOC_DOUBLE_PURGE
+#endif
+
+/*
+ * MALLOC_PRODUCTION disables assertions and statistics gathering. It also
+ * defaults the A and J runtime options to off. These settings are appropriate
+ * for production systems.
+ */
+#ifndef MOZ_MEMORY_DEBUG
+# define MALLOC_PRODUCTION
+#endif
+
+/*
+ * Use only one arena by default. Mozilla does not currently make extensive
+ * use of concurrent allocation, so the increased fragmentation associated with
+ * multiple arenas is not warranted.
+ *
+ * When using the Servo style system, we do indeed make use of significant
+ * concurrent allocation, and the overhead matters. Bug 1291355 tracks
+ * investigating the fragmentation overhead of turning this on for users.
+ */
+#ifndef MOZ_STYLO
+#define MOZ_MEMORY_NARENAS_DEFAULT_ONE
+#endif
+
+/*
+ * Pass this set of options to jemalloc as its default. It does not override
+ * the options passed via the MALLOC_OPTIONS environment variable but is
+ * applied in addition to them.
+ */
+#ifdef MOZ_WIDGET_GONK
+ /* Reduce the amount of unused dirty pages to 1MiB on B2G */
+# define MOZ_MALLOC_OPTIONS "ff"
+#else
+# define MOZ_MALLOC_OPTIONS ""
+#endif
+
+/*
+ * MALLOC_STATS enables statistics calculation, and is required for
+ * jemalloc_stats().
+ */
+#define MALLOC_STATS
+
+/* Memory filling (junk/poison/zero). */
+#define MALLOC_FILL
+
+#ifndef MALLOC_PRODUCTION
+ /*
+ * MALLOC_DEBUG enables assertions and other sanity checks, and disables
+ * inline functions.
+ */
+# define MALLOC_DEBUG
+
+ /* Allocation tracing. */
+# ifndef MOZ_MEMORY_WINDOWS
+# define MALLOC_UTRACE
+# endif
+
+ /* Support optional abort() on OOM. */
+# define MALLOC_XMALLOC
+
+ /* Support SYSV semantics. */
+# define MALLOC_SYSV
+#endif
+
+/*
+ * MALLOC_VALIDATE causes malloc_usable_size() to perform some pointer
+ * validation. There are many possible errors that validation does not even
+ * attempt to detect.
+ */
+#define MALLOC_VALIDATE
+
+/*
+ * MALLOC_BALANCE enables monitoring of arena lock contention and dynamically
+ * re-balances arena load if exponentially averaged contention exceeds a
+ * certain threshold.
+ */
+/* #define MALLOC_BALANCE */
+
+#if defined(MOZ_MEMORY_LINUX) && !defined(MOZ_MEMORY_ANDROID)
+#define _GNU_SOURCE /* For mremap(2). */
+#if 0 /* Enable in order to test decommit code on Linux. */
+# define MALLOC_DECOMMIT
+#endif
+#endif
+
+#include <sys/types.h>
+
+#include <errno.h>
+#include <stdlib.h>
+#include <limits.h>
+#include <stdarg.h>
+#include <stdio.h>
+#include <string.h>
+
+#ifdef MOZ_MEMORY_WINDOWS
+
+/* Some defines from the CRT internal headers that we need here. */
+#define _CRT_SPINCOUNT 5000
+#define __crtInitCritSecAndSpinCount InitializeCriticalSectionAndSpinCount
+#include <io.h>
+#include <windows.h>
+#include <intrin.h>
+
+#pragma warning( disable: 4267 4996 4146 )
+
+#define bool BOOL
+#define false FALSE
+#define true TRUE
+#define inline __inline
+#define SIZE_T_MAX SIZE_MAX
+#define STDERR_FILENO 2
+#define PATH_MAX MAX_PATH
+#define vsnprintf _vsnprintf
+
+#ifndef NO_TLS
+static unsigned long tlsIndex = 0xffffffff;
+#endif
+
+#define __thread
+#define _pthread_self() __threadid()
+
+/* use MSVC intrinsics */
+#pragma intrinsic(_BitScanForward)
+static __forceinline int
+ffs(int x)
+{
+ unsigned long i;
+
+ if (_BitScanForward(&i, x) != 0)
+ return (i + 1);
+
+ return (0);
+}
+
+/* Implement getenv without using malloc */
+static char mozillaMallocOptionsBuf[64];
+
+#define getenv xgetenv
+static char *
+getenv(const char *name)
+{
+
+ if (GetEnvironmentVariableA(name, (LPSTR)&mozillaMallocOptionsBuf,
+ sizeof(mozillaMallocOptionsBuf)) > 0)
+ return (mozillaMallocOptionsBuf);
+
+ return (NULL);
+}
+
+typedef unsigned char uint8_t;
+typedef unsigned uint32_t;
+typedef unsigned long long uint64_t;
+typedef unsigned long long uintmax_t;
+#if defined(_WIN64)
+typedef long long ssize_t;
+#else
+typedef long ssize_t;
+#endif
+
+#define MALLOC_DECOMMIT
+#endif
+
+/*
+ * Allow unmapping pages on all platforms. Note that if this is disabled,
+ * jemalloc will never unmap anything, instead recycling pages for later use.
+ */
+#define JEMALLOC_MUNMAP
+
+/*
+ * Enable limited chunk recycling on all platforms. Note that when
+ * JEMALLOC_MUNMAP is not defined, all chunks will be recycled unconditionally.
+ */
+#define JEMALLOC_RECYCLE
+
+#ifndef MOZ_MEMORY_WINDOWS
+#ifndef MOZ_MEMORY_SOLARIS
+#include <sys/cdefs.h>
+#endif
+#ifndef __DECONST
+# define __DECONST(type, var) ((type)(uintptr_t)(const void *)(var))
+#endif
+#ifndef MOZ_MEMORY
+__FBSDID("$FreeBSD: head/lib/libc/stdlib/malloc.c 180599 2008-07-18 19:35:44Z jasone $");
+#include "libc_private.h"
+#ifdef MALLOC_DEBUG
+# define _LOCK_DEBUG
+#endif
+#include "spinlock.h"
+#include "namespace.h"
+#endif
+#include <sys/mman.h>
+#ifndef MADV_FREE
+# define MADV_FREE MADV_DONTNEED
+#endif
+#ifndef MAP_NOSYNC
+# define MAP_NOSYNC 0
+#endif
+#include <sys/param.h>
+#ifndef MOZ_MEMORY
+#include <sys/stddef.h>
+#endif
+#include <sys/time.h>
+#include <sys/types.h>
+#if !defined(MOZ_MEMORY_SOLARIS) && !defined(MOZ_MEMORY_ANDROID)
+#include <sys/sysctl.h>
+#endif
+#include <sys/uio.h>
+#ifndef MOZ_MEMORY
+#include <sys/ktrace.h> /* Must come after several other sys/ includes. */
+
+#include <machine/atomic.h>
+#include <machine/cpufunc.h>
+#include <machine/vmparam.h>
+#endif
+
+#include <errno.h>
+#include <limits.h>
+#ifndef SIZE_T_MAX
+# define SIZE_T_MAX SIZE_MAX
+#endif
+#include <pthread.h>
+#ifdef MOZ_MEMORY_DARWIN
+#define _pthread_self pthread_self
+#define _pthread_mutex_init pthread_mutex_init
+#define _pthread_mutex_trylock pthread_mutex_trylock
+#define _pthread_mutex_lock pthread_mutex_lock
+#define _pthread_mutex_unlock pthread_mutex_unlock
+#endif
+#include <sched.h>
+#include <stdarg.h>
+#include <stdio.h>
+#include <stdbool.h>
+#include <stdint.h>
+#include <stdlib.h>
+#include <string.h>
+#ifndef MOZ_MEMORY_DARWIN
+#include <strings.h>
+#endif
+#include <unistd.h>
+
+#ifdef MOZ_MEMORY_DARWIN
+#include <libkern/OSAtomic.h>
+#include <mach/mach_error.h>
+#include <mach/mach_init.h>
+#include <mach/vm_map.h>
+#include <malloc/malloc.h>
+#endif
+
+#ifndef MOZ_MEMORY
+#include "un-namespace.h"
+#endif
+
+#endif
+
+#include "jemalloc_types.h"
+#include "linkedlist.h"
+#include "mozmemory_wrap.h"
+
+/* Some tools, such as /dev/dsp wrappers, LD_PRELOAD libraries that
+ * happen to override mmap() and call dlsym() from their overridden
+ * mmap(). The problem is that dlsym() calls malloc(), and this ends
+ * up in a dead lock in jemalloc.
+ * On these systems, we prefer to directly use the system call.
+ * We do that for Linux systems and kfreebsd with GNU userland.
+ * Note sanity checks are not done (alignment of offset, ...) because
+ * the uses of mmap are pretty limited, in jemalloc.
+ *
+ * On Alpha, glibc has a bug that prevents syscall() to work for system
+ * calls with 6 arguments
+ */
+#if (defined(MOZ_MEMORY_LINUX) && !defined(__alpha__)) || \
+ (defined(MOZ_MEMORY_BSD) && defined(__GLIBC__))
+#include <sys/syscall.h>
+#if defined(SYS_mmap) || defined(SYS_mmap2)
+static inline
+void *_mmap(void *addr, size_t length, int prot, int flags,
+ int fd, off_t offset)
+{
+/* S390 only passes one argument to the mmap system call, which is a
+ * pointer to a structure containing the arguments */
+#ifdef __s390__
+ struct {
+ void *addr;
+ size_t length;
+ long prot;
+ long flags;
+ long fd;
+ off_t offset;
+ } args = { addr, length, prot, flags, fd, offset };
+ return (void *) syscall(SYS_mmap, &args);
+#else
+#ifdef SYS_mmap2
+ return (void *) syscall(SYS_mmap2, addr, length, prot, flags,
+ fd, offset >> 12);
+#else
+ return (void *) syscall(SYS_mmap, addr, length, prot, flags,
+ fd, offset);
+#endif
+#endif
+}
+#define mmap _mmap
+#define munmap(a, l) syscall(SYS_munmap, a, l)
+#endif
+#endif
+
+#ifdef MOZ_MEMORY_DARWIN
+static const bool isthreaded = true;
+#endif
+
+#if defined(MOZ_MEMORY_SOLARIS) && defined(MAP_ALIGN) && !defined(JEMALLOC_NEVER_USES_MAP_ALIGN)
+#define JEMALLOC_USES_MAP_ALIGN /* Required on Solaris 10. Might improve performance elsewhere. */
+#endif
+
+#ifndef __DECONST
+#define __DECONST(type, var) ((type)(uintptr_t)(const void *)(var))
+#endif
+
+#ifdef MOZ_MEMORY_WINDOWS
+ /* MSVC++ does not support C99 variable-length arrays. */
+# define RB_NO_C99_VARARRAYS
+#endif
+#include "rb.h"
+
+#ifdef MALLOC_DEBUG
+ /* Disable inlining to make debugging easier. */
+#ifdef inline
+#undef inline
+#endif
+
+# define inline
+#endif
+
+/* Size of stack-allocated buffer passed to strerror_r(). */
+#define STRERROR_BUF 64
+
+/* Minimum alignment of non-tiny allocations is 2^QUANTUM_2POW_MIN bytes. */
+# define QUANTUM_2POW_MIN 4
+#if defined(_WIN64) || defined(__LP64__)
+# define SIZEOF_PTR_2POW 3
+#else
+# define SIZEOF_PTR_2POW 2
+#endif
+#define PIC
+#ifndef MOZ_MEMORY_DARWIN
+static const bool isthreaded = true;
+#else
+# define NO_TLS
+#endif
+#if 0
+#ifdef __i386__
+# define QUANTUM_2POW_MIN 4
+# define SIZEOF_PTR_2POW 2
+# define CPU_SPINWAIT __asm__ volatile("pause")
+#endif
+#ifdef __ia64__
+# define QUANTUM_2POW_MIN 4
+# define SIZEOF_PTR_2POW 3
+#endif
+#ifdef __alpha__
+# define QUANTUM_2POW_MIN 4
+# define SIZEOF_PTR_2POW 3
+# define NO_TLS
+#endif
+#ifdef __sparc64__
+# define QUANTUM_2POW_MIN 4
+# define SIZEOF_PTR_2POW 3
+# define NO_TLS
+#endif
+#ifdef __amd64__
+# define QUANTUM_2POW_MIN 4
+# define SIZEOF_PTR_2POW 3
+# define CPU_SPINWAIT __asm__ volatile("pause")
+#endif
+#ifdef __arm__
+# define QUANTUM_2POW_MIN 3
+# define SIZEOF_PTR_2POW 2
+# define NO_TLS
+#endif
+#ifdef __mips__
+# define QUANTUM_2POW_MIN 3
+# define SIZEOF_PTR_2POW 2
+# define NO_TLS
+#endif
+#ifdef __powerpc__
+# define QUANTUM_2POW_MIN 4
+# define SIZEOF_PTR_2POW 2
+#endif
+#endif
+
+#define SIZEOF_PTR (1U << SIZEOF_PTR_2POW)
+
+/* sizeof(int) == (1U << SIZEOF_INT_2POW). */
+#ifndef SIZEOF_INT_2POW
+# define SIZEOF_INT_2POW 2
+#endif
+
+/* We can't use TLS in non-PIC programs, since TLS relies on loader magic. */
+#if (!defined(PIC) && !defined(NO_TLS))
+# define NO_TLS
+#endif
+
+#ifdef NO_TLS
+ /* MALLOC_BALANCE requires TLS. */
+# ifdef MALLOC_BALANCE
+# undef MALLOC_BALANCE
+# endif
+#endif
+
+/*
+ * Size and alignment of memory chunks that are allocated by the OS's virtual
+ * memory system.
+ */
+#define CHUNK_2POW_DEFAULT 20
+/* Maximum number of dirty pages per arena. */
+#define DIRTY_MAX_DEFAULT (1U << 8)
+
+/*
+ * Maximum size of L1 cache line. This is used to avoid cache line aliasing,
+ * so over-estimates are okay (up to a point), but under-estimates will
+ * negatively affect performance.
+ */
+#define CACHELINE_2POW 6
+#define CACHELINE ((size_t)(1U << CACHELINE_2POW))
+
+/*
+ * Smallest size class to support. On Windows the smallest allocation size
+ * must be 8 bytes on 32-bit, 16 bytes on 64-bit. On Linux and Mac, even
+ * malloc(1) must reserve a word's worth of memory (see Mozilla bug 691003).
+ */
+#ifdef MOZ_MEMORY_WINDOWS
+#define TINY_MIN_2POW (sizeof(void*) == 8 ? 4 : 3)
+#else
+#define TINY_MIN_2POW (sizeof(void*) == 8 ? 3 : 2)
+#endif
+
+/*
+ * Maximum size class that is a multiple of the quantum, but not (necessarily)
+ * a power of 2. Above this size, allocations are rounded up to the nearest
+ * power of 2.
+ */
+#define SMALL_MAX_2POW_DEFAULT 9
+#define SMALL_MAX_DEFAULT (1U << SMALL_MAX_2POW_DEFAULT)
+
+/*
+ * RUN_MAX_OVRHD indicates maximum desired run header overhead. Runs are sized
+ * as small as possible such that this setting is still honored, without
+ * violating other constraints. The goal is to make runs as small as possible
+ * without exceeding a per run external fragmentation threshold.
+ *
+ * We use binary fixed point math for overhead computations, where the binary
+ * point is implicitly RUN_BFP bits to the left.
+ *
+ * Note that it is possible to set RUN_MAX_OVRHD low enough that it cannot be
+ * honored for some/all object sizes, since there is one bit of header overhead
+ * per object (plus a constant). This constraint is relaxed (ignored) for runs
+ * that are so small that the per-region overhead is greater than:
+ *
+ * (RUN_MAX_OVRHD / (reg_size << (3+RUN_BFP))
+ */
+#define RUN_BFP 12
+/* \/ Implicit binary fixed point. */
+#define RUN_MAX_OVRHD 0x0000003dU
+#define RUN_MAX_OVRHD_RELAX 0x00001800U
+
+/*
+ * Hyper-threaded CPUs may need a special instruction inside spin loops in
+ * order to yield to another virtual CPU. If no such instruction is defined
+ * above, make CPU_SPINWAIT a no-op.
+ */
+#ifndef CPU_SPINWAIT
+# define CPU_SPINWAIT
+#endif
+
+/*
+ * Adaptive spinning must eventually switch to blocking, in order to avoid the
+ * potential for priority inversion deadlock. Backing off past a certain point
+ * can actually waste time.
+ */
+#define SPIN_LIMIT_2POW 11
+
+/*
+ * Conversion from spinning to blocking is expensive; we use (1U <<
+ * BLOCK_COST_2POW) to estimate how many more times costly blocking is than
+ * worst-case spinning.
+ */
+#define BLOCK_COST_2POW 4
+
+#ifdef MALLOC_BALANCE
+ /*
+ * We use an exponential moving average to track recent lock contention,
+ * where the size of the history window is N, and alpha=2/(N+1).
+ *
+ * Due to integer math rounding, very small values here can cause
+ * substantial degradation in accuracy, thus making the moving average decay
+ * faster than it would with precise calculation.
+ */
+# define BALANCE_ALPHA_INV_2POW 9
+
+ /*
+ * Threshold value for the exponential moving contention average at which to
+ * re-assign a thread.
+ */
+# define BALANCE_THRESHOLD_DEFAULT (1U << (SPIN_LIMIT_2POW-4))
+#endif
+
+/******************************************************************************/
+
+/* MALLOC_DECOMMIT and MALLOC_DOUBLE_PURGE are mutually exclusive. */
+#if defined(MALLOC_DECOMMIT) && defined(MALLOC_DOUBLE_PURGE)
+#error MALLOC_DECOMMIT and MALLOC_DOUBLE_PURGE are mutually exclusive.
+#endif
+
+/*
+ * Mutexes based on spinlocks. We can't use normal pthread spinlocks in all
+ * places, because they require malloc()ed memory, which causes bootstrapping
+ * issues in some cases.
+ */
+#if defined(MOZ_MEMORY_WINDOWS)
+#define malloc_mutex_t CRITICAL_SECTION
+#define malloc_spinlock_t CRITICAL_SECTION
+#elif defined(MOZ_MEMORY_DARWIN)
+typedef struct {
+ OSSpinLock lock;
+} malloc_mutex_t;
+typedef struct {
+ OSSpinLock lock;
+} malloc_spinlock_t;
+#elif defined(MOZ_MEMORY)
+typedef pthread_mutex_t malloc_mutex_t;
+typedef pthread_mutex_t malloc_spinlock_t;
+#else
+/* XXX these should #ifdef these for freebsd (and linux?) only */
+typedef struct {
+ spinlock_t lock;
+} malloc_mutex_t;
+typedef malloc_spinlock_t malloc_mutex_t;
+#endif
+
+/* Set to true once the allocator has been initialized. */
+static bool malloc_initialized = false;
+
+#if defined(MOZ_MEMORY_WINDOWS)
+/* No init lock for Windows. */
+#elif defined(MOZ_MEMORY_DARWIN)
+static malloc_mutex_t init_lock = {OS_SPINLOCK_INIT};
+#elif defined(MOZ_MEMORY_LINUX) && !defined(MOZ_MEMORY_ANDROID)
+static malloc_mutex_t init_lock = PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP;
+#elif defined(MOZ_MEMORY)
+static malloc_mutex_t init_lock = PTHREAD_MUTEX_INITIALIZER;
+#else
+static malloc_mutex_t init_lock = {_SPINLOCK_INITIALIZER};
+#endif
+
+/******************************************************************************/
+/*
+ * Statistics data structures.
+ */
+
+#ifdef MALLOC_STATS
+
+typedef struct malloc_bin_stats_s malloc_bin_stats_t;
+struct malloc_bin_stats_s {
+ /*
+ * Number of allocation requests that corresponded to the size of this
+ * bin.
+ */
+ uint64_t nrequests;
+
+ /* Total number of runs created for this bin's size class. */
+ uint64_t nruns;
+
+ /*
+ * Total number of runs reused by extracting them from the runs tree for
+ * this bin's size class.
+ */
+ uint64_t reruns;
+
+ /* High-water mark for this bin. */
+ unsigned long highruns;
+
+ /* Current number of runs in this bin. */
+ unsigned long curruns;
+};
+
+typedef struct arena_stats_s arena_stats_t;
+struct arena_stats_s {
+ /* Number of bytes currently mapped. */
+ size_t mapped;
+
+ /*
+ * Total number of purge sweeps, total number of madvise calls made,
+ * and total pages purged in order to keep dirty unused memory under
+ * control.
+ */
+ uint64_t npurge;
+ uint64_t nmadvise;
+ uint64_t purged;
+#ifdef MALLOC_DECOMMIT
+ /*
+ * Total number of decommit/commit operations, and total number of
+ * pages decommitted.
+ */
+ uint64_t ndecommit;
+ uint64_t ncommit;
+ uint64_t decommitted;
+#endif
+
+ /* Current number of committed pages. */
+ size_t committed;
+
+ /* Per-size-category statistics. */
+ size_t allocated_small;
+ uint64_t nmalloc_small;
+ uint64_t ndalloc_small;
+
+ size_t allocated_large;
+ uint64_t nmalloc_large;
+ uint64_t ndalloc_large;
+
+#ifdef MALLOC_BALANCE
+ /* Number of times this arena reassigned a thread due to contention. */
+ uint64_t nbalance;
+#endif
+};
+
+#endif /* #ifdef MALLOC_STATS */
+
+/******************************************************************************/
+/*
+ * Extent data structures.
+ */
+
+/* Tree of extents. */
+typedef struct extent_node_s extent_node_t;
+struct extent_node_s {
+ /* Linkage for the size/address-ordered tree. */
+ rb_node(extent_node_t) link_szad;
+
+ /* Linkage for the address-ordered tree. */
+ rb_node(extent_node_t) link_ad;
+
+ /* Pointer to the extent that this tree node is responsible for. */
+ void *addr;
+
+ /* Total region size. */
+ size_t size;
+
+ /* True if zero-filled; used by chunk recycling code. */
+ bool zeroed;
+};
+typedef rb_tree(extent_node_t) extent_tree_t;
+
+/******************************************************************************/
+/*
+ * Radix tree data structures.
+ */
+
+#ifdef MALLOC_VALIDATE
+ /*
+ * Size of each radix tree node (must be a power of 2). This impacts tree
+ * depth.
+ */
+# if (SIZEOF_PTR == 4)
+# define MALLOC_RTREE_NODESIZE (1U << 14)
+# else
+# define MALLOC_RTREE_NODESIZE CACHELINE
+# endif
+
+typedef struct malloc_rtree_s malloc_rtree_t;
+struct malloc_rtree_s {
+ malloc_spinlock_t lock;
+ void **root;
+ unsigned height;
+ unsigned level2bits[1]; /* Dynamically sized. */
+};
+#endif
+
+/******************************************************************************/
+/*
+ * Arena data structures.
+ */
+
+typedef struct arena_s arena_t;
+typedef struct arena_bin_s arena_bin_t;
+
+/* Each element of the chunk map corresponds to one page within the chunk. */
+typedef struct arena_chunk_map_s arena_chunk_map_t;
+struct arena_chunk_map_s {
+ /*
+ * Linkage for run trees. There are two disjoint uses:
+ *
+ * 1) arena_t's runs_avail tree.
+ * 2) arena_run_t conceptually uses this linkage for in-use non-full
+ * runs, rather than directly embedding linkage.
+ */
+ rb_node(arena_chunk_map_t) link;
+
+ /*
+ * Run address (or size) and various flags are stored together. The bit
+ * layout looks like (assuming 32-bit system):
+ *
+ * ???????? ???????? ????---- -mckdzla
+ *
+ * ? : Unallocated: Run address for first/last pages, unset for internal
+ * pages.
+ * Small: Run address.
+ * Large: Run size for first page, unset for trailing pages.
+ * - : Unused.
+ * m : MADV_FREE/MADV_DONTNEED'ed?
+ * c : decommitted?
+ * k : key?
+ * d : dirty?
+ * z : zeroed?
+ * l : large?
+ * a : allocated?
+ *
+ * Following are example bit patterns for the three types of runs.
+ *
+ * r : run address
+ * s : run size
+ * x : don't care
+ * - : 0
+ * [cdzla] : bit set
+ *
+ * Unallocated:
+ * ssssssss ssssssss ssss---- --c-----
+ * xxxxxxxx xxxxxxxx xxxx---- ----d---
+ * ssssssss ssssssss ssss---- -----z--
+ *
+ * Small:
+ * rrrrrrrr rrrrrrrr rrrr---- -------a
+ * rrrrrrrr rrrrrrrr rrrr---- -------a
+ * rrrrrrrr rrrrrrrr rrrr---- -------a
+ *
+ * Large:
+ * ssssssss ssssssss ssss---- ------la
+ * -------- -------- -------- ------la
+ * -------- -------- -------- ------la
+ */
+ size_t bits;
+
+/* Note that CHUNK_MAP_DECOMMITTED's meaning varies depending on whether
+ * MALLOC_DECOMMIT and MALLOC_DOUBLE_PURGE are defined.
+ *
+ * If MALLOC_DECOMMIT is defined, a page which is CHUNK_MAP_DECOMMITTED must be
+ * re-committed with pages_commit() before it may be touched. If
+ * MALLOC_DECOMMIT is defined, MALLOC_DOUBLE_PURGE may not be defined.
+ *
+ * If neither MALLOC_DECOMMIT nor MALLOC_DOUBLE_PURGE is defined, pages which
+ * are madvised (with either MADV_DONTNEED or MADV_FREE) are marked with
+ * CHUNK_MAP_MADVISED.
+ *
+ * Otherwise, if MALLOC_DECOMMIT is not defined and MALLOC_DOUBLE_PURGE is
+ * defined, then a page which is madvised is marked as CHUNK_MAP_MADVISED.
+ * When it's finally freed with jemalloc_purge_freed_pages, the page is marked
+ * as CHUNK_MAP_DECOMMITTED.
+ */
+#if defined(MALLOC_DECOMMIT) || defined(MALLOC_STATS) || defined(MALLOC_DOUBLE_PURGE)
+#define CHUNK_MAP_MADVISED ((size_t)0x40U)
+#define CHUNK_MAP_DECOMMITTED ((size_t)0x20U)
+#define CHUNK_MAP_MADVISED_OR_DECOMMITTED (CHUNK_MAP_MADVISED | CHUNK_MAP_DECOMMITTED)
+#endif
+#define CHUNK_MAP_KEY ((size_t)0x10U)
+#define CHUNK_MAP_DIRTY ((size_t)0x08U)
+#define CHUNK_MAP_ZEROED ((size_t)0x04U)
+#define CHUNK_MAP_LARGE ((size_t)0x02U)
+#define CHUNK_MAP_ALLOCATED ((size_t)0x01U)
+};
+typedef rb_tree(arena_chunk_map_t) arena_avail_tree_t;
+typedef rb_tree(arena_chunk_map_t) arena_run_tree_t;
+
+/* Arena chunk header. */
+typedef struct arena_chunk_s arena_chunk_t;
+struct arena_chunk_s {
+ /* Arena that owns the chunk. */
+ arena_t *arena;
+
+ /* Linkage for the arena's chunks_dirty tree. */
+ rb_node(arena_chunk_t) link_dirty;
+
+#ifdef MALLOC_DOUBLE_PURGE
+ /* If we're double-purging, we maintain a linked list of chunks which
+ * have pages which have been madvise(MADV_FREE)'d but not explicitly
+ * purged.
+ *
+ * We're currently lazy and don't remove a chunk from this list when
+ * all its madvised pages are recommitted. */
+ LinkedList chunks_madvised_elem;
+#endif
+
+ /* Number of dirty pages. */
+ size_t ndirty;
+
+ /* Map of pages within chunk that keeps track of free/large/small. */
+ arena_chunk_map_t map[1]; /* Dynamically sized. */
+};
+typedef rb_tree(arena_chunk_t) arena_chunk_tree_t;
+
+typedef struct arena_run_s arena_run_t;
+struct arena_run_s {
+#if defined(MALLOC_DEBUG) || defined(MOZ_JEMALLOC_HARD_ASSERTS)
+ uint32_t magic;
+# define ARENA_RUN_MAGIC 0x384adf93
+#endif
+
+ /* Bin this run is associated with. */
+ arena_bin_t *bin;
+
+ /* Index of first element that might have a free region. */
+ unsigned regs_minelm;
+
+ /* Number of free regions in run. */
+ unsigned nfree;
+
+ /* Bitmask of in-use regions (0: in use, 1: free). */
+ unsigned regs_mask[1]; /* Dynamically sized. */
+};
+
+struct arena_bin_s {
+ /*
+ * Current run being used to service allocations of this bin's size
+ * class.
+ */
+ arena_run_t *runcur;
+
+ /*
+ * Tree of non-full runs. This tree is used when looking for an
+ * existing run when runcur is no longer usable. We choose the
+ * non-full run that is lowest in memory; this policy tends to keep
+ * objects packed well, and it can also help reduce the number of
+ * almost-empty chunks.
+ */
+ arena_run_tree_t runs;
+
+ /* Size of regions in a run for this bin's size class. */
+ size_t reg_size;
+
+ /* Total size of a run for this bin's size class. */
+ size_t run_size;
+
+ /* Total number of regions in a run for this bin's size class. */
+ uint32_t nregs;
+
+ /* Number of elements in a run's regs_mask for this bin's size class. */
+ uint32_t regs_mask_nelms;
+
+ /* Offset of first region in a run for this bin's size class. */
+ uint32_t reg0_offset;
+
+#ifdef MALLOC_STATS
+ /* Bin statistics. */
+ malloc_bin_stats_t stats;
+#endif
+};
+
+struct arena_s {
+#if defined(MALLOC_DEBUG) || defined(MOZ_JEMALLOC_HARD_ASSERTS)
+ uint32_t magic;
+# define ARENA_MAGIC 0x947d3d24
+#endif
+
+ /* All operations on this arena require that lock be locked. */
+#ifdef MOZ_MEMORY
+ malloc_spinlock_t lock;
+#else
+ pthread_mutex_t lock;
+#endif
+
+#ifdef MALLOC_STATS
+ arena_stats_t stats;
+#endif
+
+ /* Tree of dirty-page-containing chunks this arena manages. */
+ arena_chunk_tree_t chunks_dirty;
+
+#ifdef MALLOC_DOUBLE_PURGE
+ /* Head of a linked list of MADV_FREE'd-page-containing chunks this
+ * arena manages. */
+ LinkedList chunks_madvised;
+#endif
+
+ /*
+ * In order to avoid rapid chunk allocation/deallocation when an arena
+ * oscillates right on the cusp of needing a new chunk, cache the most
+ * recently freed chunk. The spare is left in the arena's chunk trees
+ * until it is deleted.
+ *
+ * There is one spare chunk per arena, rather than one spare total, in
+ * order to avoid interactions between multiple threads that could make
+ * a single spare inadequate.
+ */
+ arena_chunk_t *spare;
+
+ /*
+ * Current count of pages within unused runs that are potentially
+ * dirty, and for which madvise(... MADV_FREE) has not been called. By
+ * tracking this, we can institute a limit on how much dirty unused
+ * memory is mapped for each arena.
+ */
+ size_t ndirty;
+
+ /*
+ * Size/address-ordered tree of this arena's available runs. This tree
+ * is used for first-best-fit run allocation.
+ */
+ arena_avail_tree_t runs_avail;
+
+#ifdef MALLOC_BALANCE
+ /*
+ * The arena load balancing machinery needs to keep track of how much
+ * lock contention there is. This value is exponentially averaged.
+ */
+ uint32_t contention;
+#endif
+
+ /*
+ * bins is used to store rings of free regions of the following sizes,
+ * assuming a 16-byte quantum, 4kB pagesize, and default MALLOC_OPTIONS.
+ *
+ * bins[i] | size |
+ * --------+------+
+ * 0 | 2 |
+ * 1 | 4 |
+ * 2 | 8 |
+ * --------+------+
+ * 3 | 16 |
+ * 4 | 32 |
+ * 5 | 48 |
+ * 6 | 64 |
+ * : :
+ * : :
+ * 33 | 496 |
+ * 34 | 512 |
+ * --------+------+
+ * 35 | 1024 |
+ * 36 | 2048 |
+ * --------+------+
+ */
+ arena_bin_t bins[1]; /* Dynamically sized. */
+};
+
+/******************************************************************************/
+/*
+ * Data.
+ */
+
+#ifndef MOZ_MEMORY_NARENAS_DEFAULT_ONE
+/* Number of CPUs. */
+static unsigned ncpus;
+#endif
+
+#ifdef JEMALLOC_MUNMAP
+static const bool config_munmap = true;
+#else
+static const bool config_munmap = false;
+#endif
+
+#ifdef JEMALLOC_RECYCLE
+static const bool config_recycle = true;
+#else
+static const bool config_recycle = false;
+#endif
+
+/*
+ * When MALLOC_STATIC_SIZES is defined most of the parameters
+ * controlling the malloc behavior are defined as compile-time constants
+ * for best performance and cannot be altered at runtime.
+ */
+#if !defined(__ia64__) && !defined(__sparc__) && !defined(__mips__) && !defined(__aarch64__)
+#define MALLOC_STATIC_SIZES 1
+#endif
+
+#ifdef MALLOC_STATIC_SIZES
+
+/*
+ * VM page size. It must divide the runtime CPU page size or the code
+ * will abort.
+ * Platform specific page size conditions copied from js/public/HeapAPI.h
+ */
+#if (defined(SOLARIS) || defined(__FreeBSD__)) && \
+ (defined(__sparc) || defined(__sparcv9) || defined(__ia64))
+#define pagesize_2pow ((size_t) 13)
+#elif defined(__powerpc64__)
+#define pagesize_2pow ((size_t) 16)
+#else
+#define pagesize_2pow ((size_t) 12)
+#endif
+#define pagesize ((size_t) 1 << pagesize_2pow)
+#define pagesize_mask (pagesize - 1)
+
+/* Various quantum-related settings. */
+
+#define QUANTUM_DEFAULT ((size_t) 1 << QUANTUM_2POW_MIN)
+static const size_t quantum = QUANTUM_DEFAULT;
+static const size_t quantum_mask = QUANTUM_DEFAULT - 1;
+
+/* Various bin-related settings. */
+
+static const size_t small_min = (QUANTUM_DEFAULT >> 1) + 1;
+static const size_t small_max = (size_t) SMALL_MAX_DEFAULT;
+
+/* Max size class for bins. */
+static const size_t bin_maxclass = pagesize >> 1;
+
+ /* Number of (2^n)-spaced tiny bins. */
+static const unsigned ntbins = (unsigned)
+ (QUANTUM_2POW_MIN - TINY_MIN_2POW);
+
+ /* Number of quantum-spaced bins. */
+static const unsigned nqbins = (unsigned)
+ (SMALL_MAX_DEFAULT >> QUANTUM_2POW_MIN);
+
+/* Number of (2^n)-spaced sub-page bins. */
+static const unsigned nsbins = (unsigned)
+ (pagesize_2pow -
+ SMALL_MAX_2POW_DEFAULT - 1);
+
+#else /* !MALLOC_STATIC_SIZES */
+
+/* VM page size. */
+static size_t pagesize;
+static size_t pagesize_mask;
+static size_t pagesize_2pow;
+
+/* Various bin-related settings. */
+static size_t bin_maxclass; /* Max size class for bins. */
+static unsigned ntbins; /* Number of (2^n)-spaced tiny bins. */
+static unsigned nqbins; /* Number of quantum-spaced bins. */
+static unsigned nsbins; /* Number of (2^n)-spaced sub-page bins. */
+static size_t small_min;
+static size_t small_max;
+
+/* Various quantum-related settings. */
+static size_t quantum;
+static size_t quantum_mask; /* (quantum - 1). */
+
+#endif
+
+/* Various chunk-related settings. */
+
+/*
+ * Compute the header size such that it is large enough to contain the page map
+ * and enough nodes for the worst case: one node per non-header page plus one
+ * extra for situations where we briefly have one more node allocated than we
+ * will need.
+ */
+#define calculate_arena_header_size() \
+ (sizeof(arena_chunk_t) + sizeof(arena_chunk_map_t) * (chunk_npages - 1))
+
+#define calculate_arena_header_pages() \
+ ((calculate_arena_header_size() >> pagesize_2pow) + \
+ ((calculate_arena_header_size() & pagesize_mask) ? 1 : 0))
+
+/* Max size class for arenas. */
+#define calculate_arena_maxclass() \
+ (chunksize - (arena_chunk_header_npages << pagesize_2pow))
+
+/*
+ * Recycle at most 128 chunks. With 1 MiB chunks, this means we retain at most
+ * 6.25% of the process address space on a 32-bit OS for later use.
+ */
+#define CHUNK_RECYCLE_LIMIT 128
+
+#ifdef MALLOC_STATIC_SIZES
+#define CHUNKSIZE_DEFAULT ((size_t) 1 << CHUNK_2POW_DEFAULT)
+static const size_t chunksize = CHUNKSIZE_DEFAULT;
+static const size_t chunksize_mask =CHUNKSIZE_DEFAULT - 1;
+static const size_t chunk_npages = CHUNKSIZE_DEFAULT >> pagesize_2pow;
+#define arena_chunk_header_npages calculate_arena_header_pages()
+#define arena_maxclass calculate_arena_maxclass()
+static const size_t recycle_limit = CHUNK_RECYCLE_LIMIT * CHUNKSIZE_DEFAULT;
+#else
+static size_t chunksize;
+static size_t chunksize_mask; /* (chunksize - 1). */
+static size_t chunk_npages;
+static size_t arena_chunk_header_npages;
+static size_t arena_maxclass; /* Max size class for arenas. */
+static size_t recycle_limit;
+#endif
+
+/* The current amount of recycled bytes, updated atomically. */
+static size_t recycled_size;
+
+/********/
+/*
+ * Chunks.
+ */
+
+#ifdef MALLOC_VALIDATE
+static malloc_rtree_t *chunk_rtree;
+#endif
+
+/* Protects chunk-related data structures. */
+static malloc_mutex_t chunks_mtx;
+
+/*
+ * Trees of chunks that were previously allocated (trees differ only in node
+ * ordering). These are used when allocating chunks, in an attempt to re-use
+ * address space. Depending on function, different tree orderings are needed,
+ * which is why there are two trees with the same contents.
+ */
+static extent_tree_t chunks_szad_mmap;
+static extent_tree_t chunks_ad_mmap;
+
+/* Protects huge allocation-related data structures. */
+static malloc_mutex_t huge_mtx;
+
+/* Tree of chunks that are stand-alone huge allocations. */
+static extent_tree_t huge;
+
+#ifdef MALLOC_STATS
+/* Huge allocation statistics. */
+static uint64_t huge_nmalloc;
+static uint64_t huge_ndalloc;
+static size_t huge_allocated;
+static size_t huge_mapped;
+#endif
+
+/****************************/
+/*
+ * base (internal allocation).
+ */
+
+/*
+ * Current pages that are being used for internal memory allocations. These
+ * pages are carved up in cacheline-size quanta, so that there is no chance of
+ * false cache line sharing.
+ */
+static void *base_pages;
+static void *base_next_addr;
+#if defined(MALLOC_DECOMMIT) || defined(MALLOC_STATS)
+static void *base_next_decommitted;
+#endif
+static void *base_past_addr; /* Addr immediately past base_pages. */
+static extent_node_t *base_nodes;
+static malloc_mutex_t base_mtx;
+#ifdef MALLOC_STATS
+static size_t base_mapped;
+static size_t base_committed;
+#endif
+
+/********/
+/*
+ * Arenas.
+ */
+
+/*
+ * Arenas that are used to service external requests. Not all elements of the
+ * arenas array are necessarily used; arenas are created lazily as needed.
+ */
+static arena_t **arenas;
+static unsigned narenas;
+#ifndef NO_TLS
+# ifdef MALLOC_BALANCE
+static unsigned narenas_2pow;
+# else
+static unsigned next_arena;
+# endif
+#endif
+#ifdef MOZ_MEMORY
+static malloc_spinlock_t arenas_lock; /* Protects arenas initialization. */
+#else
+static pthread_mutex_t arenas_lock; /* Protects arenas initialization. */
+#endif
+
+#ifndef NO_TLS
+/*
+ * Map of pthread_self() --> arenas[???], used for selecting an arena to use
+ * for allocations.
+ */
+#ifndef MOZ_MEMORY_WINDOWS
+static __thread arena_t *arenas_map;
+#endif
+#endif
+
+/*******************************/
+/*
+ * Runtime configuration options.
+ */
+MOZ_JEMALLOC_API
+const char *_malloc_options = MOZ_MALLOC_OPTIONS;
+
+#ifndef MALLOC_PRODUCTION
+static bool opt_abort = true;
+#ifdef MALLOC_FILL
+static bool opt_junk = true;
+static bool opt_poison = true;
+static bool opt_zero = false;
+#endif
+#else
+static bool opt_abort = false;
+#ifdef MALLOC_FILL
+static const bool opt_junk = false;
+static const bool opt_poison = true;
+static const bool opt_zero = false;
+#endif
+#endif
+
+static size_t opt_dirty_max = DIRTY_MAX_DEFAULT;
+#ifdef MALLOC_BALANCE
+static uint64_t opt_balance_threshold = BALANCE_THRESHOLD_DEFAULT;
+#endif
+static bool opt_print_stats = false;
+#ifdef MALLOC_STATIC_SIZES
+#define opt_quantum_2pow QUANTUM_2POW_MIN
+#define opt_small_max_2pow SMALL_MAX_2POW_DEFAULT
+#define opt_chunk_2pow CHUNK_2POW_DEFAULT
+#else
+static size_t opt_quantum_2pow = QUANTUM_2POW_MIN;
+static size_t opt_small_max_2pow = SMALL_MAX_2POW_DEFAULT;
+static size_t opt_chunk_2pow = CHUNK_2POW_DEFAULT;
+#endif
+#ifdef MALLOC_UTRACE
+static bool opt_utrace = false;
+#endif
+#ifdef MALLOC_SYSV
+static bool opt_sysv = false;
+#endif
+#ifdef MALLOC_XMALLOC
+static bool opt_xmalloc = false;
+#endif
+static int opt_narenas_lshift = 0;
+
+#ifdef MALLOC_UTRACE
+typedef struct {
+ void *p;
+ size_t s;
+ void *r;
+} malloc_utrace_t;
+
+#define UTRACE(a, b, c) \
+ if (opt_utrace) { \
+ malloc_utrace_t ut; \
+ ut.p = (a); \
+ ut.s = (b); \
+ ut.r = (c); \
+ utrace(&ut, sizeof(ut)); \
+ }
+#else
+#define UTRACE(a, b, c)
+#endif
+
+/******************************************************************************/
+/*
+ * Begin function prototypes for non-inline static functions.
+ */
+
+static char *umax2s(uintmax_t x, unsigned base, char *s);
+static bool malloc_mutex_init(malloc_mutex_t *mutex);
+static bool malloc_spin_init(malloc_spinlock_t *lock);
+static void wrtmessage(const char *p1, const char *p2, const char *p3,
+ const char *p4);
+#ifdef MALLOC_STATS
+#ifdef MOZ_MEMORY_DARWIN
+/* Avoid namespace collision with OS X's malloc APIs. */
+#define malloc_printf moz_malloc_printf
+#endif
+static void malloc_printf(const char *format, ...);
+#endif
+static bool base_pages_alloc(size_t minsize);
+static void *base_alloc(size_t size);
+static void *base_calloc(size_t number, size_t size);
+static extent_node_t *base_node_alloc(void);
+static void base_node_dealloc(extent_node_t *node);
+#ifdef MALLOC_STATS
+static void stats_print(arena_t *arena);
+#endif
+static void *pages_map(void *addr, size_t size);
+static void pages_unmap(void *addr, size_t size);
+static void *chunk_alloc_mmap(size_t size, size_t alignment);
+static void *chunk_recycle(extent_tree_t *chunks_szad,
+ extent_tree_t *chunks_ad, size_t size,
+ size_t alignment, bool base, bool *zero);
+static void *chunk_alloc(size_t size, size_t alignment, bool base, bool zero);
+static void chunk_record(extent_tree_t *chunks_szad,
+ extent_tree_t *chunks_ad, void *chunk, size_t size);
+static bool chunk_dalloc_mmap(void *chunk, size_t size);
+static void chunk_dealloc(void *chunk, size_t size);
+#ifndef NO_TLS
+static arena_t *choose_arena_hard(void);
+#endif
+static void arena_run_split(arena_t *arena, arena_run_t *run, size_t size,
+ bool large, bool zero);
+static void arena_chunk_init(arena_t *arena, arena_chunk_t *chunk);
+static void arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk);
+static arena_run_t *arena_run_alloc(arena_t *arena, arena_bin_t *bin,
+ size_t size, bool large, bool zero);
+static void arena_purge(arena_t *arena, bool all);
+static void arena_run_dalloc(arena_t *arena, arena_run_t *run, bool dirty);
+static void arena_run_trim_head(arena_t *arena, arena_chunk_t *chunk,
+ arena_run_t *run, size_t oldsize, size_t newsize);
+static void arena_run_trim_tail(arena_t *arena, arena_chunk_t *chunk,
+ arena_run_t *run, size_t oldsize, size_t newsize, bool dirty);
+static arena_run_t *arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin);
+static void *arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin);
+static size_t arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size);
+#ifdef MALLOC_BALANCE
+static void arena_lock_balance_hard(arena_t *arena);
+#endif
+static void *arena_malloc_large(arena_t *arena, size_t size, bool zero);
+static void *arena_palloc(arena_t *arena, size_t alignment, size_t size,
+ size_t alloc_size);
+static size_t arena_salloc(const void *ptr);
+static void arena_dalloc_large(arena_t *arena, arena_chunk_t *chunk,
+ void *ptr);
+static void arena_ralloc_large_shrink(arena_t *arena, arena_chunk_t *chunk,
+ void *ptr, size_t size, size_t oldsize);
+static bool arena_ralloc_large_grow(arena_t *arena, arena_chunk_t *chunk,
+ void *ptr, size_t size, size_t oldsize);
+static bool arena_ralloc_large(void *ptr, size_t size, size_t oldsize);
+static void *arena_ralloc(void *ptr, size_t size, size_t oldsize);
+static bool arena_new(arena_t *arena);
+static arena_t *arenas_extend(unsigned ind);
+static void *huge_malloc(size_t size, bool zero);
+static void *huge_palloc(size_t size, size_t alignment, bool zero);
+static void *huge_ralloc(void *ptr, size_t size, size_t oldsize);
+static void huge_dalloc(void *ptr);
+static void malloc_print_stats(void);
+#ifndef MOZ_MEMORY_WINDOWS
+static
+#endif
+bool malloc_init_hard(void);
+
+static void _malloc_prefork(void);
+static void _malloc_postfork(void);
+
+#ifdef MOZ_MEMORY_DARWIN
+/*
+ * MALLOC_ZONE_T_NOTE
+ *
+ * On Darwin, we hook into the memory allocator using a malloc_zone_t struct.
+ * We must be very careful around this struct because of different behaviour on
+ * different versions of OSX.
+ *
+ * Each of OSX 10.5, 10.6 and 10.7 use different versions of the struct
+ * (with version numbers 3, 6 and 8 respectively). The binary we use on each of
+ * these platforms will not necessarily be built using the correct SDK [1].
+ * This means we need to statically know the correct struct size to use on all
+ * OSX releases, and have a fallback for unknown future versions. The struct
+ * sizes defined in osx_zone_types.h.
+ *
+ * For OSX 10.8 and later, we may expect the malloc_zone_t struct to change
+ * again, and need to dynamically account for this. By simply leaving
+ * malloc_zone_t alone, we don't quite deal with the problem, because there
+ * remain calls to jemalloc through the mozalloc interface. We check this
+ * dynamically on each allocation, using the CHECK_DARWIN macro and
+ * osx_use_jemalloc.
+ *
+ *
+ * [1] Mozilla is built as a universal binary on Mac, supporting i386 and
+ * x86_64. The i386 target is built using the 10.5 SDK, even if it runs on
+ * 10.6. The x86_64 target is built using the 10.6 SDK, even if it runs on
+ * 10.7 or later, or 10.5.
+ *
+ * FIXME:
+ * When later versions of OSX come out (10.8 and up), we need to check their
+ * malloc_zone_t versions. If they're greater than 8, we need a new version
+ * of malloc_zone_t adapted into osx_zone_types.h.
+ */
+
+#ifndef MOZ_REPLACE_MALLOC
+#include "osx_zone_types.h"
+
+#define LEOPARD_MALLOC_ZONE_T_VERSION 3
+#define SNOW_LEOPARD_MALLOC_ZONE_T_VERSION 6
+#define LION_MALLOC_ZONE_T_VERSION 8
+
+static bool osx_use_jemalloc = false;
+
+
+static lion_malloc_zone l_szone;
+static malloc_zone_t * szone = (malloc_zone_t*)(&l_szone);
+
+static lion_malloc_introspection l_ozone_introspect;
+static malloc_introspection_t * const ozone_introspect =
+ (malloc_introspection_t*)(&l_ozone_introspect);
+static void szone2ozone(malloc_zone_t *zone, size_t size);
+static size_t zone_version_size(int version);
+#else
+static const bool osx_use_jemalloc = true;
+#endif
+
+#endif
+
+/*
+ * End function prototypes.
+ */
+/******************************************************************************/
+
+static inline size_t
+load_acquire_z(size_t *p)
+{
+ volatile size_t result = *p;
+# ifdef MOZ_MEMORY_WINDOWS
+ /*
+ * We use InterlockedExchange with a dummy value to insert a memory
+ * barrier. This has been confirmed to generate the right instruction
+ * and is also used by MinGW.
+ */
+ volatile long dummy = 0;
+ InterlockedExchange(&dummy, 1);
+# else
+ __sync_synchronize();
+# endif
+ return result;
+}
+
+/*
+ * umax2s() provides minimal integer printing functionality, which is
+ * especially useful for situations where allocation in vsnprintf() calls would
+ * potentially cause deadlock.
+ */
+#define UMAX2S_BUFSIZE 65
+char *
+umax2s(uintmax_t x, unsigned base, char *s)
+{
+ unsigned i;
+
+ i = UMAX2S_BUFSIZE - 1;
+ s[i] = '\0';
+ switch (base) {
+ case 10:
+ do {
+ i--;
+ s[i] = "0123456789"[x % 10];
+ x /= 10;
+ } while (x > 0);
+ break;
+ case 16:
+ do {
+ i--;
+ s[i] = "0123456789abcdef"[x & 0xf];
+ x >>= 4;
+ } while (x > 0);
+ break;
+ default:
+ do {
+ i--;
+ s[i] = "0123456789abcdefghijklmnopqrstuvwxyz"[x % base];
+ x /= base;
+ } while (x > 0);
+ }
+
+ return (&s[i]);
+}
+
+static void
+wrtmessage(const char *p1, const char *p2, const char *p3, const char *p4)
+{
+#if defined(MOZ_MEMORY) && !defined(MOZ_MEMORY_WINDOWS)
+#define _write write
+#endif
+ // Pretend to check _write() errors to suppress gcc warnings about
+ // warn_unused_result annotations in some versions of glibc headers.
+ if (_write(STDERR_FILENO, p1, (unsigned int) strlen(p1)) < 0)
+ return;
+ if (_write(STDERR_FILENO, p2, (unsigned int) strlen(p2)) < 0)
+ return;
+ if (_write(STDERR_FILENO, p3, (unsigned int) strlen(p3)) < 0)
+ return;
+ if (_write(STDERR_FILENO, p4, (unsigned int) strlen(p4)) < 0)
+ return;
+}
+
+MOZ_JEMALLOC_API
+void (*_malloc_message)(const char *p1, const char *p2, const char *p3,
+ const char *p4) = wrtmessage;
+
+#include "mozilla/Assertions.h"
+#include "mozilla/Attributes.h"
+#include "mozilla/TaggedAnonymousMemory.h"
+// Note: MozTaggedAnonymousMmap() could call an LD_PRELOADed mmap
+// instead of the one defined here; use only MozTagAnonymousMemory().
+
+#ifdef MALLOC_DEBUG
+# define assert(e) MOZ_ASSERT(e)
+#else
+# define assert(e)
+#endif
+
+#ifdef MOZ_MEMORY_ANDROID
+// Android's pthread.h does not declare pthread_atfork() until SDK 21.
+extern MOZ_EXPORT
+int pthread_atfork(void (*)(void), void (*)(void), void(*)(void));
+#endif
+
+#if defined(MOZ_JEMALLOC_HARD_ASSERTS)
+# define RELEASE_ASSERT(assertion) do { \
+ if (!(assertion)) { \
+ MOZ_CRASH_UNSAFE_OOL(#assertion); \
+ } \
+} while (0)
+#else
+# define RELEASE_ASSERT(assertion) assert(assertion)
+#endif
+
+/******************************************************************************/
+/*
+ * Begin mutex. We can't use normal pthread mutexes in all places, because
+ * they require malloc()ed memory, which causes bootstrapping issues in some
+ * cases.
+ */
+
+static bool
+malloc_mutex_init(malloc_mutex_t *mutex)
+{
+#if defined(MOZ_MEMORY_WINDOWS)
+ if (isthreaded)
+ if (! __crtInitCritSecAndSpinCount(mutex, _CRT_SPINCOUNT))
+ return (true);
+#elif defined(MOZ_MEMORY_DARWIN)
+ mutex->lock = OS_SPINLOCK_INIT;
+#elif defined(MOZ_MEMORY_LINUX) && !defined(MOZ_MEMORY_ANDROID)
+ pthread_mutexattr_t attr;
+ if (pthread_mutexattr_init(&attr) != 0)
+ return (true);
+ pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ADAPTIVE_NP);
+ if (pthread_mutex_init(mutex, &attr) != 0) {
+ pthread_mutexattr_destroy(&attr);
+ return (true);
+ }
+ pthread_mutexattr_destroy(&attr);
+#elif defined(MOZ_MEMORY)
+ if (pthread_mutex_init(mutex, NULL) != 0)
+ return (true);
+#else
+ static const spinlock_t lock = _SPINLOCK_INITIALIZER;
+
+ mutex->lock = lock;
+#endif
+ return (false);
+}
+
+static inline void
+malloc_mutex_lock(malloc_mutex_t *mutex)
+{
+
+#if defined(MOZ_MEMORY_WINDOWS)
+ EnterCriticalSection(mutex);
+#elif defined(MOZ_MEMORY_DARWIN)
+ OSSpinLockLock(&mutex->lock);
+#elif defined(MOZ_MEMORY)
+ pthread_mutex_lock(mutex);
+#else
+ if (isthreaded)
+ _SPINLOCK(&mutex->lock);
+#endif
+}
+
+static inline void
+malloc_mutex_unlock(malloc_mutex_t *mutex)
+{
+
+#if defined(MOZ_MEMORY_WINDOWS)
+ LeaveCriticalSection(mutex);
+#elif defined(MOZ_MEMORY_DARWIN)
+ OSSpinLockUnlock(&mutex->lock);
+#elif defined(MOZ_MEMORY)
+ pthread_mutex_unlock(mutex);
+#else
+ if (isthreaded)
+ _SPINUNLOCK(&mutex->lock);
+#endif
+}
+
+#if (defined(__GNUC__))
+__attribute__((unused))
+# endif
+static bool
+malloc_spin_init(malloc_spinlock_t *lock)
+{
+#if defined(MOZ_MEMORY_WINDOWS)
+ if (isthreaded)
+ if (! __crtInitCritSecAndSpinCount(lock, _CRT_SPINCOUNT))
+ return (true);
+#elif defined(MOZ_MEMORY_DARWIN)
+ lock->lock = OS_SPINLOCK_INIT;
+#elif defined(MOZ_MEMORY_LINUX) && !defined(MOZ_MEMORY_ANDROID)
+ pthread_mutexattr_t attr;
+ if (pthread_mutexattr_init(&attr) != 0)
+ return (true);
+ pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ADAPTIVE_NP);
+ if (pthread_mutex_init(lock, &attr) != 0) {
+ pthread_mutexattr_destroy(&attr);
+ return (true);
+ }
+ pthread_mutexattr_destroy(&attr);
+#elif defined(MOZ_MEMORY)
+ if (pthread_mutex_init(lock, NULL) != 0)
+ return (true);
+#else
+ lock->lock = _SPINLOCK_INITIALIZER;
+#endif
+ return (false);
+}
+
+static inline void
+malloc_spin_lock(malloc_spinlock_t *lock)
+{
+
+#if defined(MOZ_MEMORY_WINDOWS)
+ EnterCriticalSection(lock);
+#elif defined(MOZ_MEMORY_DARWIN)
+ OSSpinLockLock(&lock->lock);
+#elif defined(MOZ_MEMORY)
+ pthread_mutex_lock(lock);
+#else
+ if (isthreaded)
+ _SPINLOCK(&lock->lock);
+#endif
+}
+
+static inline void
+malloc_spin_unlock(malloc_spinlock_t *lock)
+{
+#if defined(MOZ_MEMORY_WINDOWS)
+ LeaveCriticalSection(lock);
+#elif defined(MOZ_MEMORY_DARWIN)
+ OSSpinLockUnlock(&lock->lock);
+#elif defined(MOZ_MEMORY)
+ pthread_mutex_unlock(lock);
+#else
+ if (isthreaded)
+ _SPINUNLOCK(&lock->lock);
+#endif
+}
+
+/*
+ * End mutex.
+ */
+/******************************************************************************/
+/*
+ * Begin spin lock. Spin locks here are actually adaptive mutexes that block
+ * after a period of spinning, because unbounded spinning would allow for
+ * priority inversion.
+ */
+
+#if defined(MOZ_MEMORY) && !defined(MOZ_MEMORY_DARWIN)
+# define malloc_spin_init malloc_mutex_init
+# define malloc_spin_lock malloc_mutex_lock
+# define malloc_spin_unlock malloc_mutex_unlock
+#endif
+
+#ifndef MOZ_MEMORY
+/*
+ * We use an unpublished interface to initialize pthread mutexes with an
+ * allocation callback, in order to avoid infinite recursion.
+ */
+int _pthread_mutex_init_calloc_cb(pthread_mutex_t *mutex,
+ void *(calloc_cb)(size_t, size_t));
+
+__weak_reference(_pthread_mutex_init_calloc_cb_stub,
+ _pthread_mutex_init_calloc_cb);
+
+int
+_pthread_mutex_init_calloc_cb_stub(pthread_mutex_t *mutex,
+ void *(calloc_cb)(size_t, size_t))
+{
+
+ return (0);
+}
+
+static bool
+malloc_spin_init(pthread_mutex_t *lock)
+{
+
+ if (_pthread_mutex_init_calloc_cb(lock, base_calloc) != 0)
+ return (true);
+
+ return (false);
+}
+
+static inline unsigned
+malloc_spin_lock(pthread_mutex_t *lock)
+{
+ unsigned ret = 0;
+
+ if (isthreaded) {
+ if (_pthread_mutex_trylock(lock) != 0) {
+ unsigned i;
+ volatile unsigned j;
+
+ /* Exponentially back off. */
+ for (i = 1; i <= SPIN_LIMIT_2POW; i++) {
+ for (j = 0; j < (1U << i); j++)
+ ret++;
+
+ CPU_SPINWAIT;
+ if (_pthread_mutex_trylock(lock) == 0)
+ return (ret);
+ }
+
+ /*
+ * Spinning failed. Block until the lock becomes
+ * available, in order to avoid indefinite priority
+ * inversion.
+ */
+ _pthread_mutex_lock(lock);
+ assert((ret << BLOCK_COST_2POW) != 0);
+ return (ret << BLOCK_COST_2POW);
+ }
+ }
+
+ return (ret);
+}
+
+static inline void
+malloc_spin_unlock(pthread_mutex_t *lock)
+{
+
+ if (isthreaded)
+ _pthread_mutex_unlock(lock);
+}
+#endif
+
+/*
+ * End spin lock.
+ */
+/******************************************************************************/
+/*
+ * Begin Utility functions/macros.
+ */
+
+/* Return the chunk address for allocation address a. */
+#define CHUNK_ADDR2BASE(a) \
+ ((void *)((uintptr_t)(a) & ~chunksize_mask))
+
+/* Return the chunk offset of address a. */
+#define CHUNK_ADDR2OFFSET(a) \
+ ((size_t)((uintptr_t)(a) & chunksize_mask))
+
+/* Return the smallest chunk multiple that is >= s. */
+#define CHUNK_CEILING(s) \
+ (((s) + chunksize_mask) & ~chunksize_mask)
+
+/* Return the smallest cacheline multiple that is >= s. */
+#define CACHELINE_CEILING(s) \
+ (((s) + (CACHELINE - 1)) & ~(CACHELINE - 1))
+
+/* Return the smallest quantum multiple that is >= a. */
+#define QUANTUM_CEILING(a) \
+ (((a) + quantum_mask) & ~quantum_mask)
+
+/* Return the smallest pagesize multiple that is >= s. */
+#define PAGE_CEILING(s) \
+ (((s) + pagesize_mask) & ~pagesize_mask)
+
+/* Compute the smallest power of 2 that is >= x. */
+static inline size_t
+pow2_ceil(size_t x)
+{
+
+ x--;
+ x |= x >> 1;
+ x |= x >> 2;
+ x |= x >> 4;
+ x |= x >> 8;
+ x |= x >> 16;
+#if (SIZEOF_PTR == 8)
+ x |= x >> 32;
+#endif
+ x++;
+ return (x);
+}
+
+#ifdef MALLOC_BALANCE
+/*
+ * Use a simple linear congruential pseudo-random number generator:
+ *
+ * prn(y) = (a*x + c) % m
+ *
+ * where the following constants ensure maximal period:
+ *
+ * a == Odd number (relatively prime to 2^n), and (a-1) is a multiple of 4.
+ * c == Odd number (relatively prime to 2^n).
+ * m == 2^32
+ *
+ * See Knuth's TAOCP 3rd Ed., Vol. 2, pg. 17 for details on these constraints.
+ *
+ * This choice of m has the disadvantage that the quality of the bits is
+ * proportional to bit position. For example. the lowest bit has a cycle of 2,
+ * the next has a cycle of 4, etc. For this reason, we prefer to use the upper
+ * bits.
+ */
+# define PRN_DEFINE(suffix, var, a, c) \
+static inline void \
+sprn_##suffix(uint32_t seed) \
+{ \
+ var = seed; \
+} \
+ \
+static inline uint32_t \
+prn_##suffix(uint32_t lg_range) \
+{ \
+ uint32_t ret, x; \
+ \
+ assert(lg_range > 0); \
+ assert(lg_range <= 32); \
+ \
+ x = (var * (a)) + (c); \
+ var = x; \
+ ret = x >> (32 - lg_range); \
+ \
+ return (ret); \
+}
+# define SPRN(suffix, seed) sprn_##suffix(seed)
+# define PRN(suffix, lg_range) prn_##suffix(lg_range)
+#endif
+
+#ifdef MALLOC_BALANCE
+/* Define the PRNG used for arena assignment. */
+static __thread uint32_t balance_x;
+PRN_DEFINE(balance, balance_x, 1297, 1301)
+#endif
+
+#ifdef MALLOC_UTRACE
+static int
+utrace(const void *addr, size_t len)
+{
+ malloc_utrace_t *ut = (malloc_utrace_t *)addr;
+ char buf_a[UMAX2S_BUFSIZE];
+ char buf_b[UMAX2S_BUFSIZE];
+
+ assert(len == sizeof(malloc_utrace_t));
+
+ if (ut->p == NULL && ut->s == 0 && ut->r == NULL) {
+ _malloc_message(
+ umax2s(getpid(), 10, buf_a),
+ " x USER malloc_init()\n", "", "");
+ } else if (ut->p == NULL && ut->r != NULL) {
+ _malloc_message(
+ umax2s(getpid(), 10, buf_a),
+ " x USER 0x",
+ umax2s((uintptr_t)ut->r, 16, buf_b),
+ " = malloc(");
+ _malloc_message(
+ umax2s(ut->s, 10, buf_a),
+ ")\n", "", "");
+ } else if (ut->p != NULL && ut->r != NULL) {
+ _malloc_message(
+ umax2s(getpid(), 10, buf_a),
+ " x USER 0x",
+ umax2s((uintptr_t)ut->r, 16, buf_b),
+ " = realloc(0x");
+ _malloc_message(
+ umax2s((uintptr_t)ut->p, 16, buf_a),
+ ", ",
+ umax2s(ut->s, 10, buf_b),
+ ")\n");
+ } else {
+ _malloc_message(
+ umax2s(getpid(), 10, buf_a),
+ " x USER free(0x",
+ umax2s((uintptr_t)ut->p, 16, buf_b),
+ ")\n");
+ }
+
+ return (0);
+}
+#endif
+
+static inline const char *
+_getprogname(void)
+{
+
+ return ("<jemalloc>");
+}
+
+#ifdef MALLOC_STATS
+/*
+ * Print to stderr in such a way as to (hopefully) avoid memory allocation.
+ */
+static void
+malloc_printf(const char *format, ...)
+{
+ char buf[4096];
+ va_list ap;
+
+ va_start(ap, format);
+ vsnprintf(buf, sizeof(buf), format, ap);
+ va_end(ap);
+ _malloc_message(buf, "", "", "");
+}
+#endif
+
+/******************************************************************************/
+
+static inline void
+pages_decommit(void *addr, size_t size)
+{
+
+#ifdef MOZ_MEMORY_WINDOWS
+ /*
+ * The region starting at addr may have been allocated in multiple calls
+ * to VirtualAlloc and recycled, so decommitting the entire region in one
+ * go may not be valid. However, since we allocate at least a chunk at a
+ * time, we may touch any region in chunksized increments.
+ */
+ size_t pages_size = min(size, chunksize -
+ CHUNK_ADDR2OFFSET((uintptr_t)addr));
+ while (size > 0) {
+ if (!VirtualFree(addr, pages_size, MEM_DECOMMIT))
+ abort();
+ addr = (void *)((uintptr_t)addr + pages_size);
+ size -= pages_size;
+ pages_size = min(size, chunksize);
+ }
+#else
+ if (mmap(addr, size, PROT_NONE, MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1,
+ 0) == MAP_FAILED)
+ abort();
+ MozTagAnonymousMemory(addr, size, "jemalloc-decommitted");
+#endif
+}
+
+static inline void
+pages_commit(void *addr, size_t size)
+{
+
+# ifdef MOZ_MEMORY_WINDOWS
+ /*
+ * The region starting at addr may have been allocated in multiple calls
+ * to VirtualAlloc and recycled, so committing the entire region in one
+ * go may not be valid. However, since we allocate at least a chunk at a
+ * time, we may touch any region in chunksized increments.
+ */
+ size_t pages_size = min(size, chunksize -
+ CHUNK_ADDR2OFFSET((uintptr_t)addr));
+ while (size > 0) {
+ if (!VirtualAlloc(addr, pages_size, MEM_COMMIT, PAGE_READWRITE))
+ abort();
+ addr = (void *)((uintptr_t)addr + pages_size);
+ size -= pages_size;
+ pages_size = min(size, chunksize);
+ }
+# else
+ if (mmap(addr, size, PROT_READ | PROT_WRITE, MAP_FIXED | MAP_PRIVATE |
+ MAP_ANON, -1, 0) == MAP_FAILED)
+ abort();
+ MozTagAnonymousMemory(addr, size, "jemalloc");
+# endif
+}
+
+static bool
+base_pages_alloc(size_t minsize)
+{
+ size_t csize;
+#if defined(MALLOC_DECOMMIT) || defined(MALLOC_STATS)
+ size_t pminsize;
+#endif
+
+ assert(minsize != 0);
+ csize = CHUNK_CEILING(minsize);
+ base_pages = chunk_alloc(csize, chunksize, true, false);
+ if (base_pages == NULL)
+ return (true);
+ base_next_addr = base_pages;
+ base_past_addr = (void *)((uintptr_t)base_pages + csize);
+#if defined(MALLOC_DECOMMIT) || defined(MALLOC_STATS)
+ /*
+ * Leave enough pages for minsize committed, since otherwise they would
+ * have to be immediately recommitted.
+ */
+ pminsize = PAGE_CEILING(minsize);
+ base_next_decommitted = (void *)((uintptr_t)base_pages + pminsize);
+# if defined(MALLOC_DECOMMIT)
+ if (pminsize < csize)
+ pages_decommit(base_next_decommitted, csize - pminsize);
+# endif
+# ifdef MALLOC_STATS
+ base_mapped += csize;
+ base_committed += pminsize;
+# endif
+#endif
+
+ return (false);
+}
+
+static void *
+base_alloc(size_t size)
+{
+ void *ret;
+ size_t csize;
+
+ /* Round size up to nearest multiple of the cacheline size. */
+ csize = CACHELINE_CEILING(size);
+
+ malloc_mutex_lock(&base_mtx);
+ /* Make sure there's enough space for the allocation. */
+ if ((uintptr_t)base_next_addr + csize > (uintptr_t)base_past_addr) {
+ if (base_pages_alloc(csize)) {
+ malloc_mutex_unlock(&base_mtx);
+ return (NULL);
+ }
+ }
+ /* Allocate. */
+ ret = base_next_addr;
+ base_next_addr = (void *)((uintptr_t)base_next_addr + csize);
+#if defined(MALLOC_DECOMMIT) || defined(MALLOC_STATS)
+ /* Make sure enough pages are committed for the new allocation. */
+ if ((uintptr_t)base_next_addr > (uintptr_t)base_next_decommitted) {
+ void *pbase_next_addr =
+ (void *)(PAGE_CEILING((uintptr_t)base_next_addr));
+
+# ifdef MALLOC_DECOMMIT
+ pages_commit(base_next_decommitted, (uintptr_t)pbase_next_addr -
+ (uintptr_t)base_next_decommitted);
+# endif
+ base_next_decommitted = pbase_next_addr;
+# ifdef MALLOC_STATS
+ base_committed += (uintptr_t)pbase_next_addr -
+ (uintptr_t)base_next_decommitted;
+# endif
+ }
+#endif
+ malloc_mutex_unlock(&base_mtx);
+
+ return (ret);
+}
+
+static void *
+base_calloc(size_t number, size_t size)
+{
+ void *ret;
+
+ ret = base_alloc(number * size);
+ memset(ret, 0, number * size);
+
+ return (ret);
+}
+
+static extent_node_t *
+base_node_alloc(void)
+{
+ extent_node_t *ret;
+
+ malloc_mutex_lock(&base_mtx);
+ if (base_nodes != NULL) {
+ ret = base_nodes;
+ base_nodes = *(extent_node_t **)ret;
+ malloc_mutex_unlock(&base_mtx);
+ } else {
+ malloc_mutex_unlock(&base_mtx);
+ ret = (extent_node_t *)base_alloc(sizeof(extent_node_t));
+ }
+
+ return (ret);
+}
+
+static void
+base_node_dealloc(extent_node_t *node)
+{
+
+ malloc_mutex_lock(&base_mtx);
+ *(extent_node_t **)node = base_nodes;
+ base_nodes = node;
+ malloc_mutex_unlock(&base_mtx);
+}
+
+/******************************************************************************/
+
+#ifdef MALLOC_STATS
+static void
+stats_print(arena_t *arena)
+{
+ unsigned i, gap_start;
+
+#ifdef MOZ_MEMORY_WINDOWS
+ malloc_printf("dirty: %Iu page%s dirty, %I64u sweep%s,"
+ " %I64u madvise%s, %I64u page%s purged\n",
+ arena->ndirty, arena->ndirty == 1 ? "" : "s",
+ arena->stats.npurge, arena->stats.npurge == 1 ? "" : "s",
+ arena->stats.nmadvise, arena->stats.nmadvise == 1 ? "" : "s",
+ arena->stats.purged, arena->stats.purged == 1 ? "" : "s");
+# ifdef MALLOC_DECOMMIT
+ malloc_printf("decommit: %I64u decommit%s, %I64u commit%s,"
+ " %I64u page%s decommitted\n",
+ arena->stats.ndecommit, (arena->stats.ndecommit == 1) ? "" : "s",
+ arena->stats.ncommit, (arena->stats.ncommit == 1) ? "" : "s",
+ arena->stats.decommitted,
+ (arena->stats.decommitted == 1) ? "" : "s");
+# endif
+
+ malloc_printf(" allocated nmalloc ndalloc\n");
+ malloc_printf("small: %12Iu %12I64u %12I64u\n",
+ arena->stats.allocated_small, arena->stats.nmalloc_small,
+ arena->stats.ndalloc_small);
+ malloc_printf("large: %12Iu %12I64u %12I64u\n",
+ arena->stats.allocated_large, arena->stats.nmalloc_large,
+ arena->stats.ndalloc_large);
+ malloc_printf("total: %12Iu %12I64u %12I64u\n",
+ arena->stats.allocated_small + arena->stats.allocated_large,
+ arena->stats.nmalloc_small + arena->stats.nmalloc_large,
+ arena->stats.ndalloc_small + arena->stats.ndalloc_large);
+ malloc_printf("mapped: %12Iu\n", arena->stats.mapped);
+#else
+ malloc_printf("dirty: %zu page%s dirty, %llu sweep%s,"
+ " %llu madvise%s, %llu page%s purged\n",
+ arena->ndirty, arena->ndirty == 1 ? "" : "s",
+ arena->stats.npurge, arena->stats.npurge == 1 ? "" : "s",
+ arena->stats.nmadvise, arena->stats.nmadvise == 1 ? "" : "s",
+ arena->stats.purged, arena->stats.purged == 1 ? "" : "s");
+# ifdef MALLOC_DECOMMIT
+ malloc_printf("decommit: %llu decommit%s, %llu commit%s,"
+ " %llu page%s decommitted\n",
+ arena->stats.ndecommit, (arena->stats.ndecommit == 1) ? "" : "s",
+ arena->stats.ncommit, (arena->stats.ncommit == 1) ? "" : "s",
+ arena->stats.decommitted,
+ (arena->stats.decommitted == 1) ? "" : "s");
+# endif
+
+ malloc_printf(" allocated nmalloc ndalloc\n");
+ malloc_printf("small: %12zu %12llu %12llu\n",
+ arena->stats.allocated_small, arena->stats.nmalloc_small,
+ arena->stats.ndalloc_small);
+ malloc_printf("large: %12zu %12llu %12llu\n",
+ arena->stats.allocated_large, arena->stats.nmalloc_large,
+ arena->stats.ndalloc_large);
+ malloc_printf("total: %12zu %12llu %12llu\n",
+ arena->stats.allocated_small + arena->stats.allocated_large,
+ arena->stats.nmalloc_small + arena->stats.nmalloc_large,
+ arena->stats.ndalloc_small + arena->stats.ndalloc_large);
+ malloc_printf("mapped: %12zu\n", arena->stats.mapped);
+#endif
+ malloc_printf("bins: bin size regs pgs requests newruns"
+ " reruns maxruns curruns\n");
+ for (i = 0, gap_start = UINT_MAX; i < ntbins + nqbins + nsbins; i++) {
+ if (arena->bins[i].stats.nrequests == 0) {
+ if (gap_start == UINT_MAX)
+ gap_start = i;
+ } else {
+ if (gap_start != UINT_MAX) {
+ if (i > gap_start + 1) {
+ /* Gap of more than one size class. */
+ malloc_printf("[%u..%u]\n",
+ gap_start, i - 1);
+ } else {
+ /* Gap of one size class. */
+ malloc_printf("[%u]\n", gap_start);
+ }
+ gap_start = UINT_MAX;
+ }
+ malloc_printf(
+#if defined(MOZ_MEMORY_WINDOWS)
+ "%13u %1s %4u %4u %3u %9I64u %9I64u"
+ " %9I64u %7u %7u\n",
+#else
+ "%13u %1s %4u %4u %3u %9llu %9llu"
+ " %9llu %7lu %7lu\n",
+#endif
+ i,
+ i < ntbins ? "T" : i < ntbins + nqbins ? "Q" : "S",
+ arena->bins[i].reg_size,
+ arena->bins[i].nregs,
+ arena->bins[i].run_size >> pagesize_2pow,
+ arena->bins[i].stats.nrequests,
+ arena->bins[i].stats.nruns,
+ arena->bins[i].stats.reruns,
+ arena->bins[i].stats.highruns,
+ arena->bins[i].stats.curruns);
+ }
+ }
+ if (gap_start != UINT_MAX) {
+ if (i > gap_start + 1) {
+ /* Gap of more than one size class. */
+ malloc_printf("[%u..%u]\n", gap_start, i - 1);
+ } else {
+ /* Gap of one size class. */
+ malloc_printf("[%u]\n", gap_start);
+ }
+ }
+}
+#endif
+
+/*
+ * End Utility functions/macros.
+ */
+/******************************************************************************/
+/*
+ * Begin extent tree code.
+ */
+
+static inline int
+extent_szad_comp(extent_node_t *a, extent_node_t *b)
+{
+ int ret;
+ size_t a_size = a->size;
+ size_t b_size = b->size;
+
+ ret = (a_size > b_size) - (a_size < b_size);
+ if (ret == 0) {
+ uintptr_t a_addr = (uintptr_t)a->addr;
+ uintptr_t b_addr = (uintptr_t)b->addr;
+
+ ret = (a_addr > b_addr) - (a_addr < b_addr);
+ }
+
+ return (ret);
+}
+
+/* Wrap red-black tree macros in functions. */
+rb_wrap(static, extent_tree_szad_, extent_tree_t, extent_node_t,
+ link_szad, extent_szad_comp)
+
+static inline int
+extent_ad_comp(extent_node_t *a, extent_node_t *b)
+{
+ uintptr_t a_addr = (uintptr_t)a->addr;
+ uintptr_t b_addr = (uintptr_t)b->addr;
+
+ return ((a_addr > b_addr) - (a_addr < b_addr));
+}
+
+/* Wrap red-black tree macros in functions. */
+rb_wrap(static, extent_tree_ad_, extent_tree_t, extent_node_t, link_ad,
+ extent_ad_comp)
+
+/*
+ * End extent tree code.
+ */
+/******************************************************************************/
+/*
+ * Begin chunk management functions.
+ */
+
+#ifdef MOZ_MEMORY_WINDOWS
+
+static void *
+pages_map(void *addr, size_t size)
+{
+ void *ret = NULL;
+ ret = VirtualAlloc(addr, size, MEM_COMMIT | MEM_RESERVE,
+ PAGE_READWRITE);
+ return (ret);
+}
+
+static void
+pages_unmap(void *addr, size_t size)
+{
+ if (VirtualFree(addr, 0, MEM_RELEASE) == 0) {
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in VirtualFree()\n", "", "");
+ if (opt_abort)
+ abort();
+ }
+}
+#else
+#ifdef JEMALLOC_USES_MAP_ALIGN
+static void *
+pages_map_align(size_t size, size_t alignment)
+{
+ void *ret;
+
+ /*
+ * We don't use MAP_FIXED here, because it can cause the *replacement*
+ * of existing mappings, and we only want to create new mappings.
+ */
+ ret = mmap((void *)alignment, size, PROT_READ | PROT_WRITE,
+ MAP_PRIVATE | MAP_NOSYNC | MAP_ALIGN | MAP_ANON, -1, 0);
+ assert(ret != NULL);
+
+ if (ret == MAP_FAILED)
+ ret = NULL;
+ else
+ MozTagAnonymousMemory(ret, size, "jemalloc");
+ return (ret);
+}
+#endif
+
+static void *
+pages_map(void *addr, size_t size)
+{
+ void *ret;
+#if defined(__ia64__)
+ /*
+ * The JS engine assumes that all allocated pointers have their high 17 bits clear,
+ * which ia64's mmap doesn't support directly. However, we can emulate it by passing
+ * mmap an "addr" parameter with those bits clear. The mmap will return that address,
+ * or the nearest available memory above that address, providing a near-guarantee
+ * that those bits are clear. If they are not, we return NULL below to indicate
+ * out-of-memory.
+ *
+ * The addr is chosen as 0x0000070000000000, which still allows about 120TB of virtual
+ * address space.
+ *
+ * See Bug 589735 for more information.
+ */
+ bool check_placement = true;
+ if (addr == NULL) {
+ addr = (void*)0x0000070000000000;
+ check_placement = false;
+ }
+#endif
+
+ /*
+ * We don't use MAP_FIXED here, because it can cause the *replacement*
+ * of existing mappings, and we only want to create new mappings.
+ */
+ ret = mmap(addr, size, PROT_READ | PROT_WRITE,
+ MAP_PRIVATE | MAP_ANON, -1, 0);
+ assert(ret != NULL);
+
+ if (ret == MAP_FAILED) {
+ ret = NULL;
+ }
+#if defined(__ia64__)
+ /*
+ * If the allocated memory doesn't have its upper 17 bits clear, consider it
+ * as out of memory.
+ */
+ else if ((long long)ret & 0xffff800000000000) {
+ munmap(ret, size);
+ ret = NULL;
+ }
+ /* If the caller requested a specific memory location, verify that's what mmap returned. */
+ else if (check_placement && ret != addr) {
+#else
+ else if (addr != NULL && ret != addr) {
+#endif
+ /*
+ * We succeeded in mapping memory, but not in the right place.
+ */
+ if (munmap(ret, size) == -1) {
+ char buf[STRERROR_BUF];
+
+ if (strerror_r(errno, buf, sizeof(buf)) == 0) {
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in munmap(): ", buf, "\n");
+ }
+ if (opt_abort)
+ abort();
+ }
+ ret = NULL;
+ }
+ if (ret != NULL) {
+ MozTagAnonymousMemory(ret, size, "jemalloc");
+ }
+
+#if defined(__ia64__)
+ assert(ret == NULL || (!check_placement && ret != NULL)
+ || (check_placement && ret == addr));
+#else
+ assert(ret == NULL || (addr == NULL && ret != addr)
+ || (addr != NULL && ret == addr));
+#endif
+ return (ret);
+}
+
+static void
+pages_unmap(void *addr, size_t size)
+{
+
+ if (munmap(addr, size) == -1) {
+ char buf[STRERROR_BUF];
+
+ if (strerror_r(errno, buf, sizeof(buf)) == 0) {
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in munmap(): ", buf, "\n");
+ }
+ if (opt_abort)
+ abort();
+ }
+}
+#endif
+
+#ifdef MOZ_MEMORY_DARWIN
+#define VM_COPY_MIN (pagesize << 5)
+static inline void
+pages_copy(void *dest, const void *src, size_t n)
+{
+
+ assert((void *)((uintptr_t)dest & ~pagesize_mask) == dest);
+ assert(n >= VM_COPY_MIN);
+ assert((void *)((uintptr_t)src & ~pagesize_mask) == src);
+
+ vm_copy(mach_task_self(), (vm_address_t)src, (vm_size_t)n,
+ (vm_address_t)dest);
+}
+#endif
+
+#ifdef MALLOC_VALIDATE
+static inline malloc_rtree_t *
+malloc_rtree_new(unsigned bits)
+{
+ malloc_rtree_t *ret;
+ unsigned bits_per_level, height, i;
+
+ bits_per_level = ffs(pow2_ceil((MALLOC_RTREE_NODESIZE /
+ sizeof(void *)))) - 1;
+ height = bits / bits_per_level;
+ if (height * bits_per_level != bits)
+ height++;
+ RELEASE_ASSERT(height * bits_per_level >= bits);
+
+ ret = (malloc_rtree_t*)base_calloc(1, sizeof(malloc_rtree_t) +
+ (sizeof(unsigned) * (height - 1)));
+ if (ret == NULL)
+ return (NULL);
+
+ malloc_spin_init(&ret->lock);
+ ret->height = height;
+ if (bits_per_level * height > bits)
+ ret->level2bits[0] = bits % bits_per_level;
+ else
+ ret->level2bits[0] = bits_per_level;
+ for (i = 1; i < height; i++)
+ ret->level2bits[i] = bits_per_level;
+
+ ret->root = (void**)base_calloc(1, sizeof(void *) << ret->level2bits[0]);
+ if (ret->root == NULL) {
+ /*
+ * We leak the rtree here, since there's no generic base
+ * deallocation.
+ */
+ return (NULL);
+ }
+
+ return (ret);
+}
+
+#define MALLOC_RTREE_GET_GENERATE(f) \
+/* The least significant bits of the key are ignored. */ \
+static inline void * \
+f(malloc_rtree_t *rtree, uintptr_t key) \
+{ \
+ void *ret; \
+ uintptr_t subkey; \
+ unsigned i, lshift, height, bits; \
+ void **node, **child; \
+ \
+ MALLOC_RTREE_LOCK(&rtree->lock); \
+ for (i = lshift = 0, height = rtree->height, node = rtree->root;\
+ i < height - 1; \
+ i++, lshift += bits, node = child) { \
+ bits = rtree->level2bits[i]; \
+ subkey = (key << lshift) >> ((SIZEOF_PTR << 3) - bits); \
+ child = (void**)node[subkey]; \
+ if (child == NULL) { \
+ MALLOC_RTREE_UNLOCK(&rtree->lock); \
+ return (NULL); \
+ } \
+ } \
+ \
+ /* \
+ * node is a leaf, so it contains values rather than node \
+ * pointers. \
+ */ \
+ bits = rtree->level2bits[i]; \
+ subkey = (key << lshift) >> ((SIZEOF_PTR << 3) - bits); \
+ ret = node[subkey]; \
+ MALLOC_RTREE_UNLOCK(&rtree->lock); \
+ \
+ MALLOC_RTREE_GET_VALIDATE \
+ return (ret); \
+}
+
+#ifdef MALLOC_DEBUG
+# define MALLOC_RTREE_LOCK(l) malloc_spin_lock(l)
+# define MALLOC_RTREE_UNLOCK(l) malloc_spin_unlock(l)
+# define MALLOC_RTREE_GET_VALIDATE
+MALLOC_RTREE_GET_GENERATE(malloc_rtree_get_locked)
+# undef MALLOC_RTREE_LOCK
+# undef MALLOC_RTREE_UNLOCK
+# undef MALLOC_RTREE_GET_VALIDATE
+#endif
+
+#define MALLOC_RTREE_LOCK(l)
+#define MALLOC_RTREE_UNLOCK(l)
+#ifdef MALLOC_DEBUG
+ /*
+ * Suppose that it were possible for a jemalloc-allocated chunk to be
+ * munmap()ped, followed by a different allocator in another thread re-using
+ * overlapping virtual memory, all without invalidating the cached rtree
+ * value. The result would be a false positive (the rtree would claim that
+ * jemalloc owns memory that it had actually discarded). I don't think this
+ * scenario is possible, but the following assertion is a prudent sanity
+ * check.
+ */
+# define MALLOC_RTREE_GET_VALIDATE \
+ assert(malloc_rtree_get_locked(rtree, key) == ret);
+#else
+# define MALLOC_RTREE_GET_VALIDATE
+#endif
+MALLOC_RTREE_GET_GENERATE(malloc_rtree_get)
+#undef MALLOC_RTREE_LOCK
+#undef MALLOC_RTREE_UNLOCK
+#undef MALLOC_RTREE_GET_VALIDATE
+
+static inline bool
+malloc_rtree_set(malloc_rtree_t *rtree, uintptr_t key, void *val)
+{
+ uintptr_t subkey;
+ unsigned i, lshift, height, bits;
+ void **node, **child;
+
+ malloc_spin_lock(&rtree->lock);
+ for (i = lshift = 0, height = rtree->height, node = rtree->root;
+ i < height - 1;
+ i++, lshift += bits, node = child) {
+ bits = rtree->level2bits[i];
+ subkey = (key << lshift) >> ((SIZEOF_PTR << 3) - bits);
+ child = (void**)node[subkey];
+ if (child == NULL) {
+ child = (void**)base_calloc(1, sizeof(void *) <<
+ rtree->level2bits[i+1]);
+ if (child == NULL) {
+ malloc_spin_unlock(&rtree->lock);
+ return (true);
+ }
+ node[subkey] = child;
+ }
+ }
+
+ /* node is a leaf, so it contains values rather than node pointers. */
+ bits = rtree->level2bits[i];
+ subkey = (key << lshift) >> ((SIZEOF_PTR << 3) - bits);
+ node[subkey] = val;
+ malloc_spin_unlock(&rtree->lock);
+
+ return (false);
+}
+#endif
+
+/* pages_trim, chunk_alloc_mmap_slow and chunk_alloc_mmap were cherry-picked
+ * from upstream jemalloc 3.4.1 to fix Mozilla bug 956501. */
+
+/* Return the offset between a and the nearest aligned address at or below a. */
+#define ALIGNMENT_ADDR2OFFSET(a, alignment) \
+ ((size_t)((uintptr_t)(a) & (alignment - 1)))
+
+/* Return the smallest alignment multiple that is >= s. */
+#define ALIGNMENT_CEILING(s, alignment) \
+ (((s) + (alignment - 1)) & (-(alignment)))
+
+static void *
+pages_trim(void *addr, size_t alloc_size, size_t leadsize, size_t size)
+{
+ void *ret = (void *)((uintptr_t)addr + leadsize);
+
+ assert(alloc_size >= leadsize + size);
+#ifdef MOZ_MEMORY_WINDOWS
+ {
+ void *new_addr;
+
+ pages_unmap(addr, alloc_size);
+ new_addr = pages_map(ret, size);
+ if (new_addr == ret)
+ return (ret);
+ if (new_addr)
+ pages_unmap(new_addr, size);
+ return (NULL);
+ }
+#else
+ {
+ size_t trailsize = alloc_size - leadsize - size;
+
+ if (leadsize != 0)
+ pages_unmap(addr, leadsize);
+ if (trailsize != 0)
+ pages_unmap((void *)((uintptr_t)ret + size), trailsize);
+ return (ret);
+ }
+#endif
+}
+
+static void *
+chunk_alloc_mmap_slow(size_t size, size_t alignment)
+{
+ void *ret, *pages;
+ size_t alloc_size, leadsize;
+
+ alloc_size = size + alignment - pagesize;
+ /* Beware size_t wrap-around. */
+ if (alloc_size < size)
+ return (NULL);
+ do {
+ pages = pages_map(NULL, alloc_size);
+ if (pages == NULL)
+ return (NULL);
+ leadsize = ALIGNMENT_CEILING((uintptr_t)pages, alignment) -
+ (uintptr_t)pages;
+ ret = pages_trim(pages, alloc_size, leadsize, size);
+ } while (ret == NULL);
+
+ assert(ret != NULL);
+ return (ret);
+}
+
+static void *
+chunk_alloc_mmap(size_t size, size_t alignment)
+{
+#ifdef JEMALLOC_USES_MAP_ALIGN
+ return pages_map_align(size, alignment);
+#else
+ void *ret;
+ size_t offset;
+
+ /*
+ * Ideally, there would be a way to specify alignment to mmap() (like
+ * NetBSD has), but in the absence of such a feature, we have to work
+ * hard to efficiently create aligned mappings. The reliable, but
+ * slow method is to create a mapping that is over-sized, then trim the
+ * excess. However, that always results in one or two calls to
+ * pages_unmap().
+ *
+ * Optimistically try mapping precisely the right amount before falling
+ * back to the slow method, with the expectation that the optimistic
+ * approach works most of the time.
+ */
+
+ ret = pages_map(NULL, size);
+ if (ret == NULL)
+ return (NULL);
+ offset = ALIGNMENT_ADDR2OFFSET(ret, alignment);
+ if (offset != 0) {
+ pages_unmap(ret, size);
+ return (chunk_alloc_mmap_slow(size, alignment));
+ }
+
+ assert(ret != NULL);
+ return (ret);
+#endif
+}
+
+bool
+pages_purge(void *addr, size_t length)
+{
+ bool unzeroed;
+
+#ifdef MALLOC_DECOMMIT
+ pages_decommit(addr, length);
+ unzeroed = false;
+#else
+# ifdef MOZ_MEMORY_WINDOWS
+ /*
+ * The region starting at addr may have been allocated in multiple calls
+ * to VirtualAlloc and recycled, so resetting the entire region in one
+ * go may not be valid. However, since we allocate at least a chunk at a
+ * time, we may touch any region in chunksized increments.
+ */
+ size_t pages_size = min(length, chunksize -
+ CHUNK_ADDR2OFFSET((uintptr_t)addr));
+ while (length > 0) {
+ VirtualAlloc(addr, pages_size, MEM_RESET, PAGE_READWRITE);
+ addr = (void *)((uintptr_t)addr + pages_size);
+ length -= pages_size;
+ pages_size = min(length, chunksize);
+ }
+ unzeroed = true;
+# else
+# ifdef MOZ_MEMORY_LINUX
+# define JEMALLOC_MADV_PURGE MADV_DONTNEED
+# define JEMALLOC_MADV_ZEROS true
+# else /* FreeBSD and Darwin. */
+# define JEMALLOC_MADV_PURGE MADV_FREE
+# define JEMALLOC_MADV_ZEROS false
+# endif
+ int err = madvise(addr, length, JEMALLOC_MADV_PURGE);
+ unzeroed = (JEMALLOC_MADV_ZEROS == false || err != 0);
+# undef JEMALLOC_MADV_PURGE
+# undef JEMALLOC_MADV_ZEROS
+# endif
+#endif
+ return (unzeroed);
+}
+
+static void *
+chunk_recycle(extent_tree_t *chunks_szad, extent_tree_t *chunks_ad, size_t size,
+ size_t alignment, bool base, bool *zero)
+{
+ void *ret;
+ extent_node_t *node;
+ extent_node_t key;
+ size_t alloc_size, leadsize, trailsize;
+ bool zeroed;
+
+ if (base) {
+ /*
+ * This function may need to call base_node_{,de}alloc(), but
+ * the current chunk allocation request is on behalf of the
+ * base allocator. Avoid deadlock (and if that weren't an
+ * issue, potential for infinite recursion) by returning NULL.
+ */
+ return (NULL);
+ }
+
+ alloc_size = size + alignment - chunksize;
+ /* Beware size_t wrap-around. */
+ if (alloc_size < size)
+ return (NULL);
+ key.addr = NULL;
+ key.size = alloc_size;
+ malloc_mutex_lock(&chunks_mtx);
+ node = extent_tree_szad_nsearch(chunks_szad, &key);
+ if (node == NULL) {
+ malloc_mutex_unlock(&chunks_mtx);
+ return (NULL);
+ }
+ leadsize = ALIGNMENT_CEILING((uintptr_t)node->addr, alignment) -
+ (uintptr_t)node->addr;
+ assert(node->size >= leadsize + size);
+ trailsize = node->size - leadsize - size;
+ ret = (void *)((uintptr_t)node->addr + leadsize);
+ zeroed = node->zeroed;
+ if (zeroed)
+ *zero = true;
+ /* Remove node from the tree. */
+ extent_tree_szad_remove(chunks_szad, node);
+ extent_tree_ad_remove(chunks_ad, node);
+ if (leadsize != 0) {
+ /* Insert the leading space as a smaller chunk. */
+ node->size = leadsize;
+ extent_tree_szad_insert(chunks_szad, node);
+ extent_tree_ad_insert(chunks_ad, node);
+ node = NULL;
+ }
+ if (trailsize != 0) {
+ /* Insert the trailing space as a smaller chunk. */
+ if (node == NULL) {
+ /*
+ * An additional node is required, but
+ * base_node_alloc() can cause a new base chunk to be
+ * allocated. Drop chunks_mtx in order to avoid
+ * deadlock, and if node allocation fails, deallocate
+ * the result before returning an error.
+ */
+ malloc_mutex_unlock(&chunks_mtx);
+ node = base_node_alloc();
+ if (node == NULL) {
+ chunk_dealloc(ret, size);
+ return (NULL);
+ }
+ malloc_mutex_lock(&chunks_mtx);
+ }
+ node->addr = (void *)((uintptr_t)(ret) + size);
+ node->size = trailsize;
+ node->zeroed = zeroed;
+ extent_tree_szad_insert(chunks_szad, node);
+ extent_tree_ad_insert(chunks_ad, node);
+ node = NULL;
+ }
+
+ if (config_munmap && config_recycle)
+ recycled_size -= size;
+
+ malloc_mutex_unlock(&chunks_mtx);
+
+ if (node != NULL)
+ base_node_dealloc(node);
+#ifdef MALLOC_DECOMMIT
+ pages_commit(ret, size);
+#endif
+ if (*zero) {
+ if (zeroed == false)
+ memset(ret, 0, size);
+#ifdef DEBUG
+ else {
+ size_t i;
+ size_t *p = (size_t *)(uintptr_t)ret;
+
+ for (i = 0; i < size / sizeof(size_t); i++)
+ assert(p[i] == 0);
+ }
+#endif
+ }
+ return (ret);
+}
+
+#ifdef MOZ_MEMORY_WINDOWS
+/*
+ * On Windows, calls to VirtualAlloc and VirtualFree must be matched, making it
+ * awkward to recycle allocations of varying sizes. Therefore we only allow
+ * recycling when the size equals the chunksize, unless deallocation is entirely
+ * disabled.
+ */
+#define CAN_RECYCLE(size) (size == chunksize)
+#else
+#define CAN_RECYCLE(size) true
+#endif
+
+static void *
+chunk_alloc(size_t size, size_t alignment, bool base, bool zero)
+{
+ void *ret;
+
+ assert(size != 0);
+ assert((size & chunksize_mask) == 0);
+ assert(alignment != 0);
+ assert((alignment & chunksize_mask) == 0);
+
+ if (!config_munmap || (config_recycle && CAN_RECYCLE(size))) {
+ ret = chunk_recycle(&chunks_szad_mmap, &chunks_ad_mmap,
+ size, alignment, base, &zero);
+ if (ret != NULL)
+ goto RETURN;
+ }
+ ret = chunk_alloc_mmap(size, alignment);
+ if (ret != NULL) {
+ goto RETURN;
+ }
+
+ /* All strategies for allocation failed. */
+ ret = NULL;
+RETURN:
+
+#ifdef MALLOC_VALIDATE
+ if (ret != NULL && base == false) {
+ if (malloc_rtree_set(chunk_rtree, (uintptr_t)ret, ret)) {
+ chunk_dealloc(ret, size);
+ return (NULL);
+ }
+ }
+#endif
+
+ assert(CHUNK_ADDR2BASE(ret) == ret);
+ return (ret);
+}
+
+static void
+chunk_record(extent_tree_t *chunks_szad, extent_tree_t *chunks_ad, void *chunk,
+ size_t size)
+{
+ bool unzeroed;
+ extent_node_t *xnode, *node, *prev, *xprev, key;
+
+ unzeroed = pages_purge(chunk, size);
+
+ /*
+ * Allocate a node before acquiring chunks_mtx even though it might not
+ * be needed, because base_node_alloc() may cause a new base chunk to
+ * be allocated, which could cause deadlock if chunks_mtx were already
+ * held.
+ */
+ xnode = base_node_alloc();
+ /* Use xprev to implement conditional deferred deallocation of prev. */
+ xprev = NULL;
+
+ malloc_mutex_lock(&chunks_mtx);
+ key.addr = (void *)((uintptr_t)chunk + size);
+ node = extent_tree_ad_nsearch(chunks_ad, &key);
+ /* Try to coalesce forward. */
+ if (node != NULL && node->addr == key.addr) {
+ /*
+ * Coalesce chunk with the following address range. This does
+ * not change the position within chunks_ad, so only
+ * remove/insert from/into chunks_szad.
+ */
+ extent_tree_szad_remove(chunks_szad, node);
+ node->addr = chunk;
+ node->size += size;
+ node->zeroed = (node->zeroed && (unzeroed == false));
+ extent_tree_szad_insert(chunks_szad, node);
+ } else {
+ /* Coalescing forward failed, so insert a new node. */
+ if (xnode == NULL) {
+ /*
+ * base_node_alloc() failed, which is an exceedingly
+ * unlikely failure. Leak chunk; its pages have
+ * already been purged, so this is only a virtual
+ * memory leak.
+ */
+ goto label_return;
+ }
+ node = xnode;
+ xnode = NULL; /* Prevent deallocation below. */
+ node->addr = chunk;
+ node->size = size;
+ node->zeroed = (unzeroed == false);
+ extent_tree_ad_insert(chunks_ad, node);
+ extent_tree_szad_insert(chunks_szad, node);
+ }
+
+ /* Try to coalesce backward. */
+ prev = extent_tree_ad_prev(chunks_ad, node);
+ if (prev != NULL && (void *)((uintptr_t)prev->addr + prev->size) ==
+ chunk) {
+ /*
+ * Coalesce chunk with the previous address range. This does
+ * not change the position within chunks_ad, so only
+ * remove/insert node from/into chunks_szad.
+ */
+ extent_tree_szad_remove(chunks_szad, prev);
+ extent_tree_ad_remove(chunks_ad, prev);
+
+ extent_tree_szad_remove(chunks_szad, node);
+ node->addr = prev->addr;
+ node->size += prev->size;
+ node->zeroed = (node->zeroed && prev->zeroed);
+ extent_tree_szad_insert(chunks_szad, node);
+
+ xprev = prev;
+ }
+
+ if (config_munmap && config_recycle)
+ recycled_size += size;
+
+label_return:
+ malloc_mutex_unlock(&chunks_mtx);
+ /*
+ * Deallocate xnode and/or xprev after unlocking chunks_mtx in order to
+ * avoid potential deadlock.
+ */
+ if (xnode != NULL)
+ base_node_dealloc(xnode);
+ if (xprev != NULL)
+ base_node_dealloc(xprev);
+}
+
+static bool
+chunk_dalloc_mmap(void *chunk, size_t size)
+{
+ if (!config_munmap || (config_recycle && CAN_RECYCLE(size) &&
+ load_acquire_z(&recycled_size) < recycle_limit))
+ return true;
+
+ pages_unmap(chunk, size);
+ return false;
+}
+
+#undef CAN_RECYCLE
+
+static void
+chunk_dealloc(void *chunk, size_t size)
+{
+
+ assert(chunk != NULL);
+ assert(CHUNK_ADDR2BASE(chunk) == chunk);
+ assert(size != 0);
+ assert((size & chunksize_mask) == 0);
+
+#ifdef MALLOC_VALIDATE
+ malloc_rtree_set(chunk_rtree, (uintptr_t)chunk, NULL);
+#endif
+
+ if (chunk_dalloc_mmap(chunk, size))
+ chunk_record(&chunks_szad_mmap, &chunks_ad_mmap, chunk, size);
+}
+
+/*
+ * End chunk management functions.
+ */
+/******************************************************************************/
+/*
+ * Begin arena.
+ */
+
+/*
+ * Choose an arena based on a per-thread value (fast-path code, calls slow-path
+ * code if necessary).
+ */
+static inline arena_t *
+choose_arena(void)
+{
+ arena_t *ret;
+
+ /*
+ * We can only use TLS if this is a PIC library, since for the static
+ * library version, libc's malloc is used by TLS allocation, which
+ * introduces a bootstrapping issue.
+ */
+#ifndef NO_TLS
+ if (isthreaded == false) {
+ /* Avoid the overhead of TLS for single-threaded operation. */
+ return (arenas[0]);
+ }
+
+# ifdef MOZ_MEMORY_WINDOWS
+ ret = (arena_t*)TlsGetValue(tlsIndex);
+# else
+ ret = arenas_map;
+# endif
+
+ if (ret == NULL) {
+ ret = choose_arena_hard();
+ RELEASE_ASSERT(ret != NULL);
+ }
+#else
+ if (isthreaded && narenas > 1) {
+ unsigned long ind;
+
+ /*
+ * Hash _pthread_self() to one of the arenas. There is a prime
+ * number of arenas, so this has a reasonable chance of
+ * working. Even so, the hashing can be easily thwarted by
+ * inconvenient _pthread_self() values. Without specific
+ * knowledge of how _pthread_self() calculates values, we can't
+ * easily do much better than this.
+ */
+ ind = (unsigned long) _pthread_self() % narenas;
+
+ /*
+ * Optimistially assume that arenas[ind] has been initialized.
+ * At worst, we find out that some other thread has already
+ * done so, after acquiring the lock in preparation. Note that
+ * this lazy locking also has the effect of lazily forcing
+ * cache coherency; without the lock acquisition, there's no
+ * guarantee that modification of arenas[ind] by another thread
+ * would be seen on this CPU for an arbitrary amount of time.
+ *
+ * In general, this approach to modifying a synchronized value
+ * isn't a good idea, but in this case we only ever modify the
+ * value once, so things work out well.
+ */
+ ret = arenas[ind];
+ if (ret == NULL) {
+ /*
+ * Avoid races with another thread that may have already
+ * initialized arenas[ind].
+ */
+ malloc_spin_lock(&arenas_lock);
+ if (arenas[ind] == NULL)
+ ret = arenas_extend((unsigned)ind);
+ else
+ ret = arenas[ind];
+ malloc_spin_unlock(&arenas_lock);
+ }
+ } else
+ ret = arenas[0];
+#endif
+
+ RELEASE_ASSERT(ret != NULL);
+ return (ret);
+}
+
+#ifndef NO_TLS
+/*
+ * Choose an arena based on a per-thread value (slow-path code only, called
+ * only by choose_arena()).
+ */
+static arena_t *
+choose_arena_hard(void)
+{
+ arena_t *ret;
+
+ assert(isthreaded);
+
+#ifdef MALLOC_BALANCE
+ /* Seed the PRNG used for arena load balancing. */
+ SPRN(balance, (uint32_t)(uintptr_t)(_pthread_self()));
+#endif
+
+ if (narenas > 1) {
+#ifdef MALLOC_BALANCE
+ unsigned ind;
+
+ ind = PRN(balance, narenas_2pow);
+ if ((ret = arenas[ind]) == NULL) {
+ malloc_spin_lock(&arenas_lock);
+ if ((ret = arenas[ind]) == NULL)
+ ret = arenas_extend(ind);
+ malloc_spin_unlock(&arenas_lock);
+ }
+#else
+ malloc_spin_lock(&arenas_lock);
+ if ((ret = arenas[next_arena]) == NULL)
+ ret = arenas_extend(next_arena);
+ next_arena = (next_arena + 1) % narenas;
+ malloc_spin_unlock(&arenas_lock);
+#endif
+ } else
+ ret = arenas[0];
+
+#ifdef MOZ_MEMORY_WINDOWS
+ TlsSetValue(tlsIndex, ret);
+#else
+ arenas_map = ret;
+#endif
+
+ return (ret);
+}
+#endif
+
+static inline int
+arena_chunk_comp(arena_chunk_t *a, arena_chunk_t *b)
+{
+ uintptr_t a_chunk = (uintptr_t)a;
+ uintptr_t b_chunk = (uintptr_t)b;
+
+ assert(a != NULL);
+ assert(b != NULL);
+
+ return ((a_chunk > b_chunk) - (a_chunk < b_chunk));
+}
+
+/* Wrap red-black tree macros in functions. */
+rb_wrap(static, arena_chunk_tree_dirty_, arena_chunk_tree_t,
+ arena_chunk_t, link_dirty, arena_chunk_comp)
+
+static inline int
+arena_run_comp(arena_chunk_map_t *a, arena_chunk_map_t *b)
+{
+ uintptr_t a_mapelm = (uintptr_t)a;
+ uintptr_t b_mapelm = (uintptr_t)b;
+
+ assert(a != NULL);
+ assert(b != NULL);
+
+ return ((a_mapelm > b_mapelm) - (a_mapelm < b_mapelm));
+}
+
+/* Wrap red-black tree macros in functions. */
+rb_wrap(static, arena_run_tree_, arena_run_tree_t, arena_chunk_map_t, link,
+ arena_run_comp)
+
+static inline int
+arena_avail_comp(arena_chunk_map_t *a, arena_chunk_map_t *b)
+{
+ int ret;
+ size_t a_size = a->bits & ~pagesize_mask;
+ size_t b_size = b->bits & ~pagesize_mask;
+
+ ret = (a_size > b_size) - (a_size < b_size);
+ if (ret == 0) {
+ uintptr_t a_mapelm, b_mapelm;
+
+ if ((a->bits & CHUNK_MAP_KEY) == 0)
+ a_mapelm = (uintptr_t)a;
+ else {
+ /*
+ * Treat keys as though they are lower than anything
+ * else.
+ */
+ a_mapelm = 0;
+ }
+ b_mapelm = (uintptr_t)b;
+
+ ret = (a_mapelm > b_mapelm) - (a_mapelm < b_mapelm);
+ }
+
+ return (ret);
+}
+
+/* Wrap red-black tree macros in functions. */
+rb_wrap(static, arena_avail_tree_, arena_avail_tree_t, arena_chunk_map_t, link,
+ arena_avail_comp)
+
+static inline void *
+arena_run_reg_alloc(arena_run_t *run, arena_bin_t *bin)
+{
+ void *ret;
+ unsigned i, mask, bit, regind;
+
+ assert(run->magic == ARENA_RUN_MAGIC);
+ assert(run->regs_minelm < bin->regs_mask_nelms);
+
+ /*
+ * Move the first check outside the loop, so that run->regs_minelm can
+ * be updated unconditionally, without the possibility of updating it
+ * multiple times.
+ */
+ i = run->regs_minelm;
+ mask = run->regs_mask[i];
+ if (mask != 0) {
+ /* Usable allocation found. */
+ bit = ffs((int)mask) - 1;
+
+ regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
+ assert(regind < bin->nregs);
+ ret = (void *)(((uintptr_t)run) + bin->reg0_offset
+ + (bin->reg_size * regind));
+
+ /* Clear bit. */
+ mask ^= (1U << bit);
+ run->regs_mask[i] = mask;
+
+ return (ret);
+ }
+
+ for (i++; i < bin->regs_mask_nelms; i++) {
+ mask = run->regs_mask[i];
+ if (mask != 0) {
+ /* Usable allocation found. */
+ bit = ffs((int)mask) - 1;
+
+ regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
+ assert(regind < bin->nregs);
+ ret = (void *)(((uintptr_t)run) + bin->reg0_offset
+ + (bin->reg_size * regind));
+
+ /* Clear bit. */
+ mask ^= (1U << bit);
+ run->regs_mask[i] = mask;
+
+ /*
+ * Make a note that nothing before this element
+ * contains a free region.
+ */
+ run->regs_minelm = i; /* Low payoff: + (mask == 0); */
+
+ return (ret);
+ }
+ }
+ /* Not reached. */
+ RELEASE_ASSERT(0);
+ return (NULL);
+}
+
+static inline void
+arena_run_reg_dalloc(arena_run_t *run, arena_bin_t *bin, void *ptr, size_t size)
+{
+ /*
+ * To divide by a number D that is not a power of two we multiply
+ * by (2^21 / D) and then right shift by 21 positions.
+ *
+ * X / D
+ *
+ * becomes
+ *
+ * (X * size_invs[(D >> QUANTUM_2POW_MIN) - 3]) >> SIZE_INV_SHIFT
+ */
+#define SIZE_INV_SHIFT 21
+#define SIZE_INV(s) (((1U << SIZE_INV_SHIFT) / (s << QUANTUM_2POW_MIN)) + 1)
+ static const unsigned size_invs[] = {
+ SIZE_INV(3),
+ SIZE_INV(4), SIZE_INV(5), SIZE_INV(6), SIZE_INV(7),
+ SIZE_INV(8), SIZE_INV(9), SIZE_INV(10), SIZE_INV(11),
+ SIZE_INV(12),SIZE_INV(13), SIZE_INV(14), SIZE_INV(15),
+ SIZE_INV(16),SIZE_INV(17), SIZE_INV(18), SIZE_INV(19),
+ SIZE_INV(20),SIZE_INV(21), SIZE_INV(22), SIZE_INV(23),
+ SIZE_INV(24),SIZE_INV(25), SIZE_INV(26), SIZE_INV(27),
+ SIZE_INV(28),SIZE_INV(29), SIZE_INV(30), SIZE_INV(31)
+#if (QUANTUM_2POW_MIN < 4)
+ ,
+ SIZE_INV(32), SIZE_INV(33), SIZE_INV(34), SIZE_INV(35),
+ SIZE_INV(36), SIZE_INV(37), SIZE_INV(38), SIZE_INV(39),
+ SIZE_INV(40), SIZE_INV(41), SIZE_INV(42), SIZE_INV(43),
+ SIZE_INV(44), SIZE_INV(45), SIZE_INV(46), SIZE_INV(47),
+ SIZE_INV(48), SIZE_INV(49), SIZE_INV(50), SIZE_INV(51),
+ SIZE_INV(52), SIZE_INV(53), SIZE_INV(54), SIZE_INV(55),
+ SIZE_INV(56), SIZE_INV(57), SIZE_INV(58), SIZE_INV(59),
+ SIZE_INV(60), SIZE_INV(61), SIZE_INV(62), SIZE_INV(63)
+#endif
+ };
+ unsigned diff, regind, elm, bit;
+
+ assert(run->magic == ARENA_RUN_MAGIC);
+ assert(((sizeof(size_invs)) / sizeof(unsigned)) + 3
+ >= (SMALL_MAX_DEFAULT >> QUANTUM_2POW_MIN));
+
+ /*
+ * Avoid doing division with a variable divisor if possible. Using
+ * actual division here can reduce allocator throughput by over 20%!
+ */
+ diff = (unsigned)((uintptr_t)ptr - (uintptr_t)run - bin->reg0_offset);
+ if ((size & (size - 1)) == 0) {
+ /*
+ * log2_table allows fast division of a power of two in the
+ * [1..128] range.
+ *
+ * (x / divisor) becomes (x >> log2_table[divisor - 1]).
+ */
+ static const unsigned char log2_table[] = {
+ 0, 1, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7
+ };
+
+ if (size <= 128)
+ regind = (diff >> log2_table[size - 1]);
+ else if (size <= 32768)
+ regind = diff >> (8 + log2_table[(size >> 8) - 1]);
+ else {
+ /*
+ * The run size is too large for us to use the lookup
+ * table. Use real division.
+ */
+ regind = diff / size;
+ }
+ } else if (size <= ((sizeof(size_invs) / sizeof(unsigned))
+ << QUANTUM_2POW_MIN) + 2) {
+ regind = size_invs[(size >> QUANTUM_2POW_MIN) - 3] * diff;
+ regind >>= SIZE_INV_SHIFT;
+ } else {
+ /*
+ * size_invs isn't large enough to handle this size class, so
+ * calculate regind using actual division. This only happens
+ * if the user increases small_max via the 'S' runtime
+ * configuration option.
+ */
+ regind = diff / size;
+ };
+ RELEASE_ASSERT(diff == regind * size);
+ RELEASE_ASSERT(regind < bin->nregs);
+
+ elm = regind >> (SIZEOF_INT_2POW + 3);
+ if (elm < run->regs_minelm)
+ run->regs_minelm = elm;
+ bit = regind - (elm << (SIZEOF_INT_2POW + 3));
+ RELEASE_ASSERT((run->regs_mask[elm] & (1U << bit)) == 0);
+ run->regs_mask[elm] |= (1U << bit);
+#undef SIZE_INV
+#undef SIZE_INV_SHIFT
+}
+
+static void
+arena_run_split(arena_t *arena, arena_run_t *run, size_t size, bool large,
+ bool zero)
+{
+ arena_chunk_t *chunk;
+ size_t old_ndirty, run_ind, total_pages, need_pages, rem_pages, i;
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
+ old_ndirty = chunk->ndirty;
+ run_ind = (unsigned)(((uintptr_t)run - (uintptr_t)chunk)
+ >> pagesize_2pow);
+ total_pages = (chunk->map[run_ind].bits & ~pagesize_mask) >>
+ pagesize_2pow;
+ need_pages = (size >> pagesize_2pow);
+ assert(need_pages > 0);
+ assert(need_pages <= total_pages);
+ rem_pages = total_pages - need_pages;
+
+ arena_avail_tree_remove(&arena->runs_avail, &chunk->map[run_ind]);
+
+ /* Keep track of trailing unused pages for later use. */
+ if (rem_pages > 0) {
+ chunk->map[run_ind+need_pages].bits = (rem_pages <<
+ pagesize_2pow) | (chunk->map[run_ind+need_pages].bits &
+ pagesize_mask);
+ chunk->map[run_ind+total_pages-1].bits = (rem_pages <<
+ pagesize_2pow) | (chunk->map[run_ind+total_pages-1].bits &
+ pagesize_mask);
+ arena_avail_tree_insert(&arena->runs_avail,
+ &chunk->map[run_ind+need_pages]);
+ }
+
+ for (i = 0; i < need_pages; i++) {
+#if defined(MALLOC_DECOMMIT) || defined(MALLOC_STATS) || defined(MALLOC_DOUBLE_PURGE)
+ /*
+ * Commit decommitted pages if necessary. If a decommitted
+ * page is encountered, commit all needed adjacent decommitted
+ * pages in one operation, in order to reduce system call
+ * overhead.
+ */
+ if (chunk->map[run_ind + i].bits & CHUNK_MAP_MADVISED_OR_DECOMMITTED) {
+ size_t j;
+
+ /*
+ * Advance i+j to just past the index of the last page
+ * to commit. Clear CHUNK_MAP_DECOMMITTED and
+ * CHUNK_MAP_MADVISED along the way.
+ */
+ for (j = 0; i + j < need_pages && (chunk->map[run_ind +
+ i + j].bits & CHUNK_MAP_MADVISED_OR_DECOMMITTED); j++) {
+ /* DECOMMITTED and MADVISED are mutually exclusive. */
+ assert(!(chunk->map[run_ind + i + j].bits & CHUNK_MAP_DECOMMITTED &&
+ chunk->map[run_ind + i + j].bits & CHUNK_MAP_MADVISED));
+
+ chunk->map[run_ind + i + j].bits &=
+ ~CHUNK_MAP_MADVISED_OR_DECOMMITTED;
+ }
+
+# ifdef MALLOC_DECOMMIT
+ pages_commit((void *)((uintptr_t)chunk + ((run_ind + i)
+ << pagesize_2pow)), (j << pagesize_2pow));
+# ifdef MALLOC_STATS
+ arena->stats.ncommit++;
+# endif
+# endif
+
+# ifdef MALLOC_STATS
+ arena->stats.committed += j;
+# endif
+
+# ifndef MALLOC_DECOMMIT
+ }
+# else
+ } else /* No need to zero since commit zeros. */
+# endif
+
+#endif
+
+ /* Zero if necessary. */
+ if (zero) {
+ if ((chunk->map[run_ind + i].bits & CHUNK_MAP_ZEROED)
+ == 0) {
+ memset((void *)((uintptr_t)chunk + ((run_ind
+ + i) << pagesize_2pow)), 0, pagesize);
+ /* CHUNK_MAP_ZEROED is cleared below. */
+ }
+ }
+
+ /* Update dirty page accounting. */
+ if (chunk->map[run_ind + i].bits & CHUNK_MAP_DIRTY) {
+ chunk->ndirty--;
+ arena->ndirty--;
+ /* CHUNK_MAP_DIRTY is cleared below. */
+ }
+
+ /* Initialize the chunk map. */
+ if (large) {
+ chunk->map[run_ind + i].bits = CHUNK_MAP_LARGE
+ | CHUNK_MAP_ALLOCATED;
+ } else {
+ chunk->map[run_ind + i].bits = (size_t)run
+ | CHUNK_MAP_ALLOCATED;
+ }
+ }
+
+ /*
+ * Set the run size only in the first element for large runs. This is
+ * primarily a debugging aid, since the lack of size info for trailing
+ * pages only matters if the application tries to operate on an
+ * interior pointer.
+ */
+ if (large)
+ chunk->map[run_ind].bits |= size;
+
+ if (chunk->ndirty == 0 && old_ndirty > 0)
+ arena_chunk_tree_dirty_remove(&arena->chunks_dirty, chunk);
+}
+
+static void
+arena_chunk_init(arena_t *arena, arena_chunk_t *chunk)
+{
+ arena_run_t *run;
+ size_t i;
+
+#ifdef MALLOC_STATS
+ arena->stats.mapped += chunksize;
+#endif
+
+ chunk->arena = arena;
+
+ /*
+ * Claim that no pages are in use, since the header is merely overhead.
+ */
+ chunk->ndirty = 0;
+
+ /* Initialize the map to contain one maximal free untouched run. */
+ run = (arena_run_t *)((uintptr_t)chunk + (arena_chunk_header_npages <<
+ pagesize_2pow));
+ for (i = 0; i < arena_chunk_header_npages; i++)
+ chunk->map[i].bits = 0;
+ chunk->map[i].bits = arena_maxclass | CHUNK_MAP_DECOMMITTED | CHUNK_MAP_ZEROED;
+ for (i++; i < chunk_npages-1; i++) {
+ chunk->map[i].bits = CHUNK_MAP_DECOMMITTED | CHUNK_MAP_ZEROED;
+ }
+ chunk->map[chunk_npages-1].bits = arena_maxclass | CHUNK_MAP_DECOMMITTED | CHUNK_MAP_ZEROED;
+
+#ifdef MALLOC_DECOMMIT
+ /*
+ * Start out decommitted, in order to force a closer correspondence
+ * between dirty pages and committed untouched pages.
+ */
+ pages_decommit(run, arena_maxclass);
+# ifdef MALLOC_STATS
+ arena->stats.ndecommit++;
+ arena->stats.decommitted += (chunk_npages - arena_chunk_header_npages);
+# endif
+#endif
+#ifdef MALLOC_STATS
+ arena->stats.committed += arena_chunk_header_npages;
+#endif
+
+ /* Insert the run into the runs_avail tree. */
+ arena_avail_tree_insert(&arena->runs_avail,
+ &chunk->map[arena_chunk_header_npages]);
+
+#ifdef MALLOC_DOUBLE_PURGE
+ LinkedList_Init(&chunk->chunks_madvised_elem);
+#endif
+}
+
+static void
+arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk)
+{
+
+ if (arena->spare != NULL) {
+ if (arena->spare->ndirty > 0) {
+ arena_chunk_tree_dirty_remove(
+ &chunk->arena->chunks_dirty, arena->spare);
+ arena->ndirty -= arena->spare->ndirty;
+#ifdef MALLOC_STATS
+ arena->stats.committed -= arena->spare->ndirty;
+#endif
+ }
+
+#ifdef MALLOC_DOUBLE_PURGE
+ /* This is safe to do even if arena->spare is not in the list. */
+ LinkedList_Remove(&arena->spare->chunks_madvised_elem);
+#endif
+
+ chunk_dealloc((void *)arena->spare, chunksize);
+#ifdef MALLOC_STATS
+ arena->stats.mapped -= chunksize;
+ arena->stats.committed -= arena_chunk_header_npages;
+#endif
+ }
+
+ /*
+ * Remove run from runs_avail, so that the arena does not use it.
+ * Dirty page flushing only uses the chunks_dirty tree, so leaving this
+ * chunk in the chunks_* trees is sufficient for that purpose.
+ */
+ arena_avail_tree_remove(&arena->runs_avail,
+ &chunk->map[arena_chunk_header_npages]);
+
+ arena->spare = chunk;
+}
+
+static arena_run_t *
+arena_run_alloc(arena_t *arena, arena_bin_t *bin, size_t size, bool large,
+ bool zero)
+{
+ arena_run_t *run;
+ arena_chunk_map_t *mapelm, key;
+
+ assert(size <= arena_maxclass);
+ assert((size & pagesize_mask) == 0);
+
+ /* Search the arena's chunks for the lowest best fit. */
+ key.bits = size | CHUNK_MAP_KEY;
+ mapelm = arena_avail_tree_nsearch(&arena->runs_avail, &key);
+ if (mapelm != NULL) {
+ arena_chunk_t *chunk =
+ (arena_chunk_t*)CHUNK_ADDR2BASE(mapelm);
+ size_t pageind = ((uintptr_t)mapelm -
+ (uintptr_t)chunk->map) /
+ sizeof(arena_chunk_map_t);
+
+ run = (arena_run_t *)((uintptr_t)chunk + (pageind
+ << pagesize_2pow));
+ arena_run_split(arena, run, size, large, zero);
+ return (run);
+ }
+
+ if (arena->spare != NULL) {
+ /* Use the spare. */
+ arena_chunk_t *chunk = arena->spare;
+ arena->spare = NULL;
+ run = (arena_run_t *)((uintptr_t)chunk +
+ (arena_chunk_header_npages << pagesize_2pow));
+ /* Insert the run into the runs_avail tree. */
+ arena_avail_tree_insert(&arena->runs_avail,
+ &chunk->map[arena_chunk_header_npages]);
+ arena_run_split(arena, run, size, large, zero);
+ return (run);
+ }
+
+ /*
+ * No usable runs. Create a new chunk from which to allocate
+ * the run.
+ */
+ {
+ arena_chunk_t *chunk = (arena_chunk_t *)
+ chunk_alloc(chunksize, chunksize, false, true);
+ if (chunk == NULL)
+ return (NULL);
+
+ arena_chunk_init(arena, chunk);
+ run = (arena_run_t *)((uintptr_t)chunk +
+ (arena_chunk_header_npages << pagesize_2pow));
+ }
+ /* Update page map. */
+ arena_run_split(arena, run, size, large, zero);
+ return (run);
+}
+
+static void
+arena_purge(arena_t *arena, bool all)
+{
+ arena_chunk_t *chunk;
+ size_t i, npages;
+ /* If all is set purge all dirty pages. */
+ size_t dirty_max = all ? 1 : opt_dirty_max;
+#ifdef MALLOC_DEBUG
+ size_t ndirty = 0;
+ rb_foreach_begin(arena_chunk_t, link_dirty, &arena->chunks_dirty,
+ chunk) {
+ ndirty += chunk->ndirty;
+ } rb_foreach_end(arena_chunk_t, link_dirty, &arena->chunks_dirty, chunk)
+ assert(ndirty == arena->ndirty);
+#endif
+ RELEASE_ASSERT(all || (arena->ndirty > opt_dirty_max));
+
+#ifdef MALLOC_STATS
+ arena->stats.npurge++;
+#endif
+
+ /*
+ * Iterate downward through chunks until enough dirty memory has been
+ * purged. Terminate as soon as possible in order to minimize the
+ * number of system calls, even if a chunk has only been partially
+ * purged.
+ */
+ while (arena->ndirty > (dirty_max >> 1)) {
+#ifdef MALLOC_DOUBLE_PURGE
+ bool madvised = false;
+#endif
+ chunk = arena_chunk_tree_dirty_last(&arena->chunks_dirty);
+ RELEASE_ASSERT(chunk != NULL);
+
+ for (i = chunk_npages - 1; chunk->ndirty > 0; i--) {
+ RELEASE_ASSERT(i >= arena_chunk_header_npages);
+
+ if (chunk->map[i].bits & CHUNK_MAP_DIRTY) {
+#ifdef MALLOC_DECOMMIT
+ const size_t free_operation = CHUNK_MAP_DECOMMITTED;
+#else
+ const size_t free_operation = CHUNK_MAP_MADVISED;
+#endif
+ assert((chunk->map[i].bits &
+ CHUNK_MAP_MADVISED_OR_DECOMMITTED) == 0);
+ chunk->map[i].bits ^= free_operation | CHUNK_MAP_DIRTY;
+ /* Find adjacent dirty run(s). */
+ for (npages = 1;
+ i > arena_chunk_header_npages &&
+ (chunk->map[i - 1].bits & CHUNK_MAP_DIRTY);
+ npages++) {
+ i--;
+ assert((chunk->map[i].bits &
+ CHUNK_MAP_MADVISED_OR_DECOMMITTED) == 0);
+ chunk->map[i].bits ^= free_operation | CHUNK_MAP_DIRTY;
+ }
+ chunk->ndirty -= npages;
+ arena->ndirty -= npages;
+
+#ifdef MALLOC_DECOMMIT
+ pages_decommit((void *)((uintptr_t)
+ chunk + (i << pagesize_2pow)),
+ (npages << pagesize_2pow));
+# ifdef MALLOC_STATS
+ arena->stats.ndecommit++;
+ arena->stats.decommitted += npages;
+# endif
+#endif
+#ifdef MALLOC_STATS
+ arena->stats.committed -= npages;
+#endif
+
+#ifndef MALLOC_DECOMMIT
+ madvise((void *)((uintptr_t)chunk + (i <<
+ pagesize_2pow)), (npages << pagesize_2pow),
+ MADV_FREE);
+# ifdef MALLOC_DOUBLE_PURGE
+ madvised = true;
+# endif
+#endif
+#ifdef MALLOC_STATS
+ arena->stats.nmadvise++;
+ arena->stats.purged += npages;
+#endif
+ if (arena->ndirty <= (dirty_max >> 1))
+ break;
+ }
+ }
+
+ if (chunk->ndirty == 0) {
+ arena_chunk_tree_dirty_remove(&arena->chunks_dirty,
+ chunk);
+ }
+#ifdef MALLOC_DOUBLE_PURGE
+ if (madvised) {
+ /* The chunk might already be in the list, but this
+ * makes sure it's at the front. */
+ LinkedList_Remove(&chunk->chunks_madvised_elem);
+ LinkedList_InsertHead(&arena->chunks_madvised, &chunk->chunks_madvised_elem);
+ }
+#endif
+ }
+}
+
+static void
+arena_run_dalloc(arena_t *arena, arena_run_t *run, bool dirty)
+{
+ arena_chunk_t *chunk;
+ size_t size, run_ind, run_pages;
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
+ run_ind = (size_t)(((uintptr_t)run - (uintptr_t)chunk)
+ >> pagesize_2pow);
+ RELEASE_ASSERT(run_ind >= arena_chunk_header_npages);
+ RELEASE_ASSERT(run_ind < chunk_npages);
+ if ((chunk->map[run_ind].bits & CHUNK_MAP_LARGE) != 0)
+ size = chunk->map[run_ind].bits & ~pagesize_mask;
+ else
+ size = run->bin->run_size;
+ run_pages = (size >> pagesize_2pow);
+
+ /* Mark pages as unallocated in the chunk map. */
+ if (dirty) {
+ size_t i;
+
+ for (i = 0; i < run_pages; i++) {
+ RELEASE_ASSERT((chunk->map[run_ind + i].bits & CHUNK_MAP_DIRTY)
+ == 0);
+ chunk->map[run_ind + i].bits = CHUNK_MAP_DIRTY;
+ }
+
+ if (chunk->ndirty == 0) {
+ arena_chunk_tree_dirty_insert(&arena->chunks_dirty,
+ chunk);
+ }
+ chunk->ndirty += run_pages;
+ arena->ndirty += run_pages;
+ } else {
+ size_t i;
+
+ for (i = 0; i < run_pages; i++) {
+ chunk->map[run_ind + i].bits &= ~(CHUNK_MAP_LARGE |
+ CHUNK_MAP_ALLOCATED);
+ }
+ }
+ chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits &
+ pagesize_mask);
+ chunk->map[run_ind+run_pages-1].bits = size |
+ (chunk->map[run_ind+run_pages-1].bits & pagesize_mask);
+
+ /* Try to coalesce forward. */
+ if (run_ind + run_pages < chunk_npages &&
+ (chunk->map[run_ind+run_pages].bits & CHUNK_MAP_ALLOCATED) == 0) {
+ size_t nrun_size = chunk->map[run_ind+run_pages].bits &
+ ~pagesize_mask;
+
+ /*
+ * Remove successor from runs_avail; the coalesced run is
+ * inserted later.
+ */
+ arena_avail_tree_remove(&arena->runs_avail,
+ &chunk->map[run_ind+run_pages]);
+
+ size += nrun_size;
+ run_pages = size >> pagesize_2pow;
+
+ RELEASE_ASSERT((chunk->map[run_ind+run_pages-1].bits & ~pagesize_mask)
+ == nrun_size);
+ chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits &
+ pagesize_mask);
+ chunk->map[run_ind+run_pages-1].bits = size |
+ (chunk->map[run_ind+run_pages-1].bits & pagesize_mask);
+ }
+
+ /* Try to coalesce backward. */
+ if (run_ind > arena_chunk_header_npages && (chunk->map[run_ind-1].bits &
+ CHUNK_MAP_ALLOCATED) == 0) {
+ size_t prun_size = chunk->map[run_ind-1].bits & ~pagesize_mask;
+
+ run_ind -= prun_size >> pagesize_2pow;
+
+ /*
+ * Remove predecessor from runs_avail; the coalesced run is
+ * inserted later.
+ */
+ arena_avail_tree_remove(&arena->runs_avail,
+ &chunk->map[run_ind]);
+
+ size += prun_size;
+ run_pages = size >> pagesize_2pow;
+
+ RELEASE_ASSERT((chunk->map[run_ind].bits & ~pagesize_mask) ==
+ prun_size);
+ chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits &
+ pagesize_mask);
+ chunk->map[run_ind+run_pages-1].bits = size |
+ (chunk->map[run_ind+run_pages-1].bits & pagesize_mask);
+ }
+
+ /* Insert into runs_avail, now that coalescing is complete. */
+ arena_avail_tree_insert(&arena->runs_avail, &chunk->map[run_ind]);
+
+ /* Deallocate chunk if it is now completely unused. */
+ if ((chunk->map[arena_chunk_header_npages].bits & (~pagesize_mask |
+ CHUNK_MAP_ALLOCATED)) == arena_maxclass)
+ arena_chunk_dealloc(arena, chunk);
+
+ /* Enforce opt_dirty_max. */
+ if (arena->ndirty > opt_dirty_max)
+ arena_purge(arena, false);
+}
+
+static void
+arena_run_trim_head(arena_t *arena, arena_chunk_t *chunk, arena_run_t *run,
+ size_t oldsize, size_t newsize)
+{
+ size_t pageind = ((uintptr_t)run - (uintptr_t)chunk) >> pagesize_2pow;
+ size_t head_npages = (oldsize - newsize) >> pagesize_2pow;
+
+ assert(oldsize > newsize);
+
+ /*
+ * Update the chunk map so that arena_run_dalloc() can treat the
+ * leading run as separately allocated.
+ */
+ chunk->map[pageind].bits = (oldsize - newsize) | CHUNK_MAP_LARGE |
+ CHUNK_MAP_ALLOCATED;
+ chunk->map[pageind+head_npages].bits = newsize | CHUNK_MAP_LARGE |
+ CHUNK_MAP_ALLOCATED;
+
+ arena_run_dalloc(arena, run, false);
+}
+
+static void
+arena_run_trim_tail(arena_t *arena, arena_chunk_t *chunk, arena_run_t *run,
+ size_t oldsize, size_t newsize, bool dirty)
+{
+ size_t pageind = ((uintptr_t)run - (uintptr_t)chunk) >> pagesize_2pow;
+ size_t npages = newsize >> pagesize_2pow;
+
+ assert(oldsize > newsize);
+
+ /*
+ * Update the chunk map so that arena_run_dalloc() can treat the
+ * trailing run as separately allocated.
+ */
+ chunk->map[pageind].bits = newsize | CHUNK_MAP_LARGE |
+ CHUNK_MAP_ALLOCATED;
+ chunk->map[pageind+npages].bits = (oldsize - newsize) | CHUNK_MAP_LARGE
+ | CHUNK_MAP_ALLOCATED;
+
+ arena_run_dalloc(arena, (arena_run_t *)((uintptr_t)run + newsize),
+ dirty);
+}
+
+static arena_run_t *
+arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin)
+{
+ arena_chunk_map_t *mapelm;
+ arena_run_t *run;
+ unsigned i, remainder;
+
+ /* Look for a usable run. */
+ mapelm = arena_run_tree_first(&bin->runs);
+ if (mapelm != NULL) {
+ /* run is guaranteed to have available space. */
+ arena_run_tree_remove(&bin->runs, mapelm);
+ run = (arena_run_t *)(mapelm->bits & ~pagesize_mask);
+#ifdef MALLOC_STATS
+ bin->stats.reruns++;
+#endif
+ return (run);
+ }
+ /* No existing runs have any space available. */
+
+ /* Allocate a new run. */
+ run = arena_run_alloc(arena, bin, bin->run_size, false, false);
+ if (run == NULL)
+ return (NULL);
+ /*
+ * Don't initialize if a race in arena_run_alloc() allowed an existing
+ * run to become usable.
+ */
+ if (run == bin->runcur)
+ return (run);
+
+ /* Initialize run internals. */
+ run->bin = bin;
+
+ for (i = 0; i < bin->regs_mask_nelms - 1; i++)
+ run->regs_mask[i] = UINT_MAX;
+ remainder = bin->nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1);
+ if (remainder == 0)
+ run->regs_mask[i] = UINT_MAX;
+ else {
+ /* The last element has spare bits that need to be unset. */
+ run->regs_mask[i] = (UINT_MAX >> ((1U << (SIZEOF_INT_2POW + 3))
+ - remainder));
+ }
+
+ run->regs_minelm = 0;
+
+ run->nfree = bin->nregs;
+#if defined(MALLOC_DEBUG) || defined(MOZ_JEMALLOC_HARD_ASSERTS)
+ run->magic = ARENA_RUN_MAGIC;
+#endif
+
+#ifdef MALLOC_STATS
+ bin->stats.nruns++;
+ bin->stats.curruns++;
+ if (bin->stats.curruns > bin->stats.highruns)
+ bin->stats.highruns = bin->stats.curruns;
+#endif
+ return (run);
+}
+
+/* bin->runcur must have space available before this function is called. */
+static inline void *
+arena_bin_malloc_easy(arena_t *arena, arena_bin_t *bin, arena_run_t *run)
+{
+ void *ret;
+
+ RELEASE_ASSERT(run->magic == ARENA_RUN_MAGIC);
+ RELEASE_ASSERT(run->nfree > 0);
+
+ ret = arena_run_reg_alloc(run, bin);
+ RELEASE_ASSERT(ret != NULL);
+ run->nfree--;
+
+ return (ret);
+}
+
+/* Re-fill bin->runcur, then call arena_bin_malloc_easy(). */
+static void *
+arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin)
+{
+
+ bin->runcur = arena_bin_nonfull_run_get(arena, bin);
+ if (bin->runcur == NULL)
+ return (NULL);
+ RELEASE_ASSERT(bin->runcur->magic == ARENA_RUN_MAGIC);
+ RELEASE_ASSERT(bin->runcur->nfree > 0);
+
+ return (arena_bin_malloc_easy(arena, bin, bin->runcur));
+}
+
+/*
+ * Calculate bin->run_size such that it meets the following constraints:
+ *
+ * *) bin->run_size >= min_run_size
+ * *) bin->run_size <= arena_maxclass
+ * *) bin->run_size <= RUN_MAX_SMALL
+ * *) run header overhead <= RUN_MAX_OVRHD (or header overhead relaxed).
+ *
+ * bin->nregs, bin->regs_mask_nelms, and bin->reg0_offset are
+ * also calculated here, since these settings are all interdependent.
+ */
+static size_t
+arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size)
+{
+ size_t try_run_size, good_run_size;
+ unsigned good_nregs, good_mask_nelms, good_reg0_offset;
+ unsigned try_nregs, try_mask_nelms, try_reg0_offset;
+
+ assert(min_run_size >= pagesize);
+ assert(min_run_size <= arena_maxclass);
+
+ /*
+ * Calculate known-valid settings before entering the run_size
+ * expansion loop, so that the first part of the loop always copies
+ * valid settings.
+ *
+ * The do..while loop iteratively reduces the number of regions until
+ * the run header and the regions no longer overlap. A closed formula
+ * would be quite messy, since there is an interdependency between the
+ * header's mask length and the number of regions.
+ */
+ try_run_size = min_run_size;
+ try_nregs = ((try_run_size - sizeof(arena_run_t)) / bin->reg_size)
+ + 1; /* Counter-act try_nregs-- in loop. */
+ do {
+ try_nregs--;
+ try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
+ ((try_nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1)) ? 1 : 0);
+ try_reg0_offset = try_run_size - (try_nregs * bin->reg_size);
+ } while (sizeof(arena_run_t) + (sizeof(unsigned) * (try_mask_nelms - 1))
+ > try_reg0_offset);
+
+ /* run_size expansion loop. */
+ do {
+ /*
+ * Copy valid settings before trying more aggressive settings.
+ */
+ good_run_size = try_run_size;
+ good_nregs = try_nregs;
+ good_mask_nelms = try_mask_nelms;
+ good_reg0_offset = try_reg0_offset;
+
+ /* Try more aggressive settings. */
+ try_run_size += pagesize;
+ try_nregs = ((try_run_size - sizeof(arena_run_t)) /
+ bin->reg_size) + 1; /* Counter-act try_nregs-- in loop. */
+ do {
+ try_nregs--;
+ try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
+ ((try_nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1)) ?
+ 1 : 0);
+ try_reg0_offset = try_run_size - (try_nregs *
+ bin->reg_size);
+ } while (sizeof(arena_run_t) + (sizeof(unsigned) *
+ (try_mask_nelms - 1)) > try_reg0_offset);
+ } while (try_run_size <= arena_maxclass
+ && RUN_MAX_OVRHD * (bin->reg_size << 3) > RUN_MAX_OVRHD_RELAX
+ && (try_reg0_offset << RUN_BFP) > RUN_MAX_OVRHD * try_run_size);
+
+ assert(sizeof(arena_run_t) + (sizeof(unsigned) * (good_mask_nelms - 1))
+ <= good_reg0_offset);
+ assert((good_mask_nelms << (SIZEOF_INT_2POW + 3)) >= good_nregs);
+
+ /* Copy final settings. */
+ bin->run_size = good_run_size;
+ bin->nregs = good_nregs;
+ bin->regs_mask_nelms = good_mask_nelms;
+ bin->reg0_offset = good_reg0_offset;
+
+ return (good_run_size);
+}
+
+#ifdef MALLOC_BALANCE
+static inline void
+arena_lock_balance(arena_t *arena)
+{
+ unsigned contention;
+
+ contention = malloc_spin_lock(&arena->lock);
+ if (narenas > 1) {
+ /*
+ * Calculate the exponentially averaged contention for this
+ * arena. Due to integer math always rounding down, this value
+ * decays somewhat faster then normal.
+ */
+ arena->contention = (((uint64_t)arena->contention
+ * (uint64_t)((1U << BALANCE_ALPHA_INV_2POW)-1))
+ + (uint64_t)contention) >> BALANCE_ALPHA_INV_2POW;
+ if (arena->contention >= opt_balance_threshold)
+ arena_lock_balance_hard(arena);
+ }
+}
+
+static void
+arena_lock_balance_hard(arena_t *arena)
+{
+ uint32_t ind;
+
+ arena->contention = 0;
+#ifdef MALLOC_STATS
+ arena->stats.nbalance++;
+#endif
+ ind = PRN(balance, narenas_2pow);
+ if (arenas[ind] != NULL) {
+#ifdef MOZ_MEMORY_WINDOWS
+ TlsSetValue(tlsIndex, arenas[ind]);
+#else
+ arenas_map = arenas[ind];
+#endif
+ } else {
+ malloc_spin_lock(&arenas_lock);
+ if (arenas[ind] != NULL) {
+#ifdef MOZ_MEMORY_WINDOWS
+ TlsSetValue(tlsIndex, arenas[ind]);
+#else
+ arenas_map = arenas[ind];
+#endif
+ } else {
+#ifdef MOZ_MEMORY_WINDOWS
+ TlsSetValue(tlsIndex, arenas_extend(ind));
+#else
+ arenas_map = arenas_extend(ind);
+#endif
+ }
+ malloc_spin_unlock(&arenas_lock);
+ }
+}
+#endif
+
+static inline void *
+arena_malloc_small(arena_t *arena, size_t size, bool zero)
+{
+ void *ret;
+ arena_bin_t *bin;
+ arena_run_t *run;
+
+ if (size < small_min) {
+ /* Tiny. */
+ size = pow2_ceil(size);
+ bin = &arena->bins[ffs((int)(size >> (TINY_MIN_2POW +
+ 1)))];
+#if (!defined(NDEBUG) || defined(MALLOC_STATS))
+ /*
+ * Bin calculation is always correct, but we may need
+ * to fix size for the purposes of assertions and/or
+ * stats accuracy.
+ */
+ if (size < (1U << TINY_MIN_2POW))
+ size = (1U << TINY_MIN_2POW);
+#endif
+ } else if (size <= small_max) {
+ /* Quantum-spaced. */
+ size = QUANTUM_CEILING(size);
+ bin = &arena->bins[ntbins + (size >> opt_quantum_2pow)
+ - 1];
+ } else {
+ /* Sub-page. */
+ size = pow2_ceil(size);
+ bin = &arena->bins[ntbins + nqbins
+ + (ffs((int)(size >> opt_small_max_2pow)) - 2)];
+ }
+ RELEASE_ASSERT(size == bin->reg_size);
+
+#ifdef MALLOC_BALANCE
+ arena_lock_balance(arena);
+#else
+ malloc_spin_lock(&arena->lock);
+#endif
+ if ((run = bin->runcur) != NULL && run->nfree > 0)
+ ret = arena_bin_malloc_easy(arena, bin, run);
+ else
+ ret = arena_bin_malloc_hard(arena, bin);
+
+ if (ret == NULL) {
+ malloc_spin_unlock(&arena->lock);
+ return (NULL);
+ }
+
+#ifdef MALLOC_STATS
+ bin->stats.nrequests++;
+ arena->stats.nmalloc_small++;
+ arena->stats.allocated_small += size;
+#endif
+ malloc_spin_unlock(&arena->lock);
+
+ if (zero == false) {
+#ifdef MALLOC_FILL
+ if (opt_junk)
+ memset(ret, 0xe4, size);
+ else if (opt_zero)
+ memset(ret, 0, size);
+#endif
+ } else
+ memset(ret, 0, size);
+
+ return (ret);
+}
+
+static void *
+arena_malloc_large(arena_t *arena, size_t size, bool zero)
+{
+ void *ret;
+
+ /* Large allocation. */
+ size = PAGE_CEILING(size);
+#ifdef MALLOC_BALANCE
+ arena_lock_balance(arena);
+#else
+ malloc_spin_lock(&arena->lock);
+#endif
+ ret = (void *)arena_run_alloc(arena, NULL, size, true, zero);
+ if (ret == NULL) {
+ malloc_spin_unlock(&arena->lock);
+ return (NULL);
+ }
+#ifdef MALLOC_STATS
+ arena->stats.nmalloc_large++;
+ arena->stats.allocated_large += size;
+#endif
+ malloc_spin_unlock(&arena->lock);
+
+ if (zero == false) {
+#ifdef MALLOC_FILL
+ if (opt_junk)
+ memset(ret, 0xe4, size);
+ else if (opt_zero)
+ memset(ret, 0, size);
+#endif
+ }
+
+ return (ret);
+}
+
+static inline void *
+arena_malloc(arena_t *arena, size_t size, bool zero)
+{
+
+ assert(arena != NULL);
+ RELEASE_ASSERT(arena->magic == ARENA_MAGIC);
+ assert(size != 0);
+ assert(QUANTUM_CEILING(size) <= arena_maxclass);
+
+ if (size <= bin_maxclass) {
+ return (arena_malloc_small(arena, size, zero));
+ } else
+ return (arena_malloc_large(arena, size, zero));
+}
+
+static inline void *
+imalloc(size_t size)
+{
+
+ assert(size != 0);
+
+ if (size <= arena_maxclass)
+ return (arena_malloc(choose_arena(), size, false));
+ else
+ return (huge_malloc(size, false));
+}
+
+static inline void *
+icalloc(size_t size)
+{
+
+ if (size <= arena_maxclass)
+ return (arena_malloc(choose_arena(), size, true));
+ else
+ return (huge_malloc(size, true));
+}
+
+/* Only handles large allocations that require more than page alignment. */
+static void *
+arena_palloc(arena_t *arena, size_t alignment, size_t size, size_t alloc_size)
+{
+ void *ret;
+ size_t offset;
+ arena_chunk_t *chunk;
+
+ assert((size & pagesize_mask) == 0);
+ assert((alignment & pagesize_mask) == 0);
+
+#ifdef MALLOC_BALANCE
+ arena_lock_balance(arena);
+#else
+ malloc_spin_lock(&arena->lock);
+#endif
+ ret = (void *)arena_run_alloc(arena, NULL, alloc_size, true, false);
+ if (ret == NULL) {
+ malloc_spin_unlock(&arena->lock);
+ return (NULL);
+ }
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ret);
+
+ offset = (uintptr_t)ret & (alignment - 1);
+ assert((offset & pagesize_mask) == 0);
+ assert(offset < alloc_size);
+ if (offset == 0)
+ arena_run_trim_tail(arena, chunk, (arena_run_t*)ret, alloc_size, size, false);
+ else {
+ size_t leadsize, trailsize;
+
+ leadsize = alignment - offset;
+ if (leadsize > 0) {
+ arena_run_trim_head(arena, chunk, (arena_run_t*)ret, alloc_size,
+ alloc_size - leadsize);
+ ret = (void *)((uintptr_t)ret + leadsize);
+ }
+
+ trailsize = alloc_size - leadsize - size;
+ if (trailsize != 0) {
+ /* Trim trailing space. */
+ assert(trailsize < alloc_size);
+ arena_run_trim_tail(arena, chunk, (arena_run_t*)ret, size + trailsize,
+ size, false);
+ }
+ }
+
+#ifdef MALLOC_STATS
+ arena->stats.nmalloc_large++;
+ arena->stats.allocated_large += size;
+#endif
+ malloc_spin_unlock(&arena->lock);
+
+#ifdef MALLOC_FILL
+ if (opt_junk)
+ memset(ret, 0xe4, size);
+ else if (opt_zero)
+ memset(ret, 0, size);
+#endif
+ return (ret);
+}
+
+static inline void *
+ipalloc(size_t alignment, size_t size)
+{
+ void *ret;
+ size_t ceil_size;
+
+ /*
+ * Round size up to the nearest multiple of alignment.
+ *
+ * This done, we can take advantage of the fact that for each small
+ * size class, every object is aligned at the smallest power of two
+ * that is non-zero in the base two representation of the size. For
+ * example:
+ *
+ * Size | Base 2 | Minimum alignment
+ * -----+----------+------------------
+ * 96 | 1100000 | 32
+ * 144 | 10100000 | 32
+ * 192 | 11000000 | 64
+ *
+ * Depending on runtime settings, it is possible that arena_malloc()
+ * will further round up to a power of two, but that never causes
+ * correctness issues.
+ */
+ ceil_size = (size + (alignment - 1)) & (-alignment);
+ /*
+ * (ceil_size < size) protects against the combination of maximal
+ * alignment and size greater than maximal alignment.
+ */
+ if (ceil_size < size) {
+ /* size_t overflow. */
+ return (NULL);
+ }
+
+ if (ceil_size <= pagesize || (alignment <= pagesize
+ && ceil_size <= arena_maxclass))
+ ret = arena_malloc(choose_arena(), ceil_size, false);
+ else {
+ size_t run_size;
+
+ /*
+ * We can't achieve sub-page alignment, so round up alignment
+ * permanently; it makes later calculations simpler.
+ */
+ alignment = PAGE_CEILING(alignment);
+ ceil_size = PAGE_CEILING(size);
+ /*
+ * (ceil_size < size) protects against very large sizes within
+ * pagesize of SIZE_T_MAX.
+ *
+ * (ceil_size + alignment < ceil_size) protects against the
+ * combination of maximal alignment and ceil_size large enough
+ * to cause overflow. This is similar to the first overflow
+ * check above, but it needs to be repeated due to the new
+ * ceil_size value, which may now be *equal* to maximal
+ * alignment, whereas before we only detected overflow if the
+ * original size was *greater* than maximal alignment.
+ */
+ if (ceil_size < size || ceil_size + alignment < ceil_size) {
+ /* size_t overflow. */
+ return (NULL);
+ }
+
+ /*
+ * Calculate the size of the over-size run that arena_palloc()
+ * would need to allocate in order to guarantee the alignment.
+ */
+ if (ceil_size >= alignment)
+ run_size = ceil_size + alignment - pagesize;
+ else {
+ /*
+ * It is possible that (alignment << 1) will cause
+ * overflow, but it doesn't matter because we also
+ * subtract pagesize, which in the case of overflow
+ * leaves us with a very large run_size. That causes
+ * the first conditional below to fail, which means
+ * that the bogus run_size value never gets used for
+ * anything important.
+ */
+ run_size = (alignment << 1) - pagesize;
+ }
+
+ if (run_size <= arena_maxclass) {
+ ret = arena_palloc(choose_arena(), alignment, ceil_size,
+ run_size);
+ } else if (alignment <= chunksize)
+ ret = huge_malloc(ceil_size, false);
+ else
+ ret = huge_palloc(ceil_size, alignment, false);
+ }
+
+ assert(((uintptr_t)ret & (alignment - 1)) == 0);
+ return (ret);
+}
+
+/* Return the size of the allocation pointed to by ptr. */
+static size_t
+arena_salloc(const void *ptr)
+{
+ size_t ret;
+ arena_chunk_t *chunk;
+ size_t pageind, mapbits;
+
+ assert(ptr != NULL);
+ assert(CHUNK_ADDR2BASE(ptr) != ptr);
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+ pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow);
+ mapbits = chunk->map[pageind].bits;
+ RELEASE_ASSERT((mapbits & CHUNK_MAP_ALLOCATED) != 0);
+ if ((mapbits & CHUNK_MAP_LARGE) == 0) {
+ arena_run_t *run = (arena_run_t *)(mapbits & ~pagesize_mask);
+ RELEASE_ASSERT(run->magic == ARENA_RUN_MAGIC);
+ ret = run->bin->reg_size;
+ } else {
+ ret = mapbits & ~pagesize_mask;
+ RELEASE_ASSERT(ret != 0);
+ }
+
+ return (ret);
+}
+
+#if (defined(MALLOC_VALIDATE) || defined(MOZ_MEMORY_DARWIN))
+/*
+ * Validate ptr before assuming that it points to an allocation. Currently,
+ * the following validation is performed:
+ *
+ * + Check that ptr is not NULL.
+ *
+ * + Check that ptr lies within a mapped chunk.
+ */
+static inline size_t
+isalloc_validate(const void *ptr)
+{
+ arena_chunk_t *chunk;
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+ if (chunk == NULL)
+ return (0);
+
+ if (malloc_rtree_get(chunk_rtree, (uintptr_t)chunk) == NULL)
+ return (0);
+
+ if (chunk != ptr) {
+ RELEASE_ASSERT(chunk->arena->magic == ARENA_MAGIC);
+ return (arena_salloc(ptr));
+ } else {
+ size_t ret;
+ extent_node_t *node;
+ extent_node_t key;
+
+ /* Chunk. */
+ key.addr = (void *)chunk;
+ malloc_mutex_lock(&huge_mtx);
+ node = extent_tree_ad_search(&huge, &key);
+ if (node != NULL)
+ ret = node->size;
+ else
+ ret = 0;
+ malloc_mutex_unlock(&huge_mtx);
+ return (ret);
+ }
+}
+#endif
+
+static inline size_t
+isalloc(const void *ptr)
+{
+ size_t ret;
+ arena_chunk_t *chunk;
+
+ assert(ptr != NULL);
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+ if (chunk != ptr) {
+ /* Region. */
+ assert(chunk->arena->magic == ARENA_MAGIC);
+
+ ret = arena_salloc(ptr);
+ } else {
+ extent_node_t *node, key;
+
+ /* Chunk (huge allocation). */
+
+ malloc_mutex_lock(&huge_mtx);
+
+ /* Extract from tree of huge allocations. */
+ key.addr = __DECONST(void *, ptr);
+ node = extent_tree_ad_search(&huge, &key);
+ RELEASE_ASSERT(node != NULL);
+
+ ret = node->size;
+
+ malloc_mutex_unlock(&huge_mtx);
+ }
+
+ return (ret);
+}
+
+static inline void
+arena_dalloc_small(arena_t *arena, arena_chunk_t *chunk, void *ptr,
+ arena_chunk_map_t *mapelm)
+{
+ arena_run_t *run;
+ arena_bin_t *bin;
+ size_t size;
+
+ run = (arena_run_t *)(mapelm->bits & ~pagesize_mask);
+ RELEASE_ASSERT(run->magic == ARENA_RUN_MAGIC);
+ bin = run->bin;
+ size = bin->reg_size;
+
+#ifdef MALLOC_FILL
+ if (opt_poison)
+ memset(ptr, 0xe5, size);
+#endif
+
+ arena_run_reg_dalloc(run, bin, ptr, size);
+ run->nfree++;
+
+ if (run->nfree == bin->nregs) {
+ /* Deallocate run. */
+ if (run == bin->runcur)
+ bin->runcur = NULL;
+ else if (bin->nregs != 1) {
+ size_t run_pageind = (((uintptr_t)run -
+ (uintptr_t)chunk)) >> pagesize_2pow;
+ arena_chunk_map_t *run_mapelm =
+ &chunk->map[run_pageind];
+ /*
+ * This block's conditional is necessary because if the
+ * run only contains one region, then it never gets
+ * inserted into the non-full runs tree.
+ */
+ RELEASE_ASSERT(arena_run_tree_search(&bin->runs, run_mapelm) ==
+ run_mapelm);
+ arena_run_tree_remove(&bin->runs, run_mapelm);
+ }
+#if defined(MALLOC_DEBUG) || defined(MOZ_JEMALLOC_HARD_ASSERTS)
+ run->magic = 0;
+#endif
+ arena_run_dalloc(arena, run, true);
+#ifdef MALLOC_STATS
+ bin->stats.curruns--;
+#endif
+ } else if (run->nfree == 1 && run != bin->runcur) {
+ /*
+ * Make sure that bin->runcur always refers to the lowest
+ * non-full run, if one exists.
+ */
+ if (bin->runcur == NULL)
+ bin->runcur = run;
+ else if ((uintptr_t)run < (uintptr_t)bin->runcur) {
+ /* Switch runcur. */
+ if (bin->runcur->nfree > 0) {
+ arena_chunk_t *runcur_chunk =
+ (arena_chunk_t*)CHUNK_ADDR2BASE(bin->runcur);
+ size_t runcur_pageind =
+ (((uintptr_t)bin->runcur -
+ (uintptr_t)runcur_chunk)) >> pagesize_2pow;
+ arena_chunk_map_t *runcur_mapelm =
+ &runcur_chunk->map[runcur_pageind];
+
+ /* Insert runcur. */
+ RELEASE_ASSERT(arena_run_tree_search(&bin->runs,
+ runcur_mapelm) == NULL);
+ arena_run_tree_insert(&bin->runs,
+ runcur_mapelm);
+ }
+ bin->runcur = run;
+ } else {
+ size_t run_pageind = (((uintptr_t)run -
+ (uintptr_t)chunk)) >> pagesize_2pow;
+ arena_chunk_map_t *run_mapelm =
+ &chunk->map[run_pageind];
+
+ RELEASE_ASSERT(arena_run_tree_search(&bin->runs, run_mapelm) ==
+ NULL);
+ arena_run_tree_insert(&bin->runs, run_mapelm);
+ }
+ }
+#ifdef MALLOC_STATS
+ arena->stats.allocated_small -= size;
+ arena->stats.ndalloc_small++;
+#endif
+}
+
+static void
+arena_dalloc_large(arena_t *arena, arena_chunk_t *chunk, void *ptr)
+{
+ /* Large allocation. */
+ malloc_spin_lock(&arena->lock);
+
+#ifdef MALLOC_FILL
+#ifndef MALLOC_STATS
+ if (opt_poison)
+#endif
+#endif
+ {
+ size_t pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >>
+ pagesize_2pow;
+ size_t size = chunk->map[pageind].bits & ~pagesize_mask;
+
+#ifdef MALLOC_FILL
+#ifdef MALLOC_STATS
+ if (opt_poison)
+#endif
+ memset(ptr, 0xe5, size);
+#endif
+#ifdef MALLOC_STATS
+ arena->stats.allocated_large -= size;
+#endif
+ }
+#ifdef MALLOC_STATS
+ arena->stats.ndalloc_large++;
+#endif
+
+ arena_run_dalloc(arena, (arena_run_t *)ptr, true);
+ malloc_spin_unlock(&arena->lock);
+}
+
+static inline void
+arena_dalloc(void *ptr, size_t offset)
+{
+ arena_chunk_t *chunk;
+ arena_t *arena;
+ size_t pageind;
+ arena_chunk_map_t *mapelm;
+
+ assert(ptr != NULL);
+ assert(offset != 0);
+ assert(CHUNK_ADDR2OFFSET(ptr) == offset);
+
+ chunk = (arena_chunk_t *) ((uintptr_t)ptr - offset);
+ arena = chunk->arena;
+ assert(arena != NULL);
+ RELEASE_ASSERT(arena->magic == ARENA_MAGIC);
+
+ pageind = offset >> pagesize_2pow;
+ mapelm = &chunk->map[pageind];
+ RELEASE_ASSERT((mapelm->bits & CHUNK_MAP_ALLOCATED) != 0);
+ if ((mapelm->bits & CHUNK_MAP_LARGE) == 0) {
+ /* Small allocation. */
+ malloc_spin_lock(&arena->lock);
+ arena_dalloc_small(arena, chunk, ptr, mapelm);
+ malloc_spin_unlock(&arena->lock);
+ } else
+ arena_dalloc_large(arena, chunk, ptr);
+}
+
+static inline void
+idalloc(void *ptr)
+{
+ size_t offset;
+
+ assert(ptr != NULL);
+
+ offset = CHUNK_ADDR2OFFSET(ptr);
+ if (offset != 0)
+ arena_dalloc(ptr, offset);
+ else
+ huge_dalloc(ptr);
+}
+
+static void
+arena_ralloc_large_shrink(arena_t *arena, arena_chunk_t *chunk, void *ptr,
+ size_t size, size_t oldsize)
+{
+
+ assert(size < oldsize);
+
+ /*
+ * Shrink the run, and make trailing pages available for other
+ * allocations.
+ */
+#ifdef MALLOC_BALANCE
+ arena_lock_balance(arena);
+#else
+ malloc_spin_lock(&arena->lock);
+#endif
+ arena_run_trim_tail(arena, chunk, (arena_run_t *)ptr, oldsize, size,
+ true);
+#ifdef MALLOC_STATS
+ arena->stats.allocated_large -= oldsize - size;
+#endif
+ malloc_spin_unlock(&arena->lock);
+}
+
+static bool
+arena_ralloc_large_grow(arena_t *arena, arena_chunk_t *chunk, void *ptr,
+ size_t size, size_t oldsize)
+{
+ size_t pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow;
+ size_t npages = oldsize >> pagesize_2pow;
+
+ RELEASE_ASSERT(oldsize == (chunk->map[pageind].bits & ~pagesize_mask));
+
+ /* Try to extend the run. */
+ assert(size > oldsize);
+#ifdef MALLOC_BALANCE
+ arena_lock_balance(arena);
+#else
+ malloc_spin_lock(&arena->lock);
+#endif
+ if (pageind + npages < chunk_npages && (chunk->map[pageind+npages].bits
+ & CHUNK_MAP_ALLOCATED) == 0 && (chunk->map[pageind+npages].bits &
+ ~pagesize_mask) >= size - oldsize) {
+ /*
+ * The next run is available and sufficiently large. Split the
+ * following run, then merge the first part with the existing
+ * allocation.
+ */
+ arena_run_split(arena, (arena_run_t *)((uintptr_t)chunk +
+ ((pageind+npages) << pagesize_2pow)), size - oldsize, true,
+ false);
+
+ chunk->map[pageind].bits = size | CHUNK_MAP_LARGE |
+ CHUNK_MAP_ALLOCATED;
+ chunk->map[pageind+npages].bits = CHUNK_MAP_LARGE |
+ CHUNK_MAP_ALLOCATED;
+
+#ifdef MALLOC_STATS
+ arena->stats.allocated_large += size - oldsize;
+#endif
+ malloc_spin_unlock(&arena->lock);
+ return (false);
+ }
+ malloc_spin_unlock(&arena->lock);
+
+ return (true);
+}
+
+/*
+ * Try to resize a large allocation, in order to avoid copying. This will
+ * always fail if growing an object, and the following run is already in use.
+ */
+static bool
+arena_ralloc_large(void *ptr, size_t size, size_t oldsize)
+{
+ size_t psize;
+
+ psize = PAGE_CEILING(size);
+ if (psize == oldsize) {
+ /* Same size class. */
+#ifdef MALLOC_FILL
+ if (opt_poison && size < oldsize) {
+ memset((void *)((uintptr_t)ptr + size), 0xe5, oldsize -
+ size);
+ }
+#endif
+ return (false);
+ } else {
+ arena_chunk_t *chunk;
+ arena_t *arena;
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+ arena = chunk->arena;
+ RELEASE_ASSERT(arena->magic == ARENA_MAGIC);
+
+ if (psize < oldsize) {
+#ifdef MALLOC_FILL
+ /* Fill before shrinking in order avoid a race. */
+ if (opt_poison) {
+ memset((void *)((uintptr_t)ptr + size), 0xe5,
+ oldsize - size);
+ }
+#endif
+ arena_ralloc_large_shrink(arena, chunk, ptr, psize,
+ oldsize);
+ return (false);
+ } else {
+ bool ret = arena_ralloc_large_grow(arena, chunk, ptr,
+ psize, oldsize);
+#ifdef MALLOC_FILL
+ if (ret == false && opt_zero) {
+ memset((void *)((uintptr_t)ptr + oldsize), 0,
+ size - oldsize);
+ }
+#endif
+ return (ret);
+ }
+ }
+}
+
+static void *
+arena_ralloc(void *ptr, size_t size, size_t oldsize)
+{
+ void *ret;
+ size_t copysize;
+
+ /* Try to avoid moving the allocation. */
+ if (size < small_min) {
+ if (oldsize < small_min &&
+ ffs((int)(pow2_ceil(size) >> (TINY_MIN_2POW + 1)))
+ == ffs((int)(pow2_ceil(oldsize) >> (TINY_MIN_2POW + 1))))
+ goto IN_PLACE; /* Same size class. */
+ } else if (size <= small_max) {
+ if (oldsize >= small_min && oldsize <= small_max &&
+ (QUANTUM_CEILING(size) >> opt_quantum_2pow)
+ == (QUANTUM_CEILING(oldsize) >> opt_quantum_2pow))
+ goto IN_PLACE; /* Same size class. */
+ } else if (size <= bin_maxclass) {
+ if (oldsize > small_max && oldsize <= bin_maxclass &&
+ pow2_ceil(size) == pow2_ceil(oldsize))
+ goto IN_PLACE; /* Same size class. */
+ } else if (oldsize > bin_maxclass && oldsize <= arena_maxclass) {
+ assert(size > bin_maxclass);
+ if (arena_ralloc_large(ptr, size, oldsize) == false)
+ return (ptr);
+ }
+
+ /*
+ * If we get here, then size and oldsize are different enough that we
+ * need to move the object. In that case, fall back to allocating new
+ * space and copying.
+ */
+ ret = arena_malloc(choose_arena(), size, false);
+ if (ret == NULL)
+ return (NULL);
+
+ /* Junk/zero-filling were already done by arena_malloc(). */
+ copysize = (size < oldsize) ? size : oldsize;
+#ifdef VM_COPY_MIN
+ if (copysize >= VM_COPY_MIN)
+ pages_copy(ret, ptr, copysize);
+ else
+#endif
+ memcpy(ret, ptr, copysize);
+ idalloc(ptr);
+ return (ret);
+IN_PLACE:
+#ifdef MALLOC_FILL
+ if (opt_poison && size < oldsize)
+ memset((void *)((uintptr_t)ptr + size), 0xe5, oldsize - size);
+ else if (opt_zero && size > oldsize)
+ memset((void *)((uintptr_t)ptr + oldsize), 0, size - oldsize);
+#endif
+ return (ptr);
+}
+
+static inline void *
+iralloc(void *ptr, size_t size)
+{
+ size_t oldsize;
+
+ assert(ptr != NULL);
+ assert(size != 0);
+
+ oldsize = isalloc(ptr);
+
+ if (size <= arena_maxclass)
+ return (arena_ralloc(ptr, size, oldsize));
+ else
+ return (huge_ralloc(ptr, size, oldsize));
+}
+
+static bool
+arena_new(arena_t *arena)
+{
+ unsigned i;
+ arena_bin_t *bin;
+ size_t pow2_size, prev_run_size;
+
+ if (malloc_spin_init(&arena->lock))
+ return (true);
+
+#ifdef MALLOC_STATS
+ memset(&arena->stats, 0, sizeof(arena_stats_t));
+#endif
+
+ /* Initialize chunks. */
+ arena_chunk_tree_dirty_new(&arena->chunks_dirty);
+#ifdef MALLOC_DOUBLE_PURGE
+ LinkedList_Init(&arena->chunks_madvised);
+#endif
+ arena->spare = NULL;
+
+ arena->ndirty = 0;
+
+ arena_avail_tree_new(&arena->runs_avail);
+
+#ifdef MALLOC_BALANCE
+ arena->contention = 0;
+#endif
+
+ /* Initialize bins. */
+ prev_run_size = pagesize;
+
+ /* (2^n)-spaced tiny bins. */
+ for (i = 0; i < ntbins; i++) {
+ bin = &arena->bins[i];
+ bin->runcur = NULL;
+ arena_run_tree_new(&bin->runs);
+
+ bin->reg_size = (1ULL << (TINY_MIN_2POW + i));
+
+ prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
+
+#ifdef MALLOC_STATS
+ memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
+#endif
+ }
+
+ /* Quantum-spaced bins. */
+ for (; i < ntbins + nqbins; i++) {
+ bin = &arena->bins[i];
+ bin->runcur = NULL;
+ arena_run_tree_new(&bin->runs);
+
+ bin->reg_size = quantum * (i - ntbins + 1);
+
+ pow2_size = pow2_ceil(quantum * (i - ntbins + 1));
+ prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
+
+#ifdef MALLOC_STATS
+ memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
+#endif
+ }
+
+ /* (2^n)-spaced sub-page bins. */
+ for (; i < ntbins + nqbins + nsbins; i++) {
+ bin = &arena->bins[i];
+ bin->runcur = NULL;
+ arena_run_tree_new(&bin->runs);
+
+ bin->reg_size = (small_max << (i - (ntbins + nqbins) + 1));
+
+ prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
+
+#ifdef MALLOC_STATS
+ memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
+#endif
+ }
+
+#if defined(MALLOC_DEBUG) || defined(MOZ_JEMALLOC_HARD_ASSERTS)
+ arena->magic = ARENA_MAGIC;
+#endif
+
+ return (false);
+}
+
+/* Create a new arena and insert it into the arenas array at index ind. */
+static arena_t *
+arenas_extend(unsigned ind)
+{
+ arena_t *ret;
+
+ /* Allocate enough space for trailing bins. */
+ ret = (arena_t *)base_alloc(sizeof(arena_t)
+ + (sizeof(arena_bin_t) * (ntbins + nqbins + nsbins - 1)));
+ if (ret != NULL && arena_new(ret) == false) {
+ arenas[ind] = ret;
+ return (ret);
+ }
+ /* Only reached if there is an OOM error. */
+
+ /*
+ * OOM here is quite inconvenient to propagate, since dealing with it
+ * would require a check for failure in the fast path. Instead, punt
+ * by using arenas[0]. In practice, this is an extremely unlikely
+ * failure.
+ */
+ _malloc_message(_getprogname(),
+ ": (malloc) Error initializing arena\n", "", "");
+ if (opt_abort)
+ abort();
+
+ return (arenas[0]);
+}
+
+/*
+ * End arena.
+ */
+/******************************************************************************/
+/*
+ * Begin general internal functions.
+ */
+
+static void *
+huge_malloc(size_t size, bool zero)
+{
+ return huge_palloc(size, chunksize, zero);
+}
+
+static void *
+huge_palloc(size_t size, size_t alignment, bool zero)
+{
+ void *ret;
+ size_t csize;
+ size_t psize;
+ extent_node_t *node;
+
+ /* Allocate one or more contiguous chunks for this request. */
+
+ csize = CHUNK_CEILING(size);
+ if (csize == 0) {
+ /* size is large enough to cause size_t wrap-around. */
+ return (NULL);
+ }
+
+ /* Allocate an extent node with which to track the chunk. */
+ node = base_node_alloc();
+ if (node == NULL)
+ return (NULL);
+
+ ret = chunk_alloc(csize, alignment, false, zero);
+ if (ret == NULL) {
+ base_node_dealloc(node);
+ return (NULL);
+ }
+
+ /* Insert node into huge. */
+ node->addr = ret;
+ psize = PAGE_CEILING(size);
+ node->size = psize;
+
+ malloc_mutex_lock(&huge_mtx);
+ extent_tree_ad_insert(&huge, node);
+#ifdef MALLOC_STATS
+ huge_nmalloc++;
+
+ /* Although we allocated space for csize bytes, we indicate that we've
+ * allocated only psize bytes.
+ *
+ * If DECOMMIT is defined, this is a reasonable thing to do, since
+ * we'll explicitly decommit the bytes in excess of psize.
+ *
+ * If DECOMMIT is not defined, then we're relying on the OS to be lazy
+ * about how it allocates physical pages to mappings. If we never
+ * touch the pages in excess of psize, the OS won't allocate a physical
+ * page, and we won't use more than psize bytes of physical memory.
+ *
+ * A correct program will only touch memory in excess of how much it
+ * requested if it first calls malloc_usable_size and finds out how
+ * much space it has to play with. But because we set node->size =
+ * psize above, malloc_usable_size will return psize, not csize, and
+ * the program will (hopefully) never touch bytes in excess of psize.
+ * Thus those bytes won't take up space in physical memory, and we can
+ * reasonably claim we never "allocated" them in the first place. */
+ huge_allocated += psize;
+ huge_mapped += csize;
+#endif
+ malloc_mutex_unlock(&huge_mtx);
+
+#ifdef MALLOC_DECOMMIT
+ if (csize - psize > 0)
+ pages_decommit((void *)((uintptr_t)ret + psize), csize - psize);
+#endif
+
+#ifdef MALLOC_FILL
+ if (zero == false) {
+ if (opt_junk)
+# ifdef MALLOC_DECOMMIT
+ memset(ret, 0xe4, psize);
+# else
+ memset(ret, 0xe4, csize);
+# endif
+ else if (opt_zero)
+# ifdef MALLOC_DECOMMIT
+ memset(ret, 0, psize);
+# else
+ memset(ret, 0, csize);
+# endif
+ }
+#endif
+
+ return (ret);
+}
+
+static void *
+huge_ralloc(void *ptr, size_t size, size_t oldsize)
+{
+ void *ret;
+ size_t copysize;
+
+ /* Avoid moving the allocation if the size class would not change. */
+
+ if (oldsize > arena_maxclass &&
+ CHUNK_CEILING(size) == CHUNK_CEILING(oldsize)) {
+ size_t psize = PAGE_CEILING(size);
+#ifdef MALLOC_FILL
+ if (opt_poison && size < oldsize) {
+ memset((void *)((uintptr_t)ptr + size), 0xe5, oldsize
+ - size);
+ }
+#endif
+#ifdef MALLOC_DECOMMIT
+ if (psize < oldsize) {
+ extent_node_t *node, key;
+
+ pages_decommit((void *)((uintptr_t)ptr + psize),
+ oldsize - psize);
+
+ /* Update recorded size. */
+ malloc_mutex_lock(&huge_mtx);
+ key.addr = __DECONST(void *, ptr);
+ node = extent_tree_ad_search(&huge, &key);
+ assert(node != NULL);
+ assert(node->size == oldsize);
+# ifdef MALLOC_STATS
+ huge_allocated -= oldsize - psize;
+ /* No need to change huge_mapped, because we didn't
+ * (un)map anything. */
+# endif
+ node->size = psize;
+ malloc_mutex_unlock(&huge_mtx);
+ } else if (psize > oldsize) {
+ pages_commit((void *)((uintptr_t)ptr + oldsize),
+ psize - oldsize);
+ }
+#endif
+
+ /* Although we don't have to commit or decommit anything if
+ * DECOMMIT is not defined and the size class didn't change, we
+ * do need to update the recorded size if the size increased,
+ * so malloc_usable_size doesn't return a value smaller than
+ * what was requested via realloc(). */
+
+ if (psize > oldsize) {
+ /* Update recorded size. */
+ extent_node_t *node, key;
+ malloc_mutex_lock(&huge_mtx);
+ key.addr = __DECONST(void *, ptr);
+ node = extent_tree_ad_search(&huge, &key);
+ assert(node != NULL);
+ assert(node->size == oldsize);
+# ifdef MALLOC_STATS
+ huge_allocated += psize - oldsize;
+ /* No need to change huge_mapped, because we didn't
+ * (un)map anything. */
+# endif
+ node->size = psize;
+ malloc_mutex_unlock(&huge_mtx);
+ }
+
+#ifdef MALLOC_FILL
+ if (opt_zero && size > oldsize) {
+ memset((void *)((uintptr_t)ptr + oldsize), 0, size
+ - oldsize);
+ }
+#endif
+ return (ptr);
+ }
+
+ /*
+ * If we get here, then size and oldsize are different enough that we
+ * need to use a different size class. In that case, fall back to
+ * allocating new space and copying.
+ */
+ ret = huge_malloc(size, false);
+ if (ret == NULL)
+ return (NULL);
+
+ copysize = (size < oldsize) ? size : oldsize;
+#ifdef VM_COPY_MIN
+ if (copysize >= VM_COPY_MIN)
+ pages_copy(ret, ptr, copysize);
+ else
+#endif
+ memcpy(ret, ptr, copysize);
+ idalloc(ptr);
+ return (ret);
+}
+
+static void
+huge_dalloc(void *ptr)
+{
+ extent_node_t *node, key;
+
+ malloc_mutex_lock(&huge_mtx);
+
+ /* Extract from tree of huge allocations. */
+ key.addr = ptr;
+ node = extent_tree_ad_search(&huge, &key);
+ assert(node != NULL);
+ assert(node->addr == ptr);
+ extent_tree_ad_remove(&huge, node);
+
+#ifdef MALLOC_STATS
+ huge_ndalloc++;
+ huge_allocated -= node->size;
+ huge_mapped -= CHUNK_CEILING(node->size);
+#endif
+
+ malloc_mutex_unlock(&huge_mtx);
+
+ /* Unmap chunk. */
+ chunk_dealloc(node->addr, CHUNK_CEILING(node->size));
+
+ base_node_dealloc(node);
+}
+
+#ifndef MOZ_MEMORY_NARENAS_DEFAULT_ONE
+#ifdef MOZ_MEMORY_BSD
+static inline unsigned
+malloc_ncpus(void)
+{
+ unsigned ret;
+ int mib[2];
+ size_t len;
+
+ mib[0] = CTL_HW;
+ mib[1] = HW_NCPU;
+ len = sizeof(ret);
+ if (sysctl(mib, 2, &ret, &len, (void *) 0, 0) == -1) {
+ /* Error. */
+ return (1);
+ }
+
+ return (ret);
+}
+#elif (defined(MOZ_MEMORY_LINUX))
+#include <fcntl.h>
+
+static inline unsigned
+malloc_ncpus(void)
+{
+ unsigned ret;
+ int fd, nread, column;
+ char buf[1024];
+ static const char matchstr[] = "processor\t:";
+ int i;
+
+ /*
+ * sysconf(3) would be the preferred method for determining the number
+ * of CPUs, but it uses malloc internally, which causes untennable
+ * recursion during malloc initialization.
+ */
+ fd = open("/proc/cpuinfo", O_RDONLY);
+ if (fd == -1)
+ return (1); /* Error. */
+ /*
+ * Count the number of occurrences of matchstr at the beginnings of
+ * lines. This treats hyperthreaded CPUs as multiple processors.
+ */
+ column = 0;
+ ret = 0;
+ while (true) {
+ nread = read(fd, &buf, sizeof(buf));
+ if (nread <= 0)
+ break; /* EOF or error. */
+ for (i = 0;i < nread;i++) {
+ char c = buf[i];
+ if (c == '\n')
+ column = 0;
+ else if (column != -1) {
+ if (c == matchstr[column]) {
+ column++;
+ if (column == sizeof(matchstr) - 1) {
+ column = -1;
+ ret++;
+ }
+ } else
+ column = -1;
+ }
+ }
+ }
+
+ if (ret == 0)
+ ret = 1; /* Something went wrong in the parser. */
+ close(fd);
+
+ return (ret);
+}
+#elif (defined(MOZ_MEMORY_DARWIN))
+#include <mach/mach_init.h>
+#include <mach/mach_host.h>
+
+static inline unsigned
+malloc_ncpus(void)
+{
+ kern_return_t error;
+ natural_t n;
+ processor_info_array_t pinfo;
+ mach_msg_type_number_t pinfocnt;
+
+ error = host_processor_info(mach_host_self(), PROCESSOR_BASIC_INFO,
+ &n, &pinfo, &pinfocnt);
+ if (error != KERN_SUCCESS)
+ return (1); /* Error. */
+ else
+ return (n);
+}
+#elif (defined(MOZ_MEMORY_SOLARIS))
+
+static inline unsigned
+malloc_ncpus(void)
+{
+ return sysconf(_SC_NPROCESSORS_ONLN);
+}
+#else
+static inline unsigned
+malloc_ncpus(void)
+{
+
+ /*
+ * We lack a way to determine the number of CPUs on this platform, so
+ * assume 1 CPU.
+ */
+ return (1);
+}
+#endif
+#endif
+
+static void
+malloc_print_stats(void)
+{
+
+ if (opt_print_stats) {
+ char s[UMAX2S_BUFSIZE];
+ _malloc_message("___ Begin malloc statistics ___\n", "", "",
+ "");
+ _malloc_message("Assertions ",
+#ifdef NDEBUG
+ "disabled",
+#else
+ "enabled",
+#endif
+ "\n", "");
+ _malloc_message("Boolean MALLOC_OPTIONS: ",
+ opt_abort ? "A" : "a", "", "");
+#ifdef MALLOC_FILL
+ _malloc_message(opt_poison ? "C" : "c", "", "", "");
+ _malloc_message(opt_junk ? "J" : "j", "", "", "");
+#endif
+ _malloc_message("P", "", "", "");
+#ifdef MALLOC_UTRACE
+ _malloc_message(opt_utrace ? "U" : "u", "", "", "");
+#endif
+#ifdef MALLOC_SYSV
+ _malloc_message(opt_sysv ? "V" : "v", "", "", "");
+#endif
+#ifdef MALLOC_XMALLOC
+ _malloc_message(opt_xmalloc ? "X" : "x", "", "", "");
+#endif
+#ifdef MALLOC_FILL
+ _malloc_message(opt_zero ? "Z" : "z", "", "", "");
+#endif
+ _malloc_message("\n", "", "", "");
+
+#ifndef MOZ_MEMORY_NARENAS_DEFAULT_ONE
+ _malloc_message("CPUs: ", umax2s(ncpus, 10, s), "\n", "");
+#endif
+ _malloc_message("Max arenas: ", umax2s(narenas, 10, s), "\n",
+ "");
+#ifdef MALLOC_BALANCE
+ _malloc_message("Arena balance threshold: ",
+ umax2s(opt_balance_threshold, 10, s), "\n", "");
+#endif
+ _malloc_message("Pointer size: ", umax2s(sizeof(void *), 10, s),
+ "\n", "");
+ _malloc_message("Quantum size: ", umax2s(quantum, 10, s), "\n",
+ "");
+ _malloc_message("Max small size: ", umax2s(small_max, 10, s),
+ "\n", "");
+ _malloc_message("Max dirty pages per arena: ",
+ umax2s(opt_dirty_max, 10, s), "\n", "");
+
+ _malloc_message("Chunk size: ", umax2s(chunksize, 10, s), "",
+ "");
+ _malloc_message(" (2^", umax2s(opt_chunk_2pow, 10, s), ")\n",
+ "");
+
+#ifdef MALLOC_STATS
+ {
+ size_t allocated, mapped = 0;
+#ifdef MALLOC_BALANCE
+ uint64_t nbalance = 0;
+#endif
+ unsigned i;
+ arena_t *arena;
+
+ /* Calculate and print allocated/mapped stats. */
+
+ /* arenas. */
+ for (i = 0, allocated = 0; i < narenas; i++) {
+ if (arenas[i] != NULL) {
+ malloc_spin_lock(&arenas[i]->lock);
+ allocated +=
+ arenas[i]->stats.allocated_small;
+ allocated +=
+ arenas[i]->stats.allocated_large;
+ mapped += arenas[i]->stats.mapped;
+#ifdef MALLOC_BALANCE
+ nbalance += arenas[i]->stats.nbalance;
+#endif
+ malloc_spin_unlock(&arenas[i]->lock);
+ }
+ }
+
+ /* huge/base. */
+ malloc_mutex_lock(&huge_mtx);
+ allocated += huge_allocated;
+ mapped += huge_mapped;
+ malloc_mutex_unlock(&huge_mtx);
+
+ malloc_mutex_lock(&base_mtx);
+ mapped += base_mapped;
+ malloc_mutex_unlock(&base_mtx);
+
+#ifdef MOZ_MEMORY_WINDOWS
+ malloc_printf("Allocated: %lu, mapped: %lu\n",
+ allocated, mapped);
+#else
+ malloc_printf("Allocated: %zu, mapped: %zu\n",
+ allocated, mapped);
+#endif
+
+#ifdef MALLOC_BALANCE
+ malloc_printf("Arena balance reassignments: %llu\n",
+ nbalance);
+#endif
+
+ /* Print chunk stats. */
+ malloc_printf(
+ "huge: nmalloc ndalloc allocated\n");
+#ifdef MOZ_MEMORY_WINDOWS
+ malloc_printf(" %12llu %12llu %12lu\n",
+ huge_nmalloc, huge_ndalloc, huge_allocated);
+#else
+ malloc_printf(" %12llu %12llu %12zu\n",
+ huge_nmalloc, huge_ndalloc, huge_allocated);
+#endif
+ /* Print stats for each arena. */
+ for (i = 0; i < narenas; i++) {
+ arena = arenas[i];
+ if (arena != NULL) {
+ malloc_printf(
+ "\narenas[%u]:\n", i);
+ malloc_spin_lock(&arena->lock);
+ stats_print(arena);
+ malloc_spin_unlock(&arena->lock);
+ }
+ }
+ }
+#endif /* #ifdef MALLOC_STATS */
+ _malloc_message("--- End malloc statistics ---\n", "", "", "");
+ }
+}
+
+/*
+ * FreeBSD's pthreads implementation calls malloc(3), so the malloc
+ * implementation has to take pains to avoid infinite recursion during
+ * initialization.
+ */
+#if (defined(MOZ_MEMORY_WINDOWS) || defined(MOZ_MEMORY_DARWIN))
+#define malloc_init() false
+#else
+static inline bool
+malloc_init(void)
+{
+
+ if (malloc_initialized == false)
+ return (malloc_init_hard());
+
+ return (false);
+}
+#endif
+
+#if !defined(MOZ_MEMORY_WINDOWS)
+static
+#endif
+bool
+malloc_init_hard(void)
+{
+ unsigned i;
+ char buf[PATH_MAX + 1];
+ const char *opts;
+ long result;
+#ifndef MOZ_MEMORY_WINDOWS
+ int linklen;
+#endif
+#ifdef MOZ_MEMORY_DARWIN
+ malloc_zone_t* default_zone;
+#endif
+
+#ifndef MOZ_MEMORY_WINDOWS
+ malloc_mutex_lock(&init_lock);
+#endif
+
+ if (malloc_initialized) {
+ /*
+ * Another thread initialized the allocator before this one
+ * acquired init_lock.
+ */
+#ifndef MOZ_MEMORY_WINDOWS
+ malloc_mutex_unlock(&init_lock);
+#endif
+ return (false);
+ }
+
+#ifdef MOZ_MEMORY_WINDOWS
+ /* get a thread local storage index */
+ tlsIndex = TlsAlloc();
+#endif
+
+ /* Get page size and number of CPUs */
+#ifdef MOZ_MEMORY_WINDOWS
+ {
+ SYSTEM_INFO info;
+
+ GetSystemInfo(&info);
+ result = info.dwPageSize;
+
+#ifndef MOZ_MEMORY_NARENAS_DEFAULT_ONE
+ ncpus = info.dwNumberOfProcessors;
+#endif
+ }
+#else
+#ifndef MOZ_MEMORY_NARENAS_DEFAULT_ONE
+ ncpus = malloc_ncpus();
+#endif
+
+ result = sysconf(_SC_PAGESIZE);
+ assert(result != -1);
+#endif
+
+ /* We assume that the page size is a power of 2. */
+ assert(((result - 1) & result) == 0);
+#ifdef MALLOC_STATIC_SIZES
+ if (pagesize % (size_t) result) {
+ _malloc_message(_getprogname(),
+ "Compile-time page size does not divide the runtime one.\n",
+ "", "");
+ abort();
+ }
+#else
+ pagesize = (size_t) result;
+ pagesize_mask = (size_t) result - 1;
+ pagesize_2pow = ffs((int)result) - 1;
+#endif
+
+ for (i = 0; i < 3; i++) {
+ unsigned j;
+
+ /* Get runtime configuration. */
+ switch (i) {
+ case 0:
+#ifndef MOZ_MEMORY_WINDOWS
+ if ((linklen = readlink("/etc/malloc.conf", buf,
+ sizeof(buf) - 1)) != -1) {
+ /*
+ * Use the contents of the "/etc/malloc.conf"
+ * symbolic link's name.
+ */
+ buf[linklen] = '\0';
+ opts = buf;
+ } else
+#endif
+ {
+ /* No configuration specified. */
+ buf[0] = '\0';
+ opts = buf;
+ }
+ break;
+ case 1:
+ if ((opts = getenv("MALLOC_OPTIONS")) != NULL) {
+ /*
+ * Do nothing; opts is already initialized to
+ * the value of the MALLOC_OPTIONS environment
+ * variable.
+ */
+ } else {
+ /* No configuration specified. */
+ buf[0] = '\0';
+ opts = buf;
+ }
+ break;
+ case 2:
+ if (_malloc_options != NULL) {
+ /*
+ * Use options that were compiled into the
+ * program.
+ */
+ opts = _malloc_options;
+ } else {
+ /* No configuration specified. */
+ buf[0] = '\0';
+ opts = buf;
+ }
+ break;
+ default:
+ /* NOTREACHED */
+ buf[0] = '\0';
+ opts = buf;
+ assert(false);
+ }
+
+ for (j = 0; opts[j] != '\0'; j++) {
+ unsigned k, nreps;
+ bool nseen;
+
+ /* Parse repetition count, if any. */
+ for (nreps = 0, nseen = false;; j++, nseen = true) {
+ switch (opts[j]) {
+ case '0': case '1': case '2': case '3':
+ case '4': case '5': case '6': case '7':
+ case '8': case '9':
+ nreps *= 10;
+ nreps += opts[j] - '0';
+ break;
+ default:
+ goto MALLOC_OUT;
+ }
+ }
+MALLOC_OUT:
+ if (nseen == false)
+ nreps = 1;
+
+ for (k = 0; k < nreps; k++) {
+ switch (opts[j]) {
+ case 'a':
+ opt_abort = false;
+ break;
+ case 'A':
+ opt_abort = true;
+ break;
+ case 'b':
+#ifdef MALLOC_BALANCE
+ opt_balance_threshold >>= 1;
+#endif
+ break;
+ case 'B':
+#ifdef MALLOC_BALANCE
+ if (opt_balance_threshold == 0)
+ opt_balance_threshold = 1;
+ else if ((opt_balance_threshold << 1)
+ > opt_balance_threshold)
+ opt_balance_threshold <<= 1;
+#endif
+ break;
+#ifdef MALLOC_FILL
+#ifndef MALLOC_PRODUCTION
+ case 'c':
+ opt_poison = false;
+ break;
+ case 'C':
+ opt_poison = true;
+ break;
+#endif
+#endif
+ case 'f':
+ opt_dirty_max >>= 1;
+ break;
+ case 'F':
+ if (opt_dirty_max == 0)
+ opt_dirty_max = 1;
+ else if ((opt_dirty_max << 1) != 0)
+ opt_dirty_max <<= 1;
+ break;
+#ifdef MALLOC_FILL
+#ifndef MALLOC_PRODUCTION
+ case 'j':
+ opt_junk = false;
+ break;
+ case 'J':
+ opt_junk = true;
+ break;
+#endif
+#endif
+#ifndef MALLOC_STATIC_SIZES
+ case 'k':
+ /*
+ * Chunks always require at least one
+ * header page, so chunks can never be
+ * smaller than two pages.
+ */
+ if (opt_chunk_2pow > pagesize_2pow + 1)
+ opt_chunk_2pow--;
+ break;
+ case 'K':
+ if (opt_chunk_2pow + 1 <
+ (sizeof(size_t) << 3))
+ opt_chunk_2pow++;
+ break;
+#endif
+ case 'n':
+ opt_narenas_lshift--;
+ break;
+ case 'N':
+ opt_narenas_lshift++;
+ break;
+ case 'p':
+ opt_print_stats = false;
+ break;
+ case 'P':
+ opt_print_stats = true;
+ break;
+#ifndef MALLOC_STATIC_SIZES
+ case 'q':
+ if (opt_quantum_2pow > QUANTUM_2POW_MIN)
+ opt_quantum_2pow--;
+ break;
+ case 'Q':
+ if (opt_quantum_2pow < pagesize_2pow -
+ 1)
+ opt_quantum_2pow++;
+ break;
+ case 's':
+ if (opt_small_max_2pow >
+ QUANTUM_2POW_MIN)
+ opt_small_max_2pow--;
+ break;
+ case 'S':
+ if (opt_small_max_2pow < pagesize_2pow
+ - 1)
+ opt_small_max_2pow++;
+ break;
+#endif
+#ifdef MALLOC_UTRACE
+ case 'u':
+ opt_utrace = false;
+ break;
+ case 'U':
+ opt_utrace = true;
+ break;
+#endif
+#ifdef MALLOC_SYSV
+ case 'v':
+ opt_sysv = false;
+ break;
+ case 'V':
+ opt_sysv = true;
+ break;
+#endif
+#ifdef MALLOC_XMALLOC
+ case 'x':
+ opt_xmalloc = false;
+ break;
+ case 'X':
+ opt_xmalloc = true;
+ break;
+#endif
+#ifdef MALLOC_FILL
+#ifndef MALLOC_PRODUCTION
+ case 'z':
+ opt_zero = false;
+ break;
+ case 'Z':
+ opt_zero = true;
+ break;
+#endif
+#endif
+ default: {
+ char cbuf[2];
+
+ cbuf[0] = opts[j];
+ cbuf[1] = '\0';
+ _malloc_message(_getprogname(),
+ ": (malloc) Unsupported character "
+ "in malloc options: '", cbuf,
+ "'\n");
+ }
+ }
+ }
+ }
+ }
+
+ /* Take care to call atexit() only once. */
+ if (opt_print_stats) {
+#ifndef MOZ_MEMORY_WINDOWS
+ /* Print statistics at exit. */
+ atexit(malloc_print_stats);
+#endif
+ }
+
+#ifndef MALLOC_STATIC_SIZES
+ /* Set variables according to the value of opt_small_max_2pow. */
+ if (opt_small_max_2pow < opt_quantum_2pow)
+ opt_small_max_2pow = opt_quantum_2pow;
+ small_max = (1U << opt_small_max_2pow);
+
+ /* Set bin-related variables. */
+ bin_maxclass = (pagesize >> 1);
+ assert(opt_quantum_2pow >= TINY_MIN_2POW);
+ ntbins = opt_quantum_2pow - TINY_MIN_2POW;
+ assert(ntbins <= opt_quantum_2pow);
+ nqbins = (small_max >> opt_quantum_2pow);
+ nsbins = pagesize_2pow - opt_small_max_2pow - 1;
+
+ /* Set variables according to the value of opt_quantum_2pow. */
+ quantum = (1U << opt_quantum_2pow);
+ quantum_mask = quantum - 1;
+ if (ntbins > 0)
+ small_min = (quantum >> 1) + 1;
+ else
+ small_min = 1;
+ assert(small_min <= quantum);
+
+ /* Set variables according to the value of opt_chunk_2pow. */
+ chunksize = (1LU << opt_chunk_2pow);
+ chunksize_mask = chunksize - 1;
+ chunk_npages = (chunksize >> pagesize_2pow);
+
+ arena_chunk_header_npages = calculate_arena_header_pages();
+ arena_maxclass = calculate_arena_maxclass();
+
+ recycle_limit = CHUNK_RECYCLE_LIMIT * chunksize;
+#endif
+
+ recycled_size = 0;
+
+#ifdef JEMALLOC_USES_MAP_ALIGN
+ /*
+ * When using MAP_ALIGN, the alignment parameter must be a power of two
+ * multiple of the system pagesize, or mmap will fail.
+ */
+ assert((chunksize % pagesize) == 0);
+ assert((1 << (ffs(chunksize / pagesize) - 1)) == (chunksize/pagesize));
+#endif
+
+ UTRACE(0, 0, 0);
+
+ /* Various sanity checks that regard configuration. */
+ assert(quantum >= sizeof(void *));
+ assert(quantum <= pagesize);
+ assert(chunksize >= pagesize);
+ assert(quantum * 4 <= chunksize);
+
+ /* Initialize chunks data. */
+ malloc_mutex_init(&chunks_mtx);
+ extent_tree_szad_new(&chunks_szad_mmap);
+ extent_tree_ad_new(&chunks_ad_mmap);
+
+ /* Initialize huge allocation data. */
+ malloc_mutex_init(&huge_mtx);
+ extent_tree_ad_new(&huge);
+#ifdef MALLOC_STATS
+ huge_nmalloc = 0;
+ huge_ndalloc = 0;
+ huge_allocated = 0;
+ huge_mapped = 0;
+#endif
+
+ /* Initialize base allocation data structures. */
+#ifdef MALLOC_STATS
+ base_mapped = 0;
+ base_committed = 0;
+#endif
+ base_nodes = NULL;
+ malloc_mutex_init(&base_mtx);
+
+#ifdef MOZ_MEMORY_NARENAS_DEFAULT_ONE
+ narenas = 1;
+#else
+ if (ncpus > 1) {
+ /*
+ * For SMP systems, create four times as many arenas as there
+ * are CPUs by default.
+ */
+ opt_narenas_lshift += 2;
+ }
+
+ /* Determine how many arenas to use. */
+ narenas = ncpus;
+#endif
+ if (opt_narenas_lshift > 0) {
+ if ((narenas << opt_narenas_lshift) > narenas)
+ narenas <<= opt_narenas_lshift;
+ /*
+ * Make sure not to exceed the limits of what base_alloc() can
+ * handle.
+ */
+ if (narenas * sizeof(arena_t *) > chunksize)
+ narenas = chunksize / sizeof(arena_t *);
+ } else if (opt_narenas_lshift < 0) {
+ if ((narenas >> -opt_narenas_lshift) < narenas)
+ narenas >>= -opt_narenas_lshift;
+ /* Make sure there is at least one arena. */
+ if (narenas == 0)
+ narenas = 1;
+ }
+#ifdef MALLOC_BALANCE
+ assert(narenas != 0);
+ for (narenas_2pow = 0;
+ (narenas >> (narenas_2pow + 1)) != 0;
+ narenas_2pow++);
+#endif
+
+#ifdef NO_TLS
+ if (narenas > 1) {
+ static const unsigned primes[] = {1, 3, 5, 7, 11, 13, 17, 19,
+ 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,
+ 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149,
+ 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211,
+ 223, 227, 229, 233, 239, 241, 251, 257, 263};
+ unsigned nprimes, parenas;
+
+ /*
+ * Pick a prime number of hash arenas that is more than narenas
+ * so that direct hashing of pthread_self() pointers tends to
+ * spread allocations evenly among the arenas.
+ */
+ assert((narenas & 1) == 0); /* narenas must be even. */
+ nprimes = (sizeof(primes) >> SIZEOF_INT_2POW);
+ parenas = primes[nprimes - 1]; /* In case not enough primes. */
+ for (i = 1; i < nprimes; i++) {
+ if (primes[i] > narenas) {
+ parenas = primes[i];
+ break;
+ }
+ }
+ narenas = parenas;
+ }
+#endif
+
+#ifndef NO_TLS
+# ifndef MALLOC_BALANCE
+ next_arena = 0;
+# endif
+#endif
+
+ /* Allocate and initialize arenas. */
+ arenas = (arena_t **)base_alloc(sizeof(arena_t *) * narenas);
+ if (arenas == NULL) {
+#ifndef MOZ_MEMORY_WINDOWS
+ malloc_mutex_unlock(&init_lock);
+#endif
+ return (true);
+ }
+ /*
+ * Zero the array. In practice, this should always be pre-zeroed,
+ * since it was just mmap()ed, but let's be sure.
+ */
+ memset(arenas, 0, sizeof(arena_t *) * narenas);
+
+ /*
+ * Initialize one arena here. The rest are lazily created in
+ * choose_arena_hard().
+ */
+ arenas_extend(0);
+ if (arenas[0] == NULL) {
+#ifndef MOZ_MEMORY_WINDOWS
+ malloc_mutex_unlock(&init_lock);
+#endif
+ return (true);
+ }
+#ifndef NO_TLS
+ /*
+ * Assign the initial arena to the initial thread, in order to avoid
+ * spurious creation of an extra arena if the application switches to
+ * threaded mode.
+ */
+#ifdef MOZ_MEMORY_WINDOWS
+ TlsSetValue(tlsIndex, arenas[0]);
+#else
+ arenas_map = arenas[0];
+#endif
+#endif
+
+ /*
+ * Seed here for the initial thread, since choose_arena_hard() is only
+ * called for other threads. The seed value doesn't really matter.
+ */
+#ifdef MALLOC_BALANCE
+ SPRN(balance, 42);
+#endif
+
+ malloc_spin_init(&arenas_lock);
+
+#ifdef MALLOC_VALIDATE
+ chunk_rtree = malloc_rtree_new((SIZEOF_PTR << 3) - opt_chunk_2pow);
+ if (chunk_rtree == NULL)
+ return (true);
+#endif
+
+ malloc_initialized = true;
+
+#if !defined(MOZ_MEMORY_WINDOWS) && !defined(MOZ_MEMORY_DARWIN)
+ /* Prevent potential deadlock on malloc locks after fork. */
+ pthread_atfork(_malloc_prefork, _malloc_postfork, _malloc_postfork);
+#endif
+
+#if defined(NEEDS_PTHREAD_MMAP_UNALIGNED_TSD)
+ if (pthread_key_create(&mmap_unaligned_tsd, NULL) != 0) {
+ malloc_printf("<jemalloc>: Error in pthread_key_create()\n");
+ }
+#endif
+
+#if defined(MOZ_MEMORY_DARWIN) && !defined(MOZ_REPLACE_MALLOC)
+ /*
+ * Overwrite the default memory allocator to use jemalloc everywhere.
+ */
+ default_zone = malloc_default_zone();
+
+ /*
+ * We only use jemalloc with MacOS 10.6 and 10.7. jemalloc is disabled
+ * on 32-bit builds (10.5 and 32-bit 10.6) due to bug 702250, an
+ * apparent MacOS bug. In fact, this code isn't even compiled on
+ * 32-bit builds.
+ *
+ * We'll have to update our code to work with newer versions, because
+ * the malloc zone layout is likely to change.
+ */
+
+ osx_use_jemalloc = (default_zone->version == SNOW_LEOPARD_MALLOC_ZONE_T_VERSION ||
+ default_zone->version == LION_MALLOC_ZONE_T_VERSION);
+
+ /* Allow us dynamically turn off jemalloc for testing. */
+ if (getenv("NO_MAC_JEMALLOC")) {
+ osx_use_jemalloc = false;
+#ifdef __i386__
+ malloc_printf("Warning: NO_MAC_JEMALLOC has no effect on "
+ "i386 machines (such as this one).\n");
+#endif
+ }
+
+ if (osx_use_jemalloc) {
+ /*
+ * Convert the default szone to an "overlay zone" that is capable
+ * of deallocating szone-allocated objects, but allocating new
+ * objects from jemalloc.
+ */
+ size_t size = zone_version_size(default_zone->version);
+ szone2ozone(default_zone, size);
+ }
+ else {
+ szone = default_zone;
+ }
+#endif
+
+#ifndef MOZ_MEMORY_WINDOWS
+ malloc_mutex_unlock(&init_lock);
+#endif
+ return (false);
+}
+
+/* XXX Why not just expose malloc_print_stats()? */
+#ifdef MOZ_MEMORY_WINDOWS
+void
+malloc_shutdown()
+{
+
+ malloc_print_stats();
+}
+#endif
+
+/*
+ * End general internal functions.
+ */
+/******************************************************************************/
+/*
+ * Begin malloc(3)-compatible functions.
+ */
+
+/*
+ * Even though we compile with MOZ_MEMORY, we may have to dynamically decide
+ * not to use jemalloc, as discussed above. However, we call jemalloc
+ * functions directly from mozalloc. Since it's pretty dangerous to mix the
+ * allocators, we need to call the OSX allocators from the functions below,
+ * when osx_use_jemalloc is not (dynamically) set.
+ *
+ * Note that we assume jemalloc is enabled on i386. This is safe because the
+ * only i386 versions of MacOS are 10.5 and 10.6, which we support. We have to
+ * do this because madvise isn't in the malloc zone struct for 10.5.
+ *
+ * This means that NO_MAC_JEMALLOC doesn't work on i386.
+ */
+#if defined(MOZ_MEMORY_DARWIN) && !defined(__i386__) && !defined(MOZ_REPLACE_MALLOC)
+#define DARWIN_ONLY(A) if (!osx_use_jemalloc) { A; }
+#else
+#define DARWIN_ONLY(A)
+#endif
+
+MOZ_MEMORY_API void *
+malloc_impl(size_t size)
+{
+ void *ret;
+
+ DARWIN_ONLY(return (szone->malloc)(szone, size));
+
+ if (malloc_init()) {
+ ret = NULL;
+ goto RETURN;
+ }
+
+ if (size == 0) {
+#ifdef MALLOC_SYSV
+ if (opt_sysv == false)
+#endif
+ size = 1;
+#ifdef MALLOC_SYSV
+ else {
+ ret = NULL;
+ goto RETURN;
+ }
+#endif
+ }
+
+ ret = imalloc(size);
+
+RETURN:
+ if (ret == NULL) {
+#ifdef MALLOC_XMALLOC
+ if (opt_xmalloc) {
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in malloc(): out of memory\n", "",
+ "");
+ abort();
+ }
+#endif
+ errno = ENOMEM;
+ }
+
+ UTRACE(0, size, ret);
+ return (ret);
+}
+
+/*
+ * In ELF systems the default visibility allows symbols to be preempted at
+ * runtime. This in turn prevents the uses of memalign in this file from being
+ * optimized. What we do in here is define two aliasing symbols (they point to
+ * the same code): memalign and memalign_internal. The internal version has
+ * hidden visibility and is used in every reference from this file.
+ *
+ * For more information on this technique, see section 2.2.7 (Avoid Using
+ * Exported Symbols) in http://www.akkadia.org/drepper/dsohowto.pdf.
+ */
+
+#ifndef MOZ_REPLACE_MALLOC
+#if defined(__GNUC__) && !defined(MOZ_MEMORY_DARWIN)
+#define MOZ_MEMORY_ELF
+#endif
+
+#ifdef MOZ_MEMORY_SOLARIS
+# ifdef __SUNPRO_C
+void *
+memalign_impl(size_t alignment, size_t size);
+#pragma no_inline(memalign_impl)
+# elif (defined(__GNUC__))
+__attribute__((noinline))
+# endif
+#else
+#if (defined(MOZ_MEMORY_ELF))
+__attribute__((visibility ("hidden")))
+#endif
+#endif
+#endif /* MOZ_REPLACE_MALLOC */
+
+#ifdef MOZ_MEMORY_ELF
+#define MEMALIGN memalign_internal
+#else
+#define MEMALIGN memalign_impl
+#endif
+
+#ifndef MOZ_MEMORY_ELF
+MOZ_MEMORY_API
+#endif
+void *
+MEMALIGN(size_t alignment, size_t size)
+{
+ void *ret;
+
+ DARWIN_ONLY(return (szone->memalign)(szone, alignment, size));
+
+ assert(((alignment - 1) & alignment) == 0);
+
+ if (malloc_init()) {
+ ret = NULL;
+ goto RETURN;
+ }
+
+ if (size == 0) {
+#ifdef MALLOC_SYSV
+ if (opt_sysv == false)
+#endif
+ size = 1;
+#ifdef MALLOC_SYSV
+ else {
+ ret = NULL;
+ goto RETURN;
+ }
+#endif
+ }
+
+ alignment = alignment < sizeof(void*) ? sizeof(void*) : alignment;
+ ret = ipalloc(alignment, size);
+
+RETURN:
+#ifdef MALLOC_XMALLOC
+ if (opt_xmalloc && ret == NULL) {
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in memalign(): out of memory\n", "", "");
+ abort();
+ }
+#endif
+ UTRACE(0, size, ret);
+ return (ret);
+}
+
+#ifdef MOZ_MEMORY_ELF
+extern void *
+memalign_impl(size_t alignment, size_t size) __attribute__((alias ("memalign_internal"), visibility ("default")));
+#endif
+
+MOZ_MEMORY_API int
+posix_memalign_impl(void **memptr, size_t alignment, size_t size)
+{
+ void *result;
+
+ /* Make sure that alignment is a large enough power of 2. */
+ if (((alignment - 1) & alignment) != 0 || alignment < sizeof(void *)) {
+#ifdef MALLOC_XMALLOC
+ if (opt_xmalloc) {
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in posix_memalign(): "
+ "invalid alignment\n", "", "");
+ abort();
+ }
+#endif
+ return (EINVAL);
+ }
+
+ /* The 0-->1 size promotion is done in the memalign() call below */
+
+ result = MEMALIGN(alignment, size);
+
+ if (result == NULL)
+ return (ENOMEM);
+
+ *memptr = result;
+ return (0);
+}
+
+MOZ_MEMORY_API void *
+aligned_alloc_impl(size_t alignment, size_t size)
+{
+ if (size % alignment) {
+#ifdef MALLOC_XMALLOC
+ if (opt_xmalloc) {
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in aligned_alloc(): "
+ "size is not multiple of alignment\n", "", "");
+ abort();
+ }
+#endif
+ return (NULL);
+ }
+ return MEMALIGN(alignment, size);
+}
+
+MOZ_MEMORY_API void *
+valloc_impl(size_t size)
+{
+ return (MEMALIGN(pagesize, size));
+}
+
+MOZ_MEMORY_API void *
+calloc_impl(size_t num, size_t size)
+{
+ void *ret;
+ size_t num_size;
+
+ DARWIN_ONLY(return (szone->calloc)(szone, num, size));
+
+ if (malloc_init()) {
+ num_size = 0;
+ ret = NULL;
+ goto RETURN;
+ }
+
+ num_size = num * size;
+ if (num_size == 0) {
+#ifdef MALLOC_SYSV
+ if ((opt_sysv == false) && ((num == 0) || (size == 0)))
+#endif
+ num_size = 1;
+#ifdef MALLOC_SYSV
+ else {
+ ret = NULL;
+ goto RETURN;
+ }
+#endif
+ /*
+ * Try to avoid division here. We know that it isn't possible to
+ * overflow during multiplication if neither operand uses any of the
+ * most significant half of the bits in a size_t.
+ */
+ } else if (((num | size) & (SIZE_T_MAX << (sizeof(size_t) << 2)))
+ && (num_size / size != num)) {
+ /* size_t overflow. */
+ ret = NULL;
+ goto RETURN;
+ }
+
+ ret = icalloc(num_size);
+
+RETURN:
+ if (ret == NULL) {
+#ifdef MALLOC_XMALLOC
+ if (opt_xmalloc) {
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in calloc(): out of memory\n", "",
+ "");
+ abort();
+ }
+#endif
+ errno = ENOMEM;
+ }
+
+ UTRACE(0, num_size, ret);
+ return (ret);
+}
+
+MOZ_MEMORY_API void *
+realloc_impl(void *ptr, size_t size)
+{
+ void *ret;
+
+ DARWIN_ONLY(return (szone->realloc)(szone, ptr, size));
+
+ if (size == 0) {
+#ifdef MALLOC_SYSV
+ if (opt_sysv == false)
+#endif
+ size = 1;
+#ifdef MALLOC_SYSV
+ else {
+ if (ptr != NULL)
+ idalloc(ptr);
+ ret = NULL;
+ goto RETURN;
+ }
+#endif
+ }
+
+ if (ptr != NULL) {
+ assert(malloc_initialized);
+
+ ret = iralloc(ptr, size);
+
+ if (ret == NULL) {
+#ifdef MALLOC_XMALLOC
+ if (opt_xmalloc) {
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in realloc(): out of "
+ "memory\n", "", "");
+ abort();
+ }
+#endif
+ errno = ENOMEM;
+ }
+ } else {
+ if (malloc_init())
+ ret = NULL;
+ else
+ ret = imalloc(size);
+
+ if (ret == NULL) {
+#ifdef MALLOC_XMALLOC
+ if (opt_xmalloc) {
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in realloc(): out of "
+ "memory\n", "", "");
+ abort();
+ }
+#endif
+ errno = ENOMEM;
+ }
+ }
+
+#ifdef MALLOC_SYSV
+RETURN:
+#endif
+ UTRACE(ptr, size, ret);
+ return (ret);
+}
+
+MOZ_MEMORY_API void
+free_impl(void *ptr)
+{
+ size_t offset;
+
+ DARWIN_ONLY((szone->free)(szone, ptr); return);
+
+ UTRACE(ptr, 0, 0);
+
+ /*
+ * A version of idalloc that checks for NULL pointer but only for
+ * huge allocations assuming that CHUNK_ADDR2OFFSET(NULL) == 0.
+ */
+ assert(CHUNK_ADDR2OFFSET(NULL) == 0);
+ offset = CHUNK_ADDR2OFFSET(ptr);
+ if (offset != 0)
+ arena_dalloc(ptr, offset);
+ else if (ptr != NULL)
+ huge_dalloc(ptr);
+}
+
+/*
+ * End malloc(3)-compatible functions.
+ */
+/******************************************************************************/
+/*
+ * Begin non-standard functions.
+ */
+
+/* This was added by Mozilla for use by SQLite. */
+#if defined(MOZ_MEMORY_DARWIN) && !defined(MOZ_REPLACE_MALLOC)
+static
+#else
+MOZ_MEMORY_API
+#endif
+size_t
+malloc_good_size_impl(size_t size)
+{
+ /*
+ * This duplicates the logic in imalloc(), arena_malloc() and
+ * arena_malloc_small().
+ */
+ if (size < small_min) {
+ /* Small (tiny). */
+ size = pow2_ceil(size);
+ /*
+ * We omit the #ifdefs from arena_malloc_small() --
+ * it can be inaccurate with its size in some cases, but this
+ * function must be accurate.
+ */
+ if (size < (1U << TINY_MIN_2POW))
+ size = (1U << TINY_MIN_2POW);
+ } else if (size <= small_max) {
+ /* Small (quantum-spaced). */
+ size = QUANTUM_CEILING(size);
+ } else if (size <= bin_maxclass) {
+ /* Small (sub-page). */
+ size = pow2_ceil(size);
+ } else if (size <= arena_maxclass) {
+ /* Large. */
+ size = PAGE_CEILING(size);
+ } else {
+ /*
+ * Huge. We use PAGE_CEILING to get psize, instead of using
+ * CHUNK_CEILING to get csize. This ensures that this
+ * malloc_usable_size(malloc(n)) always matches
+ * malloc_good_size(n).
+ */
+ size = PAGE_CEILING(size);
+ }
+ return size;
+}
+
+
+MOZ_MEMORY_API size_t
+malloc_usable_size_impl(MALLOC_USABLE_SIZE_CONST_PTR void *ptr)
+{
+ DARWIN_ONLY(return (szone->size)(szone, ptr));
+
+#ifdef MALLOC_VALIDATE
+ return (isalloc_validate(ptr));
+#else
+ assert(ptr != NULL);
+
+ return (isalloc(ptr));
+#endif
+}
+
+MOZ_JEMALLOC_API void
+jemalloc_stats_impl(jemalloc_stats_t *stats)
+{
+ size_t i, non_arena_mapped, chunk_header_size;
+
+ assert(stats != NULL);
+
+ /*
+ * Gather runtime settings.
+ */
+ stats->opt_abort = opt_abort;
+ stats->opt_junk =
+#ifdef MALLOC_FILL
+ opt_junk ? true :
+#endif
+ false;
+ stats->opt_poison =
+#ifdef MALLOC_FILL
+ opt_poison ? true :
+#endif
+ false;
+ stats->opt_utrace =
+#ifdef MALLOC_UTRACE
+ opt_utrace ? true :
+#endif
+ false;
+ stats->opt_sysv =
+#ifdef MALLOC_SYSV
+ opt_sysv ? true :
+#endif
+ false;
+ stats->opt_xmalloc =
+#ifdef MALLOC_XMALLOC
+ opt_xmalloc ? true :
+#endif
+ false;
+ stats->opt_zero =
+#ifdef MALLOC_FILL
+ opt_zero ? true :
+#endif
+ false;
+ stats->narenas = narenas;
+ stats->balance_threshold =
+#ifdef MALLOC_BALANCE
+ opt_balance_threshold
+#else
+ SIZE_T_MAX
+#endif
+ ;
+ stats->quantum = quantum;
+ stats->small_max = small_max;
+ stats->large_max = arena_maxclass;
+ stats->chunksize = chunksize;
+ stats->dirty_max = opt_dirty_max;
+
+ /*
+ * Gather current memory usage statistics.
+ */
+ stats->mapped = 0;
+ stats->allocated = 0;
+ stats->waste = 0;
+ stats->page_cache = 0;
+ stats->bookkeeping = 0;
+ stats->bin_unused = 0;
+
+ non_arena_mapped = 0;
+
+ /* Get huge mapped/allocated. */
+ malloc_mutex_lock(&huge_mtx);
+ non_arena_mapped += huge_mapped;
+ stats->allocated += huge_allocated;
+ assert(huge_mapped >= huge_allocated);
+ malloc_mutex_unlock(&huge_mtx);
+
+ /* Get base mapped/allocated. */
+ malloc_mutex_lock(&base_mtx);
+ non_arena_mapped += base_mapped;
+ stats->bookkeeping += base_committed;
+ assert(base_mapped >= base_committed);
+ malloc_mutex_unlock(&base_mtx);
+
+ /* Iterate over arenas. */
+ for (i = 0; i < narenas; i++) {
+ arena_t *arena = arenas[i];
+ size_t arena_mapped, arena_allocated, arena_committed, arena_dirty, j,
+ arena_unused, arena_headers;
+ arena_run_t* run;
+ arena_chunk_map_t* mapelm;
+
+ if (arena == NULL) {
+ continue;
+ }
+
+ arena_headers = 0;
+ arena_unused = 0;
+
+ malloc_spin_lock(&arena->lock);
+
+ arena_mapped = arena->stats.mapped;
+
+ /* "committed" counts dirty and allocated memory. */
+ arena_committed = arena->stats.committed << pagesize_2pow;
+
+ arena_allocated = arena->stats.allocated_small +
+ arena->stats.allocated_large;
+
+ arena_dirty = arena->ndirty << pagesize_2pow;
+
+ for (j = 0; j < ntbins + nqbins + nsbins; j++) {
+ arena_bin_t* bin = &arena->bins[j];
+ size_t bin_unused = 0;
+
+ rb_foreach_begin(arena_chunk_map_t, link, &bin->runs, mapelm) {
+ run = (arena_run_t *)(mapelm->bits & ~pagesize_mask);
+ bin_unused += run->nfree * bin->reg_size;
+ } rb_foreach_end(arena_chunk_map_t, link, &bin->runs, mapelm)
+
+ if (bin->runcur) {
+ bin_unused += bin->runcur->nfree * bin->reg_size;
+ }
+
+ arena_unused += bin_unused;
+ arena_headers += bin->stats.curruns * bin->reg0_offset;
+ }
+
+ malloc_spin_unlock(&arena->lock);
+
+ assert(arena_mapped >= arena_committed);
+ assert(arena_committed >= arena_allocated + arena_dirty);
+
+ /* "waste" is committed memory that is neither dirty nor
+ * allocated. */
+ stats->mapped += arena_mapped;
+ stats->allocated += arena_allocated;
+ stats->page_cache += arena_dirty;
+ stats->waste += arena_committed -
+ arena_allocated - arena_dirty - arena_unused - arena_headers;
+ stats->bin_unused += arena_unused;
+ stats->bookkeeping += arena_headers;
+ }
+
+ /* Account for arena chunk headers in bookkeeping rather than waste. */
+ chunk_header_size =
+ ((stats->mapped / stats->chunksize) * arena_chunk_header_npages) <<
+ pagesize_2pow;
+
+ stats->mapped += non_arena_mapped;
+ stats->bookkeeping += chunk_header_size;
+ stats->waste -= chunk_header_size;
+
+ assert(stats->mapped >= stats->allocated + stats->waste +
+ stats->page_cache + stats->bookkeeping);
+}
+
+#ifdef MALLOC_DOUBLE_PURGE
+
+/* Explicitly remove all of this chunk's MADV_FREE'd pages from memory. */
+static void
+hard_purge_chunk(arena_chunk_t *chunk)
+{
+ /* See similar logic in arena_purge(). */
+
+ size_t i;
+ for (i = arena_chunk_header_npages; i < chunk_npages; i++) {
+ /* Find all adjacent pages with CHUNK_MAP_MADVISED set. */
+ size_t npages;
+ for (npages = 0;
+ chunk->map[i + npages].bits & CHUNK_MAP_MADVISED && i + npages < chunk_npages;
+ npages++) {
+ /* Turn off the chunk's MADV_FREED bit and turn on its
+ * DECOMMITTED bit. */
+ RELEASE_ASSERT(!(chunk->map[i + npages].bits & CHUNK_MAP_DECOMMITTED));
+ chunk->map[i + npages].bits ^= CHUNK_MAP_MADVISED_OR_DECOMMITTED;
+ }
+
+ /* We could use mincore to find out which pages are actually
+ * present, but it's not clear that's better. */
+ if (npages > 0) {
+ pages_decommit(((char*)chunk) + (i << pagesize_2pow), npages << pagesize_2pow);
+ pages_commit(((char*)chunk) + (i << pagesize_2pow), npages << pagesize_2pow);
+ }
+ i += npages;
+ }
+}
+
+/* Explicitly remove all of this arena's MADV_FREE'd pages from memory. */
+static void
+hard_purge_arena(arena_t *arena)
+{
+ malloc_spin_lock(&arena->lock);
+
+ while (!LinkedList_IsEmpty(&arena->chunks_madvised)) {
+ LinkedList* next = arena->chunks_madvised.next;
+ arena_chunk_t *chunk =
+ LinkedList_Get(arena->chunks_madvised.next,
+ arena_chunk_t, chunks_madvised_elem);
+ hard_purge_chunk(chunk);
+ LinkedList_Remove(&chunk->chunks_madvised_elem);
+ }
+
+ malloc_spin_unlock(&arena->lock);
+}
+
+MOZ_JEMALLOC_API void
+jemalloc_purge_freed_pages_impl()
+{
+ size_t i;
+ for (i = 0; i < narenas; i++) {
+ arena_t *arena = arenas[i];
+ if (arena != NULL)
+ hard_purge_arena(arena);
+ }
+ if (!config_munmap || config_recycle) {
+ malloc_mutex_lock(&chunks_mtx);
+ extent_node_t *node = extent_tree_szad_first(&chunks_szad_mmap);
+ while (node) {
+ pages_decommit(node->addr, node->size);
+ pages_commit(node->addr, node->size);
+ node->zeroed = true;
+ node = extent_tree_szad_next(&chunks_szad_mmap, node);
+ }
+ malloc_mutex_unlock(&chunks_mtx);
+ }
+}
+
+#else /* !defined MALLOC_DOUBLE_PURGE */
+
+MOZ_JEMALLOC_API void
+jemalloc_purge_freed_pages_impl()
+{
+ /* Do nothing. */
+}
+
+#endif /* defined MALLOC_DOUBLE_PURGE */
+
+
+
+#ifdef MOZ_MEMORY_WINDOWS
+void*
+_recalloc(void *ptr, size_t count, size_t size)
+{
+ size_t oldsize = (ptr != NULL) ? isalloc(ptr) : 0;
+ size_t newsize = count * size;
+
+ /*
+ * In order for all trailing bytes to be zeroed, the caller needs to
+ * use calloc(), followed by recalloc(). However, the current calloc()
+ * implementation only zeros the bytes requested, so if recalloc() is
+ * to work 100% correctly, calloc() will need to change to zero
+ * trailing bytes.
+ */
+
+ ptr = realloc_impl(ptr, newsize);
+ if (ptr != NULL && oldsize < newsize) {
+ memset((void *)((uintptr_t)ptr + oldsize), 0, newsize -
+ oldsize);
+ }
+
+ return ptr;
+}
+
+/*
+ * This impl of _expand doesn't ever actually expand or shrink blocks: it
+ * simply replies that you may continue using a shrunk block.
+ */
+void*
+_expand(void *ptr, size_t newsize)
+{
+ if (isalloc(ptr) >= newsize)
+ return ptr;
+
+ return NULL;
+}
+
+size_t
+_msize(void *ptr)
+{
+
+ return malloc_usable_size_impl(ptr);
+}
+#endif
+
+MOZ_JEMALLOC_API void
+jemalloc_free_dirty_pages_impl(void)
+{
+ size_t i;
+ for (i = 0; i < narenas; i++) {
+ arena_t *arena = arenas[i];
+
+ if (arena != NULL) {
+ malloc_spin_lock(&arena->lock);
+ arena_purge(arena, true);
+ malloc_spin_unlock(&arena->lock);
+ }
+ }
+}
+
+/*
+ * End non-standard functions.
+ */
+/******************************************************************************/
+/*
+ * Begin library-private functions, used by threading libraries for protection
+ * of malloc during fork(). These functions are only called if the program is
+ * running in threaded mode, so there is no need to check whether the program
+ * is threaded here.
+ */
+
+static void
+_malloc_prefork(void)
+{
+ unsigned i;
+
+ /* Acquire all mutexes in a safe order. */
+
+ malloc_spin_lock(&arenas_lock);
+ for (i = 0; i < narenas; i++) {
+ if (arenas[i] != NULL)
+ malloc_spin_lock(&arenas[i]->lock);
+ }
+
+ malloc_mutex_lock(&base_mtx);
+
+ malloc_mutex_lock(&huge_mtx);
+}
+
+static void
+_malloc_postfork(void)
+{
+ unsigned i;
+
+ /* Release all mutexes, now that fork() has completed. */
+
+ malloc_mutex_unlock(&huge_mtx);
+
+ malloc_mutex_unlock(&base_mtx);
+
+ for (i = 0; i < narenas; i++) {
+ if (arenas[i] != NULL)
+ malloc_spin_unlock(&arenas[i]->lock);
+ }
+ malloc_spin_unlock(&arenas_lock);
+}
+
+/*
+ * End library-private functions.
+ */
+/******************************************************************************/
+
+#ifdef HAVE_DLOPEN
+# include <dlfcn.h>
+#endif
+
+#if defined(MOZ_MEMORY_DARWIN)
+
+#if !defined(MOZ_REPLACE_MALLOC)
+static void *
+zone_malloc(malloc_zone_t *zone, size_t size)
+{
+
+ return (malloc_impl(size));
+}
+
+static void *
+zone_calloc(malloc_zone_t *zone, size_t num, size_t size)
+{
+
+ return (calloc_impl(num, size));
+}
+
+static void *
+zone_valloc(malloc_zone_t *zone, size_t size)
+{
+ void *ret = NULL; /* Assignment avoids useless compiler warning. */
+
+ posix_memalign_impl(&ret, pagesize, size);
+
+ return (ret);
+}
+
+static void *
+zone_memalign(malloc_zone_t *zone, size_t alignment, size_t size)
+{
+ return (memalign_impl(alignment, size));
+}
+
+static void *
+zone_destroy(malloc_zone_t *zone)
+{
+
+ /* This function should never be called. */
+ assert(false);
+ return (NULL);
+}
+
+static size_t
+zone_good_size(malloc_zone_t *zone, size_t size)
+{
+ return malloc_good_size_impl(size);
+}
+
+static size_t
+ozone_size(malloc_zone_t *zone, void *ptr)
+{
+ size_t ret = isalloc_validate(ptr);
+ if (ret == 0)
+ ret = szone->size(zone, ptr);
+
+ return ret;
+}
+
+static void
+ozone_free(malloc_zone_t *zone, void *ptr)
+{
+ if (isalloc_validate(ptr) != 0)
+ free_impl(ptr);
+ else {
+ size_t size = szone->size(zone, ptr);
+ if (size != 0)
+ (szone->free)(zone, ptr);
+ /* Otherwise we leak. */
+ }
+}
+
+static void *
+ozone_realloc(malloc_zone_t *zone, void *ptr, size_t size)
+{
+ size_t oldsize;
+ if (ptr == NULL)
+ return (malloc_impl(size));
+
+ oldsize = isalloc_validate(ptr);
+ if (oldsize != 0)
+ return (realloc_impl(ptr, size));
+ else {
+ oldsize = szone->size(zone, ptr);
+ if (oldsize == 0)
+ return (malloc_impl(size));
+ else {
+ void *ret = malloc_impl(size);
+ if (ret != NULL) {
+ memcpy(ret, ptr, (oldsize < size) ? oldsize :
+ size);
+ (szone->free)(zone, ptr);
+ }
+ return (ret);
+ }
+ }
+}
+
+static unsigned
+ozone_batch_malloc(malloc_zone_t *zone, size_t size, void **results,
+ unsigned num_requested)
+{
+ /* Don't bother implementing this interface, since it isn't required. */
+ return 0;
+}
+
+static void
+ozone_batch_free(malloc_zone_t *zone, void **to_be_freed, unsigned num)
+{
+ unsigned i;
+
+ for (i = 0; i < num; i++)
+ ozone_free(zone, to_be_freed[i]);
+}
+
+static void
+ozone_free_definite_size(malloc_zone_t *zone, void *ptr, size_t size)
+{
+ if (isalloc_validate(ptr) != 0) {
+ assert(isalloc_validate(ptr) == size);
+ free_impl(ptr);
+ } else {
+ assert(size == szone->size(zone, ptr));
+ l_szone.m16(zone, ptr, size);
+ }
+}
+
+static void
+ozone_force_lock(malloc_zone_t *zone)
+{
+ _malloc_prefork();
+ szone->introspect->force_lock(zone);
+}
+
+static void
+ozone_force_unlock(malloc_zone_t *zone)
+{
+ szone->introspect->force_unlock(zone);
+ _malloc_postfork();
+}
+
+static size_t
+zone_version_size(int version)
+{
+ switch (version)
+ {
+ case SNOW_LEOPARD_MALLOC_ZONE_T_VERSION:
+ return sizeof(snow_leopard_malloc_zone);
+ case LEOPARD_MALLOC_ZONE_T_VERSION:
+ return sizeof(leopard_malloc_zone);
+ default:
+ case LION_MALLOC_ZONE_T_VERSION:
+ return sizeof(lion_malloc_zone);
+ }
+}
+
+/*
+ * Overlay the default scalable zone (szone) such that existing allocations are
+ * drained, and further allocations come from jemalloc. This is necessary
+ * because Core Foundation directly accesses and uses the szone before the
+ * jemalloc library is even loaded.
+ */
+static void
+szone2ozone(malloc_zone_t *default_zone, size_t size)
+{
+ lion_malloc_zone *l_zone;
+ assert(malloc_initialized);
+
+ /*
+ * Stash a copy of the original szone so that we can call its
+ * functions as needed. Note that internally, the szone stores its
+ * bookkeeping data structures immediately following the malloc_zone_t
+ * header, so when calling szone functions, we need to pass a pointer to
+ * the original zone structure.
+ */
+ memcpy(szone, default_zone, size);
+
+ /* OSX 10.7 allocates the default zone in protected memory. */
+ if (default_zone->version >= LION_MALLOC_ZONE_T_VERSION) {
+ void* start_of_page = (void*)((size_t)(default_zone) & ~pagesize_mask);
+ mprotect (start_of_page, size, PROT_READ | PROT_WRITE);
+ }
+
+ default_zone->size = (void *)ozone_size;
+ default_zone->malloc = (void *)zone_malloc;
+ default_zone->calloc = (void *)zone_calloc;
+ default_zone->valloc = (void *)zone_valloc;
+ default_zone->free = (void *)ozone_free;
+ default_zone->realloc = (void *)ozone_realloc;
+ default_zone->destroy = (void *)zone_destroy;
+ default_zone->batch_malloc = NULL;
+ default_zone->batch_free = ozone_batch_free;
+ default_zone->introspect = ozone_introspect;
+
+ /* Don't modify default_zone->zone_name; Mac libc may rely on the name
+ * being unchanged. See Mozilla bug 694896. */
+
+ ozone_introspect->enumerator = NULL;
+ ozone_introspect->good_size = (void *)zone_good_size;
+ ozone_introspect->check = NULL;
+ ozone_introspect->print = NULL;
+ ozone_introspect->log = NULL;
+ ozone_introspect->force_lock = (void *)ozone_force_lock;
+ ozone_introspect->force_unlock = (void *)ozone_force_unlock;
+ ozone_introspect->statistics = NULL;
+
+ /* Platform-dependent structs */
+ l_zone = (lion_malloc_zone*)(default_zone);
+
+ if (default_zone->version >= SNOW_LEOPARD_MALLOC_ZONE_T_VERSION) {
+ l_zone->m15 = (void (*)())zone_memalign;
+ l_zone->m16 = (void (*)())ozone_free_definite_size;
+ l_ozone_introspect.m9 = NULL;
+ }
+
+ if (default_zone->version >= LION_MALLOC_ZONE_T_VERSION) {
+ l_zone->m17 = NULL;
+ l_ozone_introspect.m10 = NULL;
+ l_ozone_introspect.m11 = NULL;
+ l_ozone_introspect.m12 = NULL;
+ l_ozone_introspect.m13 = NULL;
+ }
+}
+#endif
+
+__attribute__((constructor))
+void
+jemalloc_darwin_init(void)
+{
+ if (malloc_init_hard())
+ abort();
+}
+
+#endif
+
+/*
+ * is_malloc(malloc_impl) is some macro magic to detect if malloc_impl is
+ * defined as "malloc" in mozmemory_wrap.h
+ */
+#define malloc_is_malloc 1
+#define is_malloc_(a) malloc_is_ ## a
+#define is_malloc(a) is_malloc_(a)
+
+#if !defined(MOZ_MEMORY_DARWIN) && (is_malloc(malloc_impl) == 1)
+# if defined(__GLIBC__) && !defined(__UCLIBC__)
+/*
+ * glibc provides the RTLD_DEEPBIND flag for dlopen which can make it possible
+ * to inconsistently reference libc's malloc(3)-compatible functions
+ * (bug 493541).
+ *
+ * These definitions interpose hooks in glibc. The functions are actually
+ * passed an extra argument for the caller return address, which will be
+ * ignored.
+ */
+MOZ_MEMORY_API void (*__free_hook)(void *ptr) = free_impl;
+MOZ_MEMORY_API void *(*__malloc_hook)(size_t size) = malloc_impl;
+MOZ_MEMORY_API void *(*__realloc_hook)(void *ptr, size_t size) = realloc_impl;
+MOZ_MEMORY_API void *(*__memalign_hook)(size_t alignment, size_t size) = MEMALIGN;
+
+# elif defined(RTLD_DEEPBIND)
+/*
+ * XXX On systems that support RTLD_GROUP or DF_1_GROUP, do their
+ * implementations permit similar inconsistencies? Should STV_SINGLETON
+ * visibility be used for interposition where available?
+ */
+# error "Interposing malloc is unsafe on this system without libc malloc hooks."
+# endif
+#endif
+
+#ifdef MOZ_MEMORY_WINDOWS
+/*
+ * In the new style jemalloc integration jemalloc is built as a separate
+ * shared library. Since we're no longer hooking into the CRT binary,
+ * we need to initialize the heap at the first opportunity we get.
+ * DLL_PROCESS_ATTACH in DllMain is that opportunity.
+ */
+BOOL APIENTRY DllMain(HINSTANCE hModule,
+ DWORD reason,
+ LPVOID lpReserved)
+{
+ switch (reason) {
+ case DLL_PROCESS_ATTACH:
+ /* Don't force the system to page DllMain back in every time
+ * we create/destroy a thread */
+ DisableThreadLibraryCalls(hModule);
+ /* Initialize the heap */
+ malloc_init_hard();
+ break;
+
+ case DLL_PROCESS_DETACH:
+ break;
+
+ }
+
+ return TRUE;
+}
+#endif
diff --git a/memory/mozjemalloc/jemalloc_types.h b/memory/mozjemalloc/jemalloc_types.h
new file mode 100644
index 000000000..ae8dc4414
--- /dev/null
+++ b/memory/mozjemalloc/jemalloc_types.h
@@ -0,0 +1,91 @@
+/* -*- Mode: C; tab-width: 8; c-basic-offset: 8 -*- */
+/* vim:set softtabstop=8 shiftwidth=8: */
+/*-
+ * Copyright (C) 2006-2008 Jason Evans <jasone@FreeBSD.org>.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice(s), this list of conditions and the following disclaimer as
+ * the first lines of this file unmodified other than the possible
+ * addition of one or more copyright notices.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice(s), this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
+ * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
+ * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
+ * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
+ * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#ifndef _JEMALLOC_TYPES_H_
+#define _JEMALLOC_TYPES_H_
+
+/* grab size_t */
+#ifdef _MSC_VER
+#include <crtdefs.h>
+#else
+#include <stddef.h>
+#endif
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+typedef unsigned char jemalloc_bool;
+
+/*
+ * jemalloc_stats() is not a stable interface. When using jemalloc_stats_t, be
+ * sure that the compiled results of jemalloc.c are in sync with this header
+ * file.
+ */
+typedef struct {
+ /*
+ * Run-time configuration settings.
+ */
+ jemalloc_bool opt_abort; /* abort(3) on error? */
+ jemalloc_bool opt_junk; /* Fill allocated memory with 0xe4? */
+ jemalloc_bool opt_poison; /* Fill free memory with 0xe5? */
+ jemalloc_bool opt_utrace; /* Trace all allocation events? */
+ jemalloc_bool opt_sysv; /* SysV semantics? */
+ jemalloc_bool opt_xmalloc; /* abort(3) on OOM? */
+ jemalloc_bool opt_zero; /* Fill allocated memory with 0x0? */
+ size_t narenas; /* Number of arenas. */
+ size_t balance_threshold; /* Arena contention rebalance threshold. */
+ size_t quantum; /* Allocation quantum. */
+ size_t small_max; /* Max quantum-spaced allocation size. */
+ size_t large_max; /* Max sub-chunksize allocation size. */
+ size_t chunksize; /* Size of each virtual memory mapping. */
+ size_t dirty_max; /* Max dirty pages per arena. */
+
+ /*
+ * Current memory usage statistics.
+ */
+ size_t mapped; /* Bytes mapped (not necessarily committed). */
+ size_t allocated; /* Bytes allocated (committed, in use by application). */
+ size_t waste; /* Bytes committed, not in use by the
+ application, and not intentionally left
+ unused (i.e., not dirty). */
+ size_t page_cache; /* Committed, unused pages kept around as a
+ cache. (jemalloc calls these "dirty".) */
+ size_t bookkeeping; /* Committed bytes used internally by the
+ allocator. */
+ size_t bin_unused; /* Bytes committed to a bin but currently unused. */
+} jemalloc_stats_t;
+
+#ifdef __cplusplus
+} /* extern "C" */
+#endif
+
+#endif /* _JEMALLOC_TYPES_H_ */
diff --git a/memory/mozjemalloc/linkedlist.h b/memory/mozjemalloc/linkedlist.h
new file mode 100644
index 000000000..d75531410
--- /dev/null
+++ b/memory/mozjemalloc/linkedlist.h
@@ -0,0 +1,77 @@
+/* -*- Mode: C; tab-width: 8; c-basic-offset: 8; indent-tabs-mode: t -*- */
+/* vim:set softtabstop=8 shiftwidth=8 noet: */
+/*-
+ * Copyright (C) the Mozilla Foundation.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice(s), this list of conditions and the following disclaimer as
+ * the first lines of this file unmodified other than the possible
+ * addition of one or more copyright notices.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice(s), this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
+ * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
+ * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
+ * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
+ * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ *******************************************************************************/
+
+#ifndef linkedlist_h__
+#define linkedlist_h__
+
+#include <stddef.h>
+
+typedef struct LinkedList_s LinkedList;
+
+struct LinkedList_s {
+ LinkedList *next;
+ LinkedList *prev;
+};
+
+/* Convert from LinkedList* to foo*. */
+#define LinkedList_Get(e, type, prop) \
+ (type*)((char*)(e) - offsetof(type, prop))
+
+/* Insert |e| at the beginning of |l|. */
+void LinkedList_InsertHead(LinkedList *l, LinkedList *e)
+{
+ e->next = l;
+ e->prev = l->prev;
+ e->next->prev = e;
+ e->prev->next = e;
+}
+
+void LinkedList_Remove(LinkedList *e)
+{
+ e->prev->next = e->next;
+ e->next->prev = e->prev;
+ e->next = e;
+ e->prev = e;
+}
+
+bool LinkedList_IsEmpty(LinkedList *e)
+{
+ return e->next == e;
+}
+
+void LinkedList_Init(LinkedList *e)
+{
+ e->next = e;
+ e->prev = e;
+}
+
+#endif
diff --git a/memory/mozjemalloc/moz.build b/memory/mozjemalloc/moz.build
new file mode 100644
index 000000000..0660d1300
--- /dev/null
+++ b/memory/mozjemalloc/moz.build
@@ -0,0 +1,44 @@
+# -*- Mode: python; indent-tabs-mode: nil; tab-width: 40 -*-
+# vim: set filetype=python:
+# This Source Code Form is subject to the terms of the Mozilla Public
+# License, v. 2.0. If a copy of the MPL was not distributed with this
+# file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+EXPORTS += [
+ 'jemalloc_types.h',
+]
+
+if not CONFIG['MOZ_JEMALLOC4']:
+ SOURCES += [
+ 'jemalloc.c',
+ ]
+ FINAL_LIBRARY = 'memory'
+
+ # See bug 422055.
+ if CONFIG['OS_ARCH'] == 'SunOS' and not CONFIG['GNU_CC'] \
+ and CONFIG['MOZ_OPTIMIZE']:
+ CFLAGS += ['-xO5']
+
+# For non release/esr builds, enable (some) fatal jemalloc assertions. This
+# helps us catch memory errors.
+if CONFIG['MOZ_UPDATE_CHANNEL'] not in ('release', 'esr'):
+ DEFINES['MOZ_JEMALLOC_HARD_ASSERTS'] = True
+
+DEFINES['abort'] = 'moz_abort'
+
+DEFINES['MOZ_JEMALLOC_IMPL'] = True
+
+#XXX: PGO on Linux causes problems here
+# See bug 419470
+if CONFIG['OS_TARGET'] == 'Linux':
+ NO_PGO = True
+
+LOCAL_INCLUDES += [
+ '/memory/build',
+]
+
+if CONFIG['GNU_CC']:
+ CFLAGS += ['-Wno-unused'] # too many annoying warnings from mfbt/ headers
+
+if CONFIG['_MSC_VER']:
+ CFLAGS += ['-wd4273'] # inconsistent dll linkage (bug 558163)
diff --git a/memory/mozjemalloc/osx_zone_types.h b/memory/mozjemalloc/osx_zone_types.h
new file mode 100644
index 000000000..097953590
--- /dev/null
+++ b/memory/mozjemalloc/osx_zone_types.h
@@ -0,0 +1,147 @@
+/* -*- Mode: C; tab-width: 8; c-basic-offset: 8 -*- */
+/* vim:set softtabstop=8 shiftwidth=8: */
+/*-
+ * Copyright (C) 2006-2008 Jason Evans <jasone@FreeBSD.org>.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice(s), this list of conditions and the following disclaimer as
+ * the first lines of this file unmodified other than the possible
+ * addition of one or more copyright notices.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice(s), this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
+ * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
+ * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
+ * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
+ * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+/*
+ * The purpose of these structs is described in jemalloc.c, in the comment
+ * marked MALLOC_ZONE_T_NOTE.
+ *
+ * We need access to some structs that come with a specific version of OSX
+ * but can't copy them here because of licensing restrictions (see bug
+ * 603655). The structs below are equivalent in that they'll always be
+ * compiled to the same representation on all platforms.
+ *
+ * `void*` and `void (*)()` may not be the same size on weird platforms, but
+ * the size of a function pointer shouldn't vary according to its parameters
+ * or return type.
+ *
+ * Apple's version of these structures, complete with member names and
+ * comments, is available online at
+ *
+ * http://www.opensource.apple.com/source/Libc/Libc-763.12/include/malloc/malloc.h
+ *
+ */
+
+/*
+ * OSX 10.5 - Leopard
+ */
+typedef struct _leopard_malloc_zone {
+ void *m1;
+ void *m2;
+ void (*m3)();
+ void (*m4)();
+ void (*m5)();
+ void (*m6)();
+ void (*m7)();
+ void (*m8)();
+ void (*m9)();
+ void *m10;
+ void (*m11)();
+ void (*m12)();
+ void *m13;
+ unsigned m14;
+} leopard_malloc_zone;
+
+/*
+ * OSX 10.6 - Snow Leopard
+ */
+typedef struct _snow_leopard_malloc_zone {
+ void *m1;
+ void *m2;
+ void (*m3)();
+ void (*m4)();
+ void (*m5)();
+ void (*m6)();
+ void (*m7)();
+ void (*m8)();
+ void (*m9)();
+ void *m10;
+ void (*m11)();
+ void (*m12)();
+ void *m13;
+ unsigned m14;
+ void (*m15)(); // this member added in 10.6
+ void (*m16)(); // this member added in 10.6
+} snow_leopard_malloc_zone;
+
+typedef struct _snow_leopard_malloc_introspection {
+ void (*m1)();
+ void (*m2)();
+ void (*m3)();
+ void (*m4)();
+ void (*m5)();
+ void (*m6)();
+ void (*m7)();
+ void (*m8)();
+ void (*m9)(); // this member added in 10.6
+} snow_leopard_malloc_introspection;
+
+/*
+ * OSX 10.7 - Lion
+ */
+typedef struct _lion_malloc_zone {
+ void *m1;
+ void *m2;
+ void (*m3)();
+ void (*m4)();
+ void (*m5)();
+ void (*m6)();
+ void (*m7)();
+ void (*m8)();
+ void (*m9)();
+ void *m10;
+ void (*m11)();
+ void (*m12)();
+ void *m13;
+ unsigned m14;
+ void (*m15)();
+ void (*m16)();
+ void (*m17)(); // this member added in 10.7
+} lion_malloc_zone;
+
+typedef struct _lion_malloc_introspection {
+ void (*m1)();
+ void (*m2)();
+ void (*m3)();
+ void (*m4)();
+ void (*m5)();
+ void (*m6)();
+ void (*m7)();
+ void (*m8)();
+ void (*m9)();
+ void (*m10)(); // this member added in 10.7
+ void (*m11)(); // this member added in 10.7
+ void (*m12)(); // this member added in 10.7
+#ifdef __BLOCKS__
+ void (*m13)(); // this member added in 10.7
+#else
+ void *m13; // this member added in 10.7
+#endif
+} lion_malloc_introspection;
diff --git a/memory/mozjemalloc/ql.h b/memory/mozjemalloc/ql.h
new file mode 100644
index 000000000..000cd2380
--- /dev/null
+++ b/memory/mozjemalloc/ql.h
@@ -0,0 +1,114 @@
+/******************************************************************************
+ *
+ * Copyright (C) 2002 Jason Evans <jasone@canonware.com>.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice(s), this list of conditions and the following disclaimer
+ * unmodified other than the allowable addition of one or more
+ * copyright notices.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice(s), this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
+ * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
+ * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
+ * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
+ * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ ******************************************************************************/
+
+/*
+ * List definitions.
+ */
+#define ql_head(a_type) \
+struct { \
+ a_type *qlh_first; \
+}
+
+#define ql_head_initializer(a_head) {NULL}
+
+#define ql_elm(a_type) qr(a_type)
+
+/* List functions. */
+#define ql_new(a_head) do { \
+ (a_head)->qlh_first = NULL; \
+} while (0)
+
+#define ql_elm_new(a_elm, a_field) qr_new((a_elm), a_field)
+
+#define ql_first(a_head) ((a_head)->qlh_first)
+
+#define ql_last(a_head, a_field) \
+ ((ql_first(a_head) != NULL) \
+ ? qr_prev(ql_first(a_head), a_field) : NULL)
+
+#define ql_next(a_head, a_elm, a_field) \
+ ((ql_last(a_head, a_field) != (a_elm)) \
+ ? qr_next((a_elm), a_field) : NULL)
+
+#define ql_prev(a_head, a_elm, a_field) \
+ ((ql_first(a_head) != (a_elm)) ? qr_prev((a_elm), a_field) \
+ : NULL)
+
+#define ql_before_insert(a_head, a_qlelm, a_elm, a_field) do { \
+ qr_before_insert((a_qlelm), (a_elm), a_field); \
+ if (ql_first(a_head) == (a_qlelm)) { \
+ ql_first(a_head) = (a_elm); \
+ } \
+} while (0)
+
+#define ql_after_insert(a_qlelm, a_elm, a_field) \
+ qr_after_insert((a_qlelm), (a_elm), a_field)
+
+#define ql_head_insert(a_head, a_elm, a_field) do { \
+ if (ql_first(a_head) != NULL) { \
+ qr_before_insert(ql_first(a_head), (a_elm), a_field); \
+ } \
+ ql_first(a_head) = (a_elm); \
+} while (0)
+
+#define ql_tail_insert(a_head, a_elm, a_field) do { \
+ if (ql_first(a_head) != NULL) { \
+ qr_before_insert(ql_first(a_head), (a_elm), a_field); \
+ } \
+ ql_first(a_head) = qr_next((a_elm), a_field); \
+} while (0)
+
+#define ql_remove(a_head, a_elm, a_field) do { \
+ if (ql_first(a_head) == (a_elm)) { \
+ ql_first(a_head) = qr_next(ql_first(a_head), a_field); \
+ } \
+ if (ql_first(a_head) != (a_elm)) { \
+ qr_remove((a_elm), a_field); \
+ } else { \
+ ql_first(a_head) = NULL; \
+ } \
+} while (0)
+
+#define ql_head_remove(a_head, a_type, a_field) do { \
+ a_type *t = ql_first(a_head); \
+ ql_remove((a_head), t, a_field); \
+} while (0)
+
+#define ql_tail_remove(a_head, a_type, a_field) do { \
+ a_type *t = ql_last(a_head, a_field); \
+ ql_remove((a_head), t, a_field); \
+} while (0)
+
+#define ql_foreach(a_var, a_head, a_field) \
+ qr_foreach((a_var), ql_first(a_head), a_field)
+
+#define ql_reverse_foreach(a_var, a_head, a_field) \
+ qr_reverse_foreach((a_var), ql_first(a_head), a_field)
diff --git a/memory/mozjemalloc/qr.h b/memory/mozjemalloc/qr.h
new file mode 100644
index 000000000..ee60491d7
--- /dev/null
+++ b/memory/mozjemalloc/qr.h
@@ -0,0 +1,98 @@
+/******************************************************************************
+ *
+ * Copyright (C) 2002 Jason Evans <jasone@canonware.com>.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice(s), this list of conditions and the following disclaimer
+ * unmodified other than the allowable addition of one or more
+ * copyright notices.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice(s), this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
+ * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
+ * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
+ * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
+ * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ ******************************************************************************/
+
+/* Ring definitions. */
+#define qr(a_type) \
+struct { \
+ a_type *qre_next; \
+ a_type *qre_prev; \
+}
+
+/* Ring functions. */
+#define qr_new(a_qr, a_field) do { \
+ (a_qr)->a_field.qre_next = (a_qr); \
+ (a_qr)->a_field.qre_prev = (a_qr); \
+} while (0)
+
+#define qr_next(a_qr, a_field) ((a_qr)->a_field.qre_next)
+
+#define qr_prev(a_qr, a_field) ((a_qr)->a_field.qre_prev)
+
+#define qr_before_insert(a_qrelm, a_qr, a_field) do { \
+ (a_qr)->a_field.qre_prev = (a_qrelm)->a_field.qre_prev; \
+ (a_qr)->a_field.qre_next = (a_qrelm); \
+ (a_qr)->a_field.qre_prev->a_field.qre_next = (a_qr); \
+ (a_qrelm)->a_field.qre_prev = (a_qr); \
+} while (0)
+
+#define qr_after_insert(a_qrelm, a_qr, a_field) \
+ do \
+ { \
+ (a_qr)->a_field.qre_next = (a_qrelm)->a_field.qre_next; \
+ (a_qr)->a_field.qre_prev = (a_qrelm); \
+ (a_qr)->a_field.qre_next->a_field.qre_prev = (a_qr); \
+ (a_qrelm)->a_field.qre_next = (a_qr); \
+ } while (0)
+
+#define qr_meld(a_qr_a, a_qr_b, a_field) do { \
+ void *t; \
+ (a_qr_a)->a_field.qre_prev->a_field.qre_next = (a_qr_b); \
+ (a_qr_b)->a_field.qre_prev->a_field.qre_next = (a_qr_a); \
+ t = (a_qr_a)->a_field.qre_prev; \
+ (a_qr_a)->a_field.qre_prev = (a_qr_b)->a_field.qre_prev; \
+ (a_qr_b)->a_field.qre_prev = t; \
+} while (0)
+
+/* qr_meld() and qr_split() are functionally equivalent, so there's no need to
+ * have two copies of the code. */
+#define qr_split(a_qr_a, a_qr_b, a_field) \
+ qr_meld((a_qr_a), (a_qr_b), a_field)
+
+#define qr_remove(a_qr, a_field) do { \
+ (a_qr)->a_field.qre_prev->a_field.qre_next \
+ = (a_qr)->a_field.qre_next; \
+ (a_qr)->a_field.qre_next->a_field.qre_prev \
+ = (a_qr)->a_field.qre_prev; \
+ (a_qr)->a_field.qre_next = (a_qr); \
+ (a_qr)->a_field.qre_prev = (a_qr); \
+} while (0)
+
+#define qr_foreach(var, a_qr, a_field) \
+ for ((var) = (a_qr); \
+ (var) != NULL; \
+ (var) = (((var)->a_field.qre_next != (a_qr)) \
+ ? (var)->a_field.qre_next : NULL))
+
+#define qr_reverse_foreach(var, a_qr, a_field) \
+ for ((var) = ((a_qr) != NULL) ? qr_prev(a_qr, a_field) : NULL; \
+ (var) != NULL; \
+ (var) = (((var) != (a_qr)) \
+ ? (var)->a_field.qre_prev : NULL))
diff --git a/memory/mozjemalloc/rb.h b/memory/mozjemalloc/rb.h
new file mode 100644
index 000000000..43d8569d0
--- /dev/null
+++ b/memory/mozjemalloc/rb.h
@@ -0,0 +1,982 @@
+/******************************************************************************
+ *
+ * Copyright (C) 2008 Jason Evans <jasone@FreeBSD.org>.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice(s), this list of conditions and the following disclaimer
+ * unmodified other than the allowable addition of one or more
+ * copyright notices.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice(s), this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
+ * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
+ * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
+ * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
+ * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ ******************************************************************************
+ *
+ * cpp macro implementation of left-leaning red-black trees.
+ *
+ * Usage:
+ *
+ * (Optional.)
+ * #define SIZEOF_PTR ...
+ * #define SIZEOF_PTR_2POW ...
+ * #define RB_NO_C99_VARARRAYS
+ *
+ * (Optional, see assert(3).)
+ * #define NDEBUG
+ *
+ * (Required.)
+ * #include <assert.h>
+ * #include <rb.h>
+ * ...
+ *
+ * All operations are done non-recursively. Parent pointers are not used, and
+ * color bits are stored in the least significant bit of right-child pointers,
+ * thus making node linkage as compact as is possible for red-black trees.
+ *
+ * Some macros use a comparison function pointer, which is expected to have the
+ * following prototype:
+ *
+ * int (a_cmp *)(a_type *a_node, a_type *a_other);
+ * ^^^^^^
+ * or a_key
+ *
+ * Interpretation of comparision function return values:
+ *
+ * -1 : a_node < a_other
+ * 0 : a_node == a_other
+ * 1 : a_node > a_other
+ *
+ * In all cases, the a_node or a_key macro argument is the first argument to the
+ * comparison function, which makes it possible to write comparison functions
+ * that treat the first argument specially.
+ *
+ ******************************************************************************/
+
+#ifndef RB_H_
+#define RB_H_
+
+#if 0
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD: head/lib/libc/stdlib/rb.h 178995 2008-05-14 18:33:13Z jasone $");
+#endif
+
+/* Node structure. */
+#define rb_node(a_type) \
+struct { \
+ a_type *rbn_left; \
+ a_type *rbn_right_red; \
+}
+
+/* Root structure. */
+#define rb_tree(a_type) \
+struct { \
+ a_type *rbt_root; \
+ a_type rbt_nil; \
+}
+
+/* Left accessors. */
+#define rbp_left_get(a_type, a_field, a_node) \
+ ((a_node)->a_field.rbn_left)
+#define rbp_left_set(a_type, a_field, a_node, a_left) do { \
+ (a_node)->a_field.rbn_left = a_left; \
+} while (0)
+
+/* Right accessors. */
+#define rbp_right_get(a_type, a_field, a_node) \
+ ((a_type *) (((intptr_t) (a_node)->a_field.rbn_right_red) \
+ & ((ssize_t)-2)))
+#define rbp_right_set(a_type, a_field, a_node, a_right) do { \
+ (a_node)->a_field.rbn_right_red = (a_type *) (((uintptr_t) a_right) \
+ | (((uintptr_t) (a_node)->a_field.rbn_right_red) & ((size_t)1))); \
+} while (0)
+
+/* Color accessors. */
+#define rbp_red_get(a_type, a_field, a_node) \
+ ((bool) (((uintptr_t) (a_node)->a_field.rbn_right_red) \
+ & ((size_t)1)))
+#define rbp_color_set(a_type, a_field, a_node, a_red) do { \
+ (a_node)->a_field.rbn_right_red = (a_type *) ((((intptr_t) \
+ (a_node)->a_field.rbn_right_red) & ((ssize_t)-2)) \
+ | ((ssize_t)a_red)); \
+} while (0)
+#define rbp_red_set(a_type, a_field, a_node) do { \
+ (a_node)->a_field.rbn_right_red = (a_type *) (((uintptr_t) \
+ (a_node)->a_field.rbn_right_red) | ((size_t)1)); \
+} while (0)
+#define rbp_black_set(a_type, a_field, a_node) do { \
+ (a_node)->a_field.rbn_right_red = (a_type *) (((intptr_t) \
+ (a_node)->a_field.rbn_right_red) & ((ssize_t)-2)); \
+} while (0)
+
+/* Node initializer. */
+#define rbp_node_new(a_type, a_field, a_tree, a_node) do { \
+ rbp_left_set(a_type, a_field, (a_node), &(a_tree)->rbt_nil); \
+ rbp_right_set(a_type, a_field, (a_node), &(a_tree)->rbt_nil); \
+ rbp_red_set(a_type, a_field, (a_node)); \
+} while (0)
+
+/* Tree initializer. */
+#define rb_new(a_type, a_field, a_tree) do { \
+ (a_tree)->rbt_root = &(a_tree)->rbt_nil; \
+ rbp_node_new(a_type, a_field, a_tree, &(a_tree)->rbt_nil); \
+ rbp_black_set(a_type, a_field, &(a_tree)->rbt_nil); \
+} while (0)
+
+/* Tree operations. */
+#define rbp_black_height(a_type, a_field, a_tree, r_height) do { \
+ a_type *rbp_bh_t; \
+ for (rbp_bh_t = (a_tree)->rbt_root, (r_height) = 0; \
+ rbp_bh_t != &(a_tree)->rbt_nil; \
+ rbp_bh_t = rbp_left_get(a_type, a_field, rbp_bh_t)) { \
+ if (rbp_red_get(a_type, a_field, rbp_bh_t) == false) { \
+ (r_height)++; \
+ } \
+ } \
+} while (0)
+
+#define rbp_first(a_type, a_field, a_tree, a_root, r_node) do { \
+ for ((r_node) = (a_root); \
+ rbp_left_get(a_type, a_field, (r_node)) != &(a_tree)->rbt_nil; \
+ (r_node) = rbp_left_get(a_type, a_field, (r_node))) { \
+ } \
+} while (0)
+
+#define rbp_last(a_type, a_field, a_tree, a_root, r_node) do { \
+ for ((r_node) = (a_root); \
+ rbp_right_get(a_type, a_field, (r_node)) != &(a_tree)->rbt_nil; \
+ (r_node) = rbp_right_get(a_type, a_field, (r_node))) { \
+ } \
+} while (0)
+
+#define rbp_next(a_type, a_field, a_cmp, a_tree, a_node, r_node) do { \
+ if (rbp_right_get(a_type, a_field, (a_node)) \
+ != &(a_tree)->rbt_nil) { \
+ rbp_first(a_type, a_field, a_tree, rbp_right_get(a_type, \
+ a_field, (a_node)), (r_node)); \
+ } else { \
+ a_type *rbp_n_t = (a_tree)->rbt_root; \
+ assert(rbp_n_t != &(a_tree)->rbt_nil); \
+ (r_node) = &(a_tree)->rbt_nil; \
+ while (true) { \
+ int rbp_n_cmp = (a_cmp)((a_node), rbp_n_t); \
+ if (rbp_n_cmp < 0) { \
+ (r_node) = rbp_n_t; \
+ rbp_n_t = rbp_left_get(a_type, a_field, rbp_n_t); \
+ } else if (rbp_n_cmp > 0) { \
+ rbp_n_t = rbp_right_get(a_type, a_field, rbp_n_t); \
+ } else { \
+ break; \
+ } \
+ assert(rbp_n_t != &(a_tree)->rbt_nil); \
+ } \
+ } \
+} while (0)
+
+#define rbp_prev(a_type, a_field, a_cmp, a_tree, a_node, r_node) do { \
+ if (rbp_left_get(a_type, a_field, (a_node)) != &(a_tree)->rbt_nil) {\
+ rbp_last(a_type, a_field, a_tree, rbp_left_get(a_type, \
+ a_field, (a_node)), (r_node)); \
+ } else { \
+ a_type *rbp_p_t = (a_tree)->rbt_root; \
+ assert(rbp_p_t != &(a_tree)->rbt_nil); \
+ (r_node) = &(a_tree)->rbt_nil; \
+ while (true) { \
+ int rbp_p_cmp = (a_cmp)((a_node), rbp_p_t); \
+ if (rbp_p_cmp < 0) { \
+ rbp_p_t = rbp_left_get(a_type, a_field, rbp_p_t); \
+ } else if (rbp_p_cmp > 0) { \
+ (r_node) = rbp_p_t; \
+ rbp_p_t = rbp_right_get(a_type, a_field, rbp_p_t); \
+ } else { \
+ break; \
+ } \
+ assert(rbp_p_t != &(a_tree)->rbt_nil); \
+ } \
+ } \
+} while (0)
+
+#define rb_first(a_type, a_field, a_tree, r_node) do { \
+ rbp_first(a_type, a_field, a_tree, (a_tree)->rbt_root, (r_node)); \
+ if ((r_node) == &(a_tree)->rbt_nil) { \
+ (r_node) = NULL; \
+ } \
+} while (0)
+
+#define rb_last(a_type, a_field, a_tree, r_node) do { \
+ rbp_last(a_type, a_field, a_tree, (a_tree)->rbt_root, r_node); \
+ if ((r_node) == &(a_tree)->rbt_nil) { \
+ (r_node) = NULL; \
+ } \
+} while (0)
+
+#define rb_next(a_type, a_field, a_cmp, a_tree, a_node, r_node) do { \
+ rbp_next(a_type, a_field, a_cmp, a_tree, (a_node), (r_node)); \
+ if ((r_node) == &(a_tree)->rbt_nil) { \
+ (r_node) = NULL; \
+ } \
+} while (0)
+
+#define rb_prev(a_type, a_field, a_cmp, a_tree, a_node, r_node) do { \
+ rbp_prev(a_type, a_field, a_cmp, a_tree, (a_node), (r_node)); \
+ if ((r_node) == &(a_tree)->rbt_nil) { \
+ (r_node) = NULL; \
+ } \
+} while (0)
+
+#define rb_search(a_type, a_field, a_cmp, a_tree, a_key, r_node) do { \
+ int rbp_se_cmp; \
+ (r_node) = (a_tree)->rbt_root; \
+ while ((r_node) != &(a_tree)->rbt_nil \
+ && (rbp_se_cmp = (a_cmp)((a_key), (r_node))) != 0) { \
+ if (rbp_se_cmp < 0) { \
+ (r_node) = rbp_left_get(a_type, a_field, (r_node)); \
+ } else { \
+ (r_node) = rbp_right_get(a_type, a_field, (r_node)); \
+ } \
+ } \
+ if ((r_node) == &(a_tree)->rbt_nil) { \
+ (r_node) = NULL; \
+ } \
+} while (0)
+
+/*
+ * Find a match if it exists. Otherwise, find the next greater node, if one
+ * exists.
+ */
+#define rb_nsearch(a_type, a_field, a_cmp, a_tree, a_key, r_node) do { \
+ a_type *rbp_ns_t = (a_tree)->rbt_root; \
+ (r_node) = NULL; \
+ while (rbp_ns_t != &(a_tree)->rbt_nil) { \
+ int rbp_ns_cmp = (a_cmp)((a_key), rbp_ns_t); \
+ if (rbp_ns_cmp < 0) { \
+ (r_node) = rbp_ns_t; \
+ rbp_ns_t = rbp_left_get(a_type, a_field, rbp_ns_t); \
+ } else if (rbp_ns_cmp > 0) { \
+ rbp_ns_t = rbp_right_get(a_type, a_field, rbp_ns_t); \
+ } else { \
+ (r_node) = rbp_ns_t; \
+ break; \
+ } \
+ } \
+} while (0)
+
+/*
+ * Find a match if it exists. Otherwise, find the previous lesser node, if one
+ * exists.
+ */
+#define rb_psearch(a_type, a_field, a_cmp, a_tree, a_key, r_node) do { \
+ a_type *rbp_ps_t = (a_tree)->rbt_root; \
+ (r_node) = NULL; \
+ while (rbp_ps_t != &(a_tree)->rbt_nil) { \
+ int rbp_ps_cmp = (a_cmp)((a_key), rbp_ps_t); \
+ if (rbp_ps_cmp < 0) { \
+ rbp_ps_t = rbp_left_get(a_type, a_field, rbp_ps_t); \
+ } else if (rbp_ps_cmp > 0) { \
+ (r_node) = rbp_ps_t; \
+ rbp_ps_t = rbp_right_get(a_type, a_field, rbp_ps_t); \
+ } else { \
+ (r_node) = rbp_ps_t; \
+ break; \
+ } \
+ } \
+} while (0)
+
+#define rbp_rotate_left(a_type, a_field, a_node, r_node) do { \
+ (r_node) = rbp_right_get(a_type, a_field, (a_node)); \
+ rbp_right_set(a_type, a_field, (a_node), \
+ rbp_left_get(a_type, a_field, (r_node))); \
+ rbp_left_set(a_type, a_field, (r_node), (a_node)); \
+} while (0)
+
+#define rbp_rotate_right(a_type, a_field, a_node, r_node) do { \
+ (r_node) = rbp_left_get(a_type, a_field, (a_node)); \
+ rbp_left_set(a_type, a_field, (a_node), \
+ rbp_right_get(a_type, a_field, (r_node))); \
+ rbp_right_set(a_type, a_field, (r_node), (a_node)); \
+} while (0)
+
+#define rbp_lean_left(a_type, a_field, a_node, r_node) do { \
+ bool rbp_ll_red; \
+ rbp_rotate_left(a_type, a_field, (a_node), (r_node)); \
+ rbp_ll_red = rbp_red_get(a_type, a_field, (a_node)); \
+ rbp_color_set(a_type, a_field, (r_node), rbp_ll_red); \
+ rbp_red_set(a_type, a_field, (a_node)); \
+} while (0)
+
+#define rbp_lean_right(a_type, a_field, a_node, r_node) do { \
+ bool rbp_lr_red; \
+ rbp_rotate_right(a_type, a_field, (a_node), (r_node)); \
+ rbp_lr_red = rbp_red_get(a_type, a_field, (a_node)); \
+ rbp_color_set(a_type, a_field, (r_node), rbp_lr_red); \
+ rbp_red_set(a_type, a_field, (a_node)); \
+} while (0)
+
+#define rbp_move_red_left(a_type, a_field, a_node, r_node) do { \
+ a_type *rbp_mrl_t, *rbp_mrl_u; \
+ rbp_mrl_t = rbp_left_get(a_type, a_field, (a_node)); \
+ rbp_red_set(a_type, a_field, rbp_mrl_t); \
+ rbp_mrl_t = rbp_right_get(a_type, a_field, (a_node)); \
+ rbp_mrl_u = rbp_left_get(a_type, a_field, rbp_mrl_t); \
+ if (rbp_red_get(a_type, a_field, rbp_mrl_u)) { \
+ rbp_rotate_right(a_type, a_field, rbp_mrl_t, rbp_mrl_u); \
+ rbp_right_set(a_type, a_field, (a_node), rbp_mrl_u); \
+ rbp_rotate_left(a_type, a_field, (a_node), (r_node)); \
+ rbp_mrl_t = rbp_right_get(a_type, a_field, (a_node)); \
+ if (rbp_red_get(a_type, a_field, rbp_mrl_t)) { \
+ rbp_black_set(a_type, a_field, rbp_mrl_t); \
+ rbp_red_set(a_type, a_field, (a_node)); \
+ rbp_rotate_left(a_type, a_field, (a_node), rbp_mrl_t); \
+ rbp_left_set(a_type, a_field, (r_node), rbp_mrl_t); \
+ } else { \
+ rbp_black_set(a_type, a_field, (a_node)); \
+ } \
+ } else { \
+ rbp_red_set(a_type, a_field, (a_node)); \
+ rbp_rotate_left(a_type, a_field, (a_node), (r_node)); \
+ } \
+} while (0)
+
+#define rbp_move_red_right(a_type, a_field, a_node, r_node) do { \
+ a_type *rbp_mrr_t; \
+ rbp_mrr_t = rbp_left_get(a_type, a_field, (a_node)); \
+ if (rbp_red_get(a_type, a_field, rbp_mrr_t)) { \
+ a_type *rbp_mrr_u, *rbp_mrr_v; \
+ rbp_mrr_u = rbp_right_get(a_type, a_field, rbp_mrr_t); \
+ rbp_mrr_v = rbp_left_get(a_type, a_field, rbp_mrr_u); \
+ if (rbp_red_get(a_type, a_field, rbp_mrr_v)) { \
+ rbp_color_set(a_type, a_field, rbp_mrr_u, \
+ rbp_red_get(a_type, a_field, (a_node))); \
+ rbp_black_set(a_type, a_field, rbp_mrr_v); \
+ rbp_rotate_left(a_type, a_field, rbp_mrr_t, rbp_mrr_u); \
+ rbp_left_set(a_type, a_field, (a_node), rbp_mrr_u); \
+ rbp_rotate_right(a_type, a_field, (a_node), (r_node)); \
+ rbp_rotate_left(a_type, a_field, (a_node), rbp_mrr_t); \
+ rbp_right_set(a_type, a_field, (r_node), rbp_mrr_t); \
+ } else { \
+ rbp_color_set(a_type, a_field, rbp_mrr_t, \
+ rbp_red_get(a_type, a_field, (a_node))); \
+ rbp_red_set(a_type, a_field, rbp_mrr_u); \
+ rbp_rotate_right(a_type, a_field, (a_node), (r_node)); \
+ rbp_rotate_left(a_type, a_field, (a_node), rbp_mrr_t); \
+ rbp_right_set(a_type, a_field, (r_node), rbp_mrr_t); \
+ } \
+ rbp_red_set(a_type, a_field, (a_node)); \
+ } else { \
+ rbp_red_set(a_type, a_field, rbp_mrr_t); \
+ rbp_mrr_t = rbp_left_get(a_type, a_field, rbp_mrr_t); \
+ if (rbp_red_get(a_type, a_field, rbp_mrr_t)) { \
+ rbp_black_set(a_type, a_field, rbp_mrr_t); \
+ rbp_rotate_right(a_type, a_field, (a_node), (r_node)); \
+ rbp_rotate_left(a_type, a_field, (a_node), rbp_mrr_t); \
+ rbp_right_set(a_type, a_field, (r_node), rbp_mrr_t); \
+ } else { \
+ rbp_rotate_left(a_type, a_field, (a_node), (r_node)); \
+ } \
+ } \
+} while (0)
+
+#define rb_insert(a_type, a_field, a_cmp, a_tree, a_node) do { \
+ a_type rbp_i_s; \
+ a_type *rbp_i_g, *rbp_i_p, *rbp_i_c, *rbp_i_t, *rbp_i_u; \
+ int rbp_i_cmp = 0; \
+ rbp_i_g = &(a_tree)->rbt_nil; \
+ rbp_left_set(a_type, a_field, &rbp_i_s, (a_tree)->rbt_root); \
+ rbp_right_set(a_type, a_field, &rbp_i_s, &(a_tree)->rbt_nil); \
+ rbp_black_set(a_type, a_field, &rbp_i_s); \
+ rbp_i_p = &rbp_i_s; \
+ rbp_i_c = (a_tree)->rbt_root; \
+ /* Iteratively search down the tree for the insertion point, */\
+ /* splitting 4-nodes as they are encountered. At the end of each */\
+ /* iteration, rbp_i_g->rbp_i_p->rbp_i_c is a 3-level path down */\
+ /* the tree, assuming a sufficiently deep tree. */\
+ while (rbp_i_c != &(a_tree)->rbt_nil) { \
+ rbp_i_t = rbp_left_get(a_type, a_field, rbp_i_c); \
+ rbp_i_u = rbp_left_get(a_type, a_field, rbp_i_t); \
+ if (rbp_red_get(a_type, a_field, rbp_i_t) \
+ && rbp_red_get(a_type, a_field, rbp_i_u)) { \
+ /* rbp_i_c is the top of a logical 4-node, so split it. */\
+ /* This iteration does not move down the tree, due to the */\
+ /* disruptiveness of node splitting. */\
+ /* */\
+ /* Rotate right. */\
+ rbp_rotate_right(a_type, a_field, rbp_i_c, rbp_i_t); \
+ /* Pass red links up one level. */\
+ rbp_i_u = rbp_left_get(a_type, a_field, rbp_i_t); \
+ rbp_black_set(a_type, a_field, rbp_i_u); \
+ if (rbp_left_get(a_type, a_field, rbp_i_p) == rbp_i_c) { \
+ rbp_left_set(a_type, a_field, rbp_i_p, rbp_i_t); \
+ rbp_i_c = rbp_i_t; \
+ } else { \
+ /* rbp_i_c was the right child of rbp_i_p, so rotate */\
+ /* left in order to maintain the left-leaning */\
+ /* invariant. */\
+ assert(rbp_right_get(a_type, a_field, rbp_i_p) \
+ == rbp_i_c); \
+ rbp_right_set(a_type, a_field, rbp_i_p, rbp_i_t); \
+ rbp_lean_left(a_type, a_field, rbp_i_p, rbp_i_u); \
+ if (rbp_left_get(a_type, a_field, rbp_i_g) == rbp_i_p) {\
+ rbp_left_set(a_type, a_field, rbp_i_g, rbp_i_u); \
+ } else { \
+ assert(rbp_right_get(a_type, a_field, rbp_i_g) \
+ == rbp_i_p); \
+ rbp_right_set(a_type, a_field, rbp_i_g, rbp_i_u); \
+ } \
+ rbp_i_p = rbp_i_u; \
+ rbp_i_cmp = (a_cmp)((a_node), rbp_i_p); \
+ if (rbp_i_cmp < 0) { \
+ rbp_i_c = rbp_left_get(a_type, a_field, rbp_i_p); \
+ } else { \
+ assert(rbp_i_cmp > 0); \
+ rbp_i_c = rbp_right_get(a_type, a_field, rbp_i_p); \
+ } \
+ continue; \
+ } \
+ } \
+ rbp_i_g = rbp_i_p; \
+ rbp_i_p = rbp_i_c; \
+ rbp_i_cmp = (a_cmp)((a_node), rbp_i_c); \
+ if (rbp_i_cmp < 0) { \
+ rbp_i_c = rbp_left_get(a_type, a_field, rbp_i_c); \
+ } else { \
+ assert(rbp_i_cmp > 0); \
+ rbp_i_c = rbp_right_get(a_type, a_field, rbp_i_c); \
+ } \
+ } \
+ /* rbp_i_p now refers to the node under which to insert. */\
+ rbp_node_new(a_type, a_field, a_tree, (a_node)); \
+ if (rbp_i_cmp > 0) { \
+ rbp_right_set(a_type, a_field, rbp_i_p, (a_node)); \
+ rbp_lean_left(a_type, a_field, rbp_i_p, rbp_i_t); \
+ if (rbp_left_get(a_type, a_field, rbp_i_g) == rbp_i_p) { \
+ rbp_left_set(a_type, a_field, rbp_i_g, rbp_i_t); \
+ } else if (rbp_right_get(a_type, a_field, rbp_i_g) == rbp_i_p) {\
+ rbp_right_set(a_type, a_field, rbp_i_g, rbp_i_t); \
+ } \
+ } else { \
+ rbp_left_set(a_type, a_field, rbp_i_p, (a_node)); \
+ } \
+ /* Update the root and make sure that it is black. */\
+ (a_tree)->rbt_root = rbp_left_get(a_type, a_field, &rbp_i_s); \
+ rbp_black_set(a_type, a_field, (a_tree)->rbt_root); \
+} while (0)
+
+#define rb_remove(a_type, a_field, a_cmp, a_tree, a_node) do { \
+ a_type rbp_r_s; \
+ a_type *rbp_r_p, *rbp_r_c, *rbp_r_xp, *rbp_r_t, *rbp_r_u; \
+ int rbp_r_cmp; \
+ rbp_left_set(a_type, a_field, &rbp_r_s, (a_tree)->rbt_root); \
+ rbp_right_set(a_type, a_field, &rbp_r_s, &(a_tree)->rbt_nil); \
+ rbp_black_set(a_type, a_field, &rbp_r_s); \
+ rbp_r_p = &rbp_r_s; \
+ rbp_r_c = (a_tree)->rbt_root; \
+ rbp_r_xp = &(a_tree)->rbt_nil; \
+ /* Iterate down the tree, but always transform 2-nodes to 3- or */\
+ /* 4-nodes in order to maintain the invariant that the current */\
+ /* node is not a 2-node. This allows simple deletion once a leaf */\
+ /* is reached. Handle the root specially though, since there may */\
+ /* be no way to convert it from a 2-node to a 3-node. */\
+ rbp_r_cmp = (a_cmp)((a_node), rbp_r_c); \
+ if (rbp_r_cmp < 0) { \
+ rbp_r_t = rbp_left_get(a_type, a_field, rbp_r_c); \
+ rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t); \
+ if (rbp_red_get(a_type, a_field, rbp_r_t) == false \
+ && rbp_red_get(a_type, a_field, rbp_r_u) == false) { \
+ /* Apply standard transform to prepare for left move. */\
+ rbp_move_red_left(a_type, a_field, rbp_r_c, rbp_r_t); \
+ rbp_black_set(a_type, a_field, rbp_r_t); \
+ rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t); \
+ rbp_r_c = rbp_r_t; \
+ } else { \
+ /* Move left. */\
+ rbp_r_p = rbp_r_c; \
+ rbp_r_c = rbp_left_get(a_type, a_field, rbp_r_c); \
+ } \
+ } else { \
+ if (rbp_r_cmp == 0) { \
+ assert((a_node) == rbp_r_c); \
+ if (rbp_right_get(a_type, a_field, rbp_r_c) \
+ == &(a_tree)->rbt_nil) { \
+ /* Delete root node (which is also a leaf node). */\
+ if (rbp_left_get(a_type, a_field, rbp_r_c) \
+ != &(a_tree)->rbt_nil) { \
+ rbp_lean_right(a_type, a_field, rbp_r_c, rbp_r_t); \
+ rbp_right_set(a_type, a_field, rbp_r_t, \
+ &(a_tree)->rbt_nil); \
+ } else { \
+ rbp_r_t = &(a_tree)->rbt_nil; \
+ } \
+ rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t); \
+ } else { \
+ /* This is the node we want to delete, but we will */\
+ /* instead swap it with its successor and delete the */\
+ /* successor. Record enough information to do the */\
+ /* swap later. rbp_r_xp is the a_node's parent. */\
+ rbp_r_xp = rbp_r_p; \
+ rbp_r_cmp = 1; /* Note that deletion is incomplete. */\
+ } \
+ } \
+ if (rbp_r_cmp == 1) { \
+ if (rbp_red_get(a_type, a_field, rbp_left_get(a_type, \
+ a_field, rbp_right_get(a_type, a_field, rbp_r_c))) \
+ == false) { \
+ rbp_r_t = rbp_left_get(a_type, a_field, rbp_r_c); \
+ if (rbp_red_get(a_type, a_field, rbp_r_t)) { \
+ /* Standard transform. */\
+ rbp_move_red_right(a_type, a_field, rbp_r_c, \
+ rbp_r_t); \
+ } else { \
+ /* Root-specific transform. */\
+ rbp_red_set(a_type, a_field, rbp_r_c); \
+ rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t); \
+ if (rbp_red_get(a_type, a_field, rbp_r_u)) { \
+ rbp_black_set(a_type, a_field, rbp_r_u); \
+ rbp_rotate_right(a_type, a_field, rbp_r_c, \
+ rbp_r_t); \
+ rbp_rotate_left(a_type, a_field, rbp_r_c, \
+ rbp_r_u); \
+ rbp_right_set(a_type, a_field, rbp_r_t, \
+ rbp_r_u); \
+ } else { \
+ rbp_red_set(a_type, a_field, rbp_r_t); \
+ rbp_rotate_left(a_type, a_field, rbp_r_c, \
+ rbp_r_t); \
+ } \
+ } \
+ rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t); \
+ rbp_r_c = rbp_r_t; \
+ } else { \
+ /* Move right. */\
+ rbp_r_p = rbp_r_c; \
+ rbp_r_c = rbp_right_get(a_type, a_field, rbp_r_c); \
+ } \
+ } \
+ } \
+ if (rbp_r_cmp != 0) { \
+ while (true) { \
+ assert(rbp_r_p != &(a_tree)->rbt_nil); \
+ rbp_r_cmp = (a_cmp)((a_node), rbp_r_c); \
+ if (rbp_r_cmp < 0) { \
+ rbp_r_t = rbp_left_get(a_type, a_field, rbp_r_c); \
+ if (rbp_r_t == &(a_tree)->rbt_nil) { \
+ /* rbp_r_c now refers to the successor node to */\
+ /* relocate, and rbp_r_xp/a_node refer to the */\
+ /* context for the relocation. */\
+ if (rbp_left_get(a_type, a_field, rbp_r_xp) \
+ == (a_node)) { \
+ rbp_left_set(a_type, a_field, rbp_r_xp, \
+ rbp_r_c); \
+ } else { \
+ assert(rbp_right_get(a_type, a_field, \
+ rbp_r_xp) == (a_node)); \
+ rbp_right_set(a_type, a_field, rbp_r_xp, \
+ rbp_r_c); \
+ } \
+ rbp_left_set(a_type, a_field, rbp_r_c, \
+ rbp_left_get(a_type, a_field, (a_node))); \
+ rbp_right_set(a_type, a_field, rbp_r_c, \
+ rbp_right_get(a_type, a_field, (a_node))); \
+ rbp_color_set(a_type, a_field, rbp_r_c, \
+ rbp_red_get(a_type, a_field, (a_node))); \
+ if (rbp_left_get(a_type, a_field, rbp_r_p) \
+ == rbp_r_c) { \
+ rbp_left_set(a_type, a_field, rbp_r_p, \
+ &(a_tree)->rbt_nil); \
+ } else { \
+ assert(rbp_right_get(a_type, a_field, rbp_r_p) \
+ == rbp_r_c); \
+ rbp_right_set(a_type, a_field, rbp_r_p, \
+ &(a_tree)->rbt_nil); \
+ } \
+ break; \
+ } \
+ rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t); \
+ if (rbp_red_get(a_type, a_field, rbp_r_t) == false \
+ && rbp_red_get(a_type, a_field, rbp_r_u) == false) { \
+ rbp_move_red_left(a_type, a_field, rbp_r_c, \
+ rbp_r_t); \
+ if (rbp_left_get(a_type, a_field, rbp_r_p) \
+ == rbp_r_c) { \
+ rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t);\
+ } else { \
+ rbp_right_set(a_type, a_field, rbp_r_p, \
+ rbp_r_t); \
+ } \
+ rbp_r_c = rbp_r_t; \
+ } else { \
+ rbp_r_p = rbp_r_c; \
+ rbp_r_c = rbp_left_get(a_type, a_field, rbp_r_c); \
+ } \
+ } else { \
+ /* Check whether to delete this node (it has to be */\
+ /* the correct node and a leaf node). */\
+ if (rbp_r_cmp == 0) { \
+ assert((a_node) == rbp_r_c); \
+ if (rbp_right_get(a_type, a_field, rbp_r_c) \
+ == &(a_tree)->rbt_nil) { \
+ /* Delete leaf node. */\
+ if (rbp_left_get(a_type, a_field, rbp_r_c) \
+ != &(a_tree)->rbt_nil) { \
+ rbp_lean_right(a_type, a_field, rbp_r_c, \
+ rbp_r_t); \
+ rbp_right_set(a_type, a_field, rbp_r_t, \
+ &(a_tree)->rbt_nil); \
+ } else { \
+ rbp_r_t = &(a_tree)->rbt_nil; \
+ } \
+ if (rbp_left_get(a_type, a_field, rbp_r_p) \
+ == rbp_r_c) { \
+ rbp_left_set(a_type, a_field, rbp_r_p, \
+ rbp_r_t); \
+ } else { \
+ rbp_right_set(a_type, a_field, rbp_r_p, \
+ rbp_r_t); \
+ } \
+ break; \
+ } else { \
+ /* This is the node we want to delete, but we */\
+ /* will instead swap it with its successor */\
+ /* and delete the successor. Record enough */\
+ /* information to do the swap later. */\
+ /* rbp_r_xp is a_node's parent. */\
+ rbp_r_xp = rbp_r_p; \
+ } \
+ } \
+ rbp_r_t = rbp_right_get(a_type, a_field, rbp_r_c); \
+ rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t); \
+ if (rbp_red_get(a_type, a_field, rbp_r_u) == false) { \
+ rbp_move_red_right(a_type, a_field, rbp_r_c, \
+ rbp_r_t); \
+ if (rbp_left_get(a_type, a_field, rbp_r_p) \
+ == rbp_r_c) { \
+ rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t);\
+ } else { \
+ rbp_right_set(a_type, a_field, rbp_r_p, \
+ rbp_r_t); \
+ } \
+ rbp_r_c = rbp_r_t; \
+ } else { \
+ rbp_r_p = rbp_r_c; \
+ rbp_r_c = rbp_right_get(a_type, a_field, rbp_r_c); \
+ } \
+ } \
+ } \
+ } \
+ /* Update root. */\
+ (a_tree)->rbt_root = rbp_left_get(a_type, a_field, &rbp_r_s); \
+} while (0)
+
+/*
+ * The rb_wrap() macro provides a convenient way to wrap functions around the
+ * cpp macros. The main benefits of wrapping are that 1) repeated macro
+ * expansion can cause code bloat, especially for rb_{insert,remove)(), and
+ * 2) type, linkage, comparison functions, etc. need not be specified at every
+ * call point.
+ */
+
+#define rb_wrap(a_attr, a_prefix, a_tree_type, a_type, a_field, a_cmp) \
+a_attr void \
+a_prefix##new(a_tree_type *tree) { \
+ rb_new(a_type, a_field, tree); \
+} \
+a_attr a_type * \
+a_prefix##first(a_tree_type *tree) { \
+ a_type *ret; \
+ rb_first(a_type, a_field, tree, ret); \
+ return (ret); \
+} \
+a_attr a_type * \
+a_prefix##last(a_tree_type *tree) { \
+ a_type *ret; \
+ rb_last(a_type, a_field, tree, ret); \
+ return (ret); \
+} \
+a_attr a_type * \
+a_prefix##next(a_tree_type *tree, a_type *node) { \
+ a_type *ret; \
+ rb_next(a_type, a_field, a_cmp, tree, node, ret); \
+ return (ret); \
+} \
+a_attr a_type * \
+a_prefix##prev(a_tree_type *tree, a_type *node) { \
+ a_type *ret; \
+ rb_prev(a_type, a_field, a_cmp, tree, node, ret); \
+ return (ret); \
+} \
+a_attr a_type * \
+a_prefix##search(a_tree_type *tree, a_type *key) { \
+ a_type *ret; \
+ rb_search(a_type, a_field, a_cmp, tree, key, ret); \
+ return (ret); \
+} \
+a_attr a_type * \
+a_prefix##nsearch(a_tree_type *tree, a_type *key) { \
+ a_type *ret; \
+ rb_nsearch(a_type, a_field, a_cmp, tree, key, ret); \
+ return (ret); \
+} \
+a_attr a_type * \
+a_prefix##psearch(a_tree_type *tree, a_type *key) { \
+ a_type *ret; \
+ rb_psearch(a_type, a_field, a_cmp, tree, key, ret); \
+ return (ret); \
+} \
+a_attr void \
+a_prefix##insert(a_tree_type *tree, a_type *node) { \
+ rb_insert(a_type, a_field, a_cmp, tree, node); \
+} \
+a_attr void \
+a_prefix##remove(a_tree_type *tree, a_type *node) { \
+ rb_remove(a_type, a_field, a_cmp, tree, node); \
+}
+
+/*
+ * The iterators simulate recursion via an array of pointers that store the
+ * current path. This is critical to performance, since a series of calls to
+ * rb_{next,prev}() would require time proportional to (n lg n), whereas this
+ * implementation only requires time proportional to (n).
+ *
+ * Since the iterators cache a path down the tree, any tree modification may
+ * cause the cached path to become invalid. In order to continue iteration,
+ * use something like the following sequence:
+ *
+ * {
+ * a_type *node, *tnode;
+ *
+ * rb_foreach_begin(a_type, a_field, a_tree, node) {
+ * ...
+ * rb_next(a_type, a_field, a_cmp, a_tree, node, tnode);
+ * rb_remove(a_type, a_field, a_cmp, a_tree, node);
+ * rb_foreach_next(a_type, a_field, a_cmp, a_tree, tnode);
+ * ...
+ * } rb_foreach_end(a_type, a_field, a_tree, node)
+ * }
+ *
+ * Note that this idiom is not advised if every iteration modifies the tree,
+ * since in that case there is no algorithmic complexity improvement over a
+ * series of rb_{next,prev}() calls, thus making the setup overhead wasted
+ * effort.
+ */
+
+#ifdef RB_NO_C99_VARARRAYS
+ /*
+ * Avoid using variable-length arrays, at the cost of using more stack space.
+ * Size the path arrays such that they are always large enough, even if a
+ * tree consumes all of memory. Since each node must contain a minimum of
+ * two pointers, there can never be more nodes than:
+ *
+ * 1 << ((SIZEOF_PTR<<3) - (SIZEOF_PTR_2POW+1))
+ *
+ * Since the depth of a tree is limited to 3*lg(#nodes), the maximum depth
+ * is:
+ *
+ * (3 * ((SIZEOF_PTR<<3) - (SIZEOF_PTR_2POW+1)))
+ *
+ * This works out to a maximum depth of 87 and 180 for 32- and 64-bit
+ * systems, respectively (approximatly 348 and 1440 bytes, respectively).
+ */
+# define rbp_compute_f_height(a_type, a_field, a_tree)
+# define rbp_f_height (3 * ((SIZEOF_PTR<<3) - (SIZEOF_PTR_2POW+1)))
+# define rbp_compute_fr_height(a_type, a_field, a_tree)
+# define rbp_fr_height (3 * ((SIZEOF_PTR<<3) - (SIZEOF_PTR_2POW+1)))
+#else
+# define rbp_compute_f_height(a_type, a_field, a_tree) \
+ /* Compute the maximum possible tree depth (3X the black height). */\
+ unsigned rbp_f_height; \
+ rbp_black_height(a_type, a_field, a_tree, rbp_f_height); \
+ rbp_f_height *= 3;
+# define rbp_compute_fr_height(a_type, a_field, a_tree) \
+ /* Compute the maximum possible tree depth (3X the black height). */\
+ unsigned rbp_fr_height; \
+ rbp_black_height(a_type, a_field, a_tree, rbp_fr_height); \
+ rbp_fr_height *= 3;
+#endif
+
+#define rb_foreach_begin(a_type, a_field, a_tree, a_var) { \
+ rbp_compute_f_height(a_type, a_field, a_tree) \
+ { \
+ /* Initialize the path to contain the left spine. */\
+ a_type *rbp_f_path[rbp_f_height]; \
+ a_type *rbp_f_node; \
+ bool rbp_f_synced = false; \
+ unsigned rbp_f_depth = 0; \
+ if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) { \
+ rbp_f_path[rbp_f_depth] = (a_tree)->rbt_root; \
+ rbp_f_depth++; \
+ while ((rbp_f_node = rbp_left_get(a_type, a_field, \
+ rbp_f_path[rbp_f_depth-1])) != &(a_tree)->rbt_nil) { \
+ rbp_f_path[rbp_f_depth] = rbp_f_node; \
+ rbp_f_depth++; \
+ } \
+ } \
+ /* While the path is non-empty, iterate. */\
+ while (rbp_f_depth > 0) { \
+ (a_var) = rbp_f_path[rbp_f_depth-1];
+
+/* Only use if modifying the tree during iteration. */
+#define rb_foreach_next(a_type, a_field, a_cmp, a_tree, a_node) \
+ /* Re-initialize the path to contain the path to a_node. */\
+ rbp_f_depth = 0; \
+ if (a_node != NULL) { \
+ if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) { \
+ rbp_f_path[rbp_f_depth] = (a_tree)->rbt_root; \
+ rbp_f_depth++; \
+ rbp_f_node = rbp_f_path[0]; \
+ while (true) { \
+ int rbp_f_cmp = (a_cmp)((a_node), \
+ rbp_f_path[rbp_f_depth-1]); \
+ if (rbp_f_cmp < 0) { \
+ rbp_f_node = rbp_left_get(a_type, a_field, \
+ rbp_f_path[rbp_f_depth-1]); \
+ } else if (rbp_f_cmp > 0) { \
+ rbp_f_node = rbp_right_get(a_type, a_field, \
+ rbp_f_path[rbp_f_depth-1]); \
+ } else { \
+ break; \
+ } \
+ assert(rbp_f_node != &(a_tree)->rbt_nil); \
+ rbp_f_path[rbp_f_depth] = rbp_f_node; \
+ rbp_f_depth++; \
+ } \
+ } \
+ } \
+ rbp_f_synced = true;
+
+#define rb_foreach_end(a_type, a_field, a_tree, a_var) \
+ if (rbp_f_synced) { \
+ rbp_f_synced = false; \
+ continue; \
+ } \
+ /* Find the successor. */\
+ if ((rbp_f_node = rbp_right_get(a_type, a_field, \
+ rbp_f_path[rbp_f_depth-1])) != &(a_tree)->rbt_nil) { \
+ /* The successor is the left-most node in the right */\
+ /* subtree. */\
+ rbp_f_path[rbp_f_depth] = rbp_f_node; \
+ rbp_f_depth++; \
+ while ((rbp_f_node = rbp_left_get(a_type, a_field, \
+ rbp_f_path[rbp_f_depth-1])) != &(a_tree)->rbt_nil) { \
+ rbp_f_path[rbp_f_depth] = rbp_f_node; \
+ rbp_f_depth++; \
+ } \
+ } else { \
+ /* The successor is above the current node. Unwind */\
+ /* until a left-leaning edge is removed from the */\
+ /* path, or the path is empty. */\
+ for (rbp_f_depth--; rbp_f_depth > 0; rbp_f_depth--) { \
+ if (rbp_left_get(a_type, a_field, \
+ rbp_f_path[rbp_f_depth-1]) \
+ == rbp_f_path[rbp_f_depth]) { \
+ break; \
+ } \
+ } \
+ } \
+ } \
+ } \
+}
+
+#define rb_foreach_reverse_begin(a_type, a_field, a_tree, a_var) { \
+ rbp_compute_fr_height(a_type, a_field, a_tree) \
+ { \
+ /* Initialize the path to contain the right spine. */\
+ a_type *rbp_fr_path[rbp_fr_height]; \
+ a_type *rbp_fr_node; \
+ bool rbp_fr_synced = false; \
+ unsigned rbp_fr_depth = 0; \
+ if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) { \
+ rbp_fr_path[rbp_fr_depth] = (a_tree)->rbt_root; \
+ rbp_fr_depth++; \
+ while ((rbp_fr_node = rbp_right_get(a_type, a_field, \
+ rbp_fr_path[rbp_fr_depth-1])) != &(a_tree)->rbt_nil) { \
+ rbp_fr_path[rbp_fr_depth] = rbp_fr_node; \
+ rbp_fr_depth++; \
+ } \
+ } \
+ /* While the path is non-empty, iterate. */\
+ while (rbp_fr_depth > 0) { \
+ (a_var) = rbp_fr_path[rbp_fr_depth-1];
+
+/* Only use if modifying the tree during iteration. */
+#define rb_foreach_reverse_prev(a_type, a_field, a_cmp, a_tree, a_node) \
+ /* Re-initialize the path to contain the path to a_node. */\
+ rbp_fr_depth = 0; \
+ if (a_node != NULL) { \
+ if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) { \
+ rbp_fr_path[rbp_fr_depth] = (a_tree)->rbt_root; \
+ rbp_fr_depth++; \
+ rbp_fr_node = rbp_fr_path[0]; \
+ while (true) { \
+ int rbp_fr_cmp = (a_cmp)((a_node), \
+ rbp_fr_path[rbp_fr_depth-1]); \
+ if (rbp_fr_cmp < 0) { \
+ rbp_fr_node = rbp_left_get(a_type, a_field, \
+ rbp_fr_path[rbp_fr_depth-1]); \
+ } else if (rbp_fr_cmp > 0) { \
+ rbp_fr_node = rbp_right_get(a_type, a_field,\
+ rbp_fr_path[rbp_fr_depth-1]); \
+ } else { \
+ break; \
+ } \
+ assert(rbp_fr_node != &(a_tree)->rbt_nil); \
+ rbp_fr_path[rbp_fr_depth] = rbp_fr_node; \
+ rbp_fr_depth++; \
+ } \
+ } \
+ } \
+ rbp_fr_synced = true;
+
+#define rb_foreach_reverse_end(a_type, a_field, a_tree, a_var) \
+ if (rbp_fr_synced) { \
+ rbp_fr_synced = false; \
+ continue; \
+ } \
+ if (rbp_fr_depth == 0) { \
+ /* rb_foreach_reverse_sync() was called with a NULL */\
+ /* a_node. */\
+ break; \
+ } \
+ /* Find the predecessor. */\
+ if ((rbp_fr_node = rbp_left_get(a_type, a_field, \
+ rbp_fr_path[rbp_fr_depth-1])) != &(a_tree)->rbt_nil) { \
+ /* The predecessor is the right-most node in the left */\
+ /* subtree. */\
+ rbp_fr_path[rbp_fr_depth] = rbp_fr_node; \
+ rbp_fr_depth++; \
+ while ((rbp_fr_node = rbp_right_get(a_type, a_field, \
+ rbp_fr_path[rbp_fr_depth-1])) != &(a_tree)->rbt_nil) {\
+ rbp_fr_path[rbp_fr_depth] = rbp_fr_node; \
+ rbp_fr_depth++; \
+ } \
+ } else { \
+ /* The predecessor is above the current node. Unwind */\
+ /* until a right-leaning edge is removed from the */\
+ /* path, or the path is empty. */\
+ for (rbp_fr_depth--; rbp_fr_depth > 0; rbp_fr_depth--) {\
+ if (rbp_right_get(a_type, a_field, \
+ rbp_fr_path[rbp_fr_depth-1]) \
+ == rbp_fr_path[rbp_fr_depth]) { \
+ break; \
+ } \
+ } \
+ } \
+ } \
+ } \
+}
+
+#endif /* RB_H_ */