summaryrefslogtreecommitdiffstats
path: root/media/sphinxbase/src/libsphinxbase/util/slapack_lite.c
diff options
context:
space:
mode:
Diffstat (limited to 'media/sphinxbase/src/libsphinxbase/util/slapack_lite.c')
-rw-r--r--media/sphinxbase/src/libsphinxbase/util/slapack_lite.c1461
1 files changed, 1461 insertions, 0 deletions
diff --git a/media/sphinxbase/src/libsphinxbase/util/slapack_lite.c b/media/sphinxbase/src/libsphinxbase/util/slapack_lite.c
new file mode 100644
index 000000000..4d4e1af31
--- /dev/null
+++ b/media/sphinxbase/src/libsphinxbase/util/slapack_lite.c
@@ -0,0 +1,1461 @@
+/*
+NOTE: This is generated code. Look in README.python for information on
+ remaking this file.
+*/
+#include "sphinxbase/f2c.h"
+
+#ifdef HAVE_CONFIG
+#include "config.h"
+#else
+extern doublereal slamch_(char *);
+#define EPSILON slamch_("Epsilon")
+#define SAFEMINIMUM slamch_("Safe minimum")
+#define PRECISION slamch_("Precision")
+#define BASE slamch_("Base")
+#endif
+
+
+extern doublereal slapy2_(real *, real *);
+
+
+
+/* Table of constant values */
+
+static integer c__0 = 0;
+static real c_b163 = 0.f;
+static real c_b164 = 1.f;
+static integer c__1 = 1;
+static real c_b181 = -1.f;
+static integer c_n1 = -1;
+
+integer ieeeck_(integer *ispec, real *zero, real *one)
+{
+ /* System generated locals */
+ integer ret_val;
+
+ /* Local variables */
+ static real nan1, nan2, nan3, nan4, nan5, nan6, neginf, posinf, negzro,
+ newzro;
+
+
+/*
+ -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ June 30, 1998
+
+
+ Purpose
+ =======
+
+ IEEECK is called from the ILAENV to verify that Infinity and
+ possibly NaN arithmetic is safe (i.e. will not trap).
+
+ Arguments
+ =========
+
+ ISPEC (input) INTEGER
+ Specifies whether to test just for inifinity arithmetic
+ or whether to test for infinity and NaN arithmetic.
+ = 0: Verify infinity arithmetic only.
+ = 1: Verify infinity and NaN arithmetic.
+
+ ZERO (input) REAL
+ Must contain the value 0.0
+ This is passed to prevent the compiler from optimizing
+ away this code.
+
+ ONE (input) REAL
+ Must contain the value 1.0
+ This is passed to prevent the compiler from optimizing
+ away this code.
+
+ RETURN VALUE: INTEGER
+ = 0: Arithmetic failed to produce the correct answers
+ = 1: Arithmetic produced the correct answers
+*/
+
+ ret_val = 1;
+
+ posinf = *one / *zero;
+ if (posinf <= *one) {
+ ret_val = 0;
+ return ret_val;
+ }
+
+ neginf = -(*one) / *zero;
+ if (neginf >= *zero) {
+ ret_val = 0;
+ return ret_val;
+ }
+
+ negzro = *one / (neginf + *one);
+ if (negzro != *zero) {
+ ret_val = 0;
+ return ret_val;
+ }
+
+ neginf = *one / negzro;
+ if (neginf >= *zero) {
+ ret_val = 0;
+ return ret_val;
+ }
+
+ newzro = negzro + *zero;
+ if (newzro != *zero) {
+ ret_val = 0;
+ return ret_val;
+ }
+
+ posinf = *one / newzro;
+ if (posinf <= *one) {
+ ret_val = 0;
+ return ret_val;
+ }
+
+ neginf *= posinf;
+ if (neginf >= *zero) {
+ ret_val = 0;
+ return ret_val;
+ }
+
+ posinf *= posinf;
+ if (posinf <= *one) {
+ ret_val = 0;
+ return ret_val;
+ }
+
+
+/* Return if we were only asked to check infinity arithmetic */
+
+ if (*ispec == 0) {
+ return ret_val;
+ }
+
+ nan1 = posinf + neginf;
+
+ nan2 = posinf / neginf;
+
+ nan3 = posinf / posinf;
+
+ nan4 = posinf * *zero;
+
+ nan5 = neginf * negzro;
+
+ nan6 = nan5 * 0.f;
+
+ if (nan1 == nan1) {
+ ret_val = 0;
+ return ret_val;
+ }
+
+ if (nan2 == nan2) {
+ ret_val = 0;
+ return ret_val;
+ }
+
+ if (nan3 == nan3) {
+ ret_val = 0;
+ return ret_val;
+ }
+
+ if (nan4 == nan4) {
+ ret_val = 0;
+ return ret_val;
+ }
+
+ if (nan5 == nan5) {
+ ret_val = 0;
+ return ret_val;
+ }
+
+ if (nan6 == nan6) {
+ ret_val = 0;
+ return ret_val;
+ }
+
+ return ret_val;
+} /* ieeeck_ */
+
+integer ilaenv_(integer *ispec, char *name__, char *opts, integer *n1,
+ integer *n2, integer *n3, integer *n4, ftnlen name_len, ftnlen
+ opts_len)
+{
+ /* System generated locals */
+ integer ret_val;
+
+ /* Builtin functions */
+ /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
+ integer s_cmp(char *, char *, ftnlen, ftnlen);
+
+ /* Local variables */
+ static integer i__;
+ static char c1[1], c2[2], c3[3], c4[2];
+ static integer ic, nb, iz, nx;
+ static logical cname, sname;
+ static integer nbmin;
+ extern integer ieeeck_(integer *, real *, real *);
+ static char subnam[6];
+
+
+/*
+ -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ June 30, 1999
+
+
+ Purpose
+ =======
+
+ ILAENV is called from the LAPACK routines to choose problem-dependent
+ parameters for the local environment. See ISPEC for a description of
+ the parameters.
+
+ This version provides a set of parameters which should give good,
+ but not optimal, performance on many of the currently available
+ computers. Users are encouraged to modify this subroutine to set
+ the tuning parameters for their particular machine using the option
+ and problem size information in the arguments.
+
+ This routine will not function correctly if it is converted to all
+ lower case. Converting it to all upper case is allowed.
+
+ Arguments
+ =========
+
+ ISPEC (input) INTEGER
+ Specifies the parameter to be returned as the value of
+ ILAENV.
+ = 1: the optimal blocksize; if this value is 1, an unblocked
+ algorithm will give the best performance.
+ = 2: the minimum block size for which the block routine
+ should be used; if the usable block size is less than
+ this value, an unblocked routine should be used.
+ = 3: the crossover point (in a block routine, for N less
+ than this value, an unblocked routine should be used)
+ = 4: the number of shifts, used in the nonsymmetric
+ eigenvalue routines
+ = 5: the minimum column dimension for blocking to be used;
+ rectangular blocks must have dimension at least k by m,
+ where k is given by ILAENV(2,...) and m by ILAENV(5,...)
+ = 6: the crossover point for the SVD (when reducing an m by n
+ matrix to bidiagonal form, if max(m,n)/min(m,n) exceeds
+ this value, a QR factorization is used first to reduce
+ the matrix to a triangular form.)
+ = 7: the number of processors
+ = 8: the crossover point for the multishift QR and QZ methods
+ for nonsymmetric eigenvalue problems.
+ = 9: maximum size of the subproblems at the bottom of the
+ computation tree in the divide-and-conquer algorithm
+ (used by xGELSD and xGESDD)
+ =10: ieee NaN arithmetic can be trusted not to trap
+ =11: infinity arithmetic can be trusted not to trap
+
+ NAME (input) CHARACTER*(*)
+ The name of the calling subroutine, in either upper case or
+ lower case.
+
+ OPTS (input) CHARACTER*(*)
+ The character options to the subroutine NAME, concatenated
+ into a single character string. For example, UPLO = 'U',
+ TRANS = 'T', and DIAG = 'N' for a triangular routine would
+ be specified as OPTS = 'UTN'.
+
+ N1 (input) INTEGER
+ N2 (input) INTEGER
+ N3 (input) INTEGER
+ N4 (input) INTEGER
+ Problem dimensions for the subroutine NAME; these may not all
+ be required.
+
+ (ILAENV) (output) INTEGER
+ >= 0: the value of the parameter specified by ISPEC
+ < 0: if ILAENV = -k, the k-th argument had an illegal value.
+
+ Further Details
+ ===============
+
+ The following conventions have been used when calling ILAENV from the
+ LAPACK routines:
+ 1) OPTS is a concatenation of all of the character options to
+ subroutine NAME, in the same order that they appear in the
+ argument list for NAME, even if they are not used in determining
+ the value of the parameter specified by ISPEC.
+ 2) The problem dimensions N1, N2, N3, N4 are specified in the order
+ that they appear in the argument list for NAME. N1 is used
+ first, N2 second, and so on, and unused problem dimensions are
+ passed a value of -1.
+ 3) The parameter value returned by ILAENV is checked for validity in
+ the calling subroutine. For example, ILAENV is used to retrieve
+ the optimal blocksize for STRTRI as follows:
+
+ NB = ILAENV( 1, 'STRTRI', UPLO // DIAG, N, -1, -1, -1 )
+ IF( NB.LE.1 ) NB = MAX( 1, N )
+
+ =====================================================================
+*/
+
+
+ switch (*ispec) {
+ case 1: goto L100;
+ case 2: goto L100;
+ case 3: goto L100;
+ case 4: goto L400;
+ case 5: goto L500;
+ case 6: goto L600;
+ case 7: goto L700;
+ case 8: goto L800;
+ case 9: goto L900;
+ case 10: goto L1000;
+ case 11: goto L1100;
+ }
+
+/* Invalid value for ISPEC */
+
+ ret_val = -1;
+ return ret_val;
+
+L100:
+
+/* Convert NAME to upper case if the first character is lower case. */
+
+ ret_val = 1;
+ s_copy(subnam, name__, (ftnlen)6, name_len);
+ ic = *(unsigned char *)subnam;
+ iz = 'Z';
+ if (iz == 90 || iz == 122) {
+
+/* ASCII character set */
+
+ if (ic >= 97 && ic <= 122) {
+ *(unsigned char *)subnam = (char) (ic - 32);
+ for (i__ = 2; i__ <= 6; ++i__) {
+ ic = *(unsigned char *)&subnam[i__ - 1];
+ if (ic >= 97 && ic <= 122) {
+ *(unsigned char *)&subnam[i__ - 1] = (char) (ic - 32);
+ }
+/* L10: */
+ }
+ }
+
+ } else if (iz == 233 || iz == 169) {
+
+/* EBCDIC character set */
+
+ if (ic >= 129 && ic <= 137 || ic >= 145 && ic <= 153 || ic >= 162 &&
+ ic <= 169) {
+ *(unsigned char *)subnam = (char) (ic + 64);
+ for (i__ = 2; i__ <= 6; ++i__) {
+ ic = *(unsigned char *)&subnam[i__ - 1];
+ if (ic >= 129 && ic <= 137 || ic >= 145 && ic <= 153 || ic >=
+ 162 && ic <= 169) {
+ *(unsigned char *)&subnam[i__ - 1] = (char) (ic + 64);
+ }
+/* L20: */
+ }
+ }
+
+ } else if (iz == 218 || iz == 250) {
+
+/* Prime machines: ASCII+128 */
+
+ if (ic >= 225 && ic <= 250) {
+ *(unsigned char *)subnam = (char) (ic - 32);
+ for (i__ = 2; i__ <= 6; ++i__) {
+ ic = *(unsigned char *)&subnam[i__ - 1];
+ if (ic >= 225 && ic <= 250) {
+ *(unsigned char *)&subnam[i__ - 1] = (char) (ic - 32);
+ }
+/* L30: */
+ }
+ }
+ }
+
+ *(unsigned char *)c1 = *(unsigned char *)subnam;
+ sname = *(unsigned char *)c1 == 'S' || *(unsigned char *)c1 == 'D';
+ cname = *(unsigned char *)c1 == 'C' || *(unsigned char *)c1 == 'Z';
+ if (! (cname || sname)) {
+ return ret_val;
+ }
+ s_copy(c2, subnam + 1, (ftnlen)2, (ftnlen)2);
+ s_copy(c3, subnam + 3, (ftnlen)3, (ftnlen)3);
+ s_copy(c4, c3 + 1, (ftnlen)2, (ftnlen)2);
+
+ switch (*ispec) {
+ case 1: goto L110;
+ case 2: goto L200;
+ case 3: goto L300;
+ }
+
+L110:
+
+/*
+ ISPEC = 1: block size
+
+ In these examples, separate code is provided for setting NB for
+ real and complex. We assume that NB will take the same value in
+ single or double precision.
+*/
+
+ nb = 1;
+
+ if (s_cmp(c2, "GE", (ftnlen)2, (ftnlen)2) == 0) {
+ if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) {
+ if (sname) {
+ nb = 64;
+ } else {
+ nb = 64;
+ }
+ } else if (s_cmp(c3, "QRF", (ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3,
+ "RQF", (ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, "LQF", (ftnlen)
+ 3, (ftnlen)3) == 0 || s_cmp(c3, "QLF", (ftnlen)3, (ftnlen)3)
+ == 0) {
+ if (sname) {
+ nb = 32;
+ } else {
+ nb = 32;
+ }
+ } else if (s_cmp(c3, "HRD", (ftnlen)3, (ftnlen)3) == 0) {
+ if (sname) {
+ nb = 32;
+ } else {
+ nb = 32;
+ }
+ } else if (s_cmp(c3, "BRD", (ftnlen)3, (ftnlen)3) == 0) {
+ if (sname) {
+ nb = 32;
+ } else {
+ nb = 32;
+ }
+ } else if (s_cmp(c3, "TRI", (ftnlen)3, (ftnlen)3) == 0) {
+ if (sname) {
+ nb = 64;
+ } else {
+ nb = 64;
+ }
+ }
+ } else if (s_cmp(c2, "PO", (ftnlen)2, (ftnlen)2) == 0) {
+ if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) {
+ if (sname) {
+ nb = 64;
+ } else {
+ nb = 64;
+ }
+ }
+ } else if (s_cmp(c2, "SY", (ftnlen)2, (ftnlen)2) == 0) {
+ if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) {
+ if (sname) {
+ nb = 64;
+ } else {
+ nb = 64;
+ }
+ } else if (sname && s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0) {
+ nb = 32;
+ } else if (sname && s_cmp(c3, "GST", (ftnlen)3, (ftnlen)3) == 0) {
+ nb = 64;
+ }
+ } else if (cname && s_cmp(c2, "HE", (ftnlen)2, (ftnlen)2) == 0) {
+ if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) {
+ nb = 64;
+ } else if (s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0) {
+ nb = 32;
+ } else if (s_cmp(c3, "GST", (ftnlen)3, (ftnlen)3) == 0) {
+ nb = 64;
+ }
+ } else if (sname && s_cmp(c2, "OR", (ftnlen)2, (ftnlen)2) == 0) {
+ if (*(unsigned char *)c3 == 'G') {
+ if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ",
+ (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
+ ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
+ 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
+ c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
+ ftnlen)2, (ftnlen)2) == 0) {
+ nb = 32;
+ }
+ } else if (*(unsigned char *)c3 == 'M') {
+ if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ",
+ (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
+ ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
+ 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
+ c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
+ ftnlen)2, (ftnlen)2) == 0) {
+ nb = 32;
+ }
+ }
+ } else if (cname && s_cmp(c2, "UN", (ftnlen)2, (ftnlen)2) == 0) {
+ if (*(unsigned char *)c3 == 'G') {
+ if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ",
+ (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
+ ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
+ 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
+ c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
+ ftnlen)2, (ftnlen)2) == 0) {
+ nb = 32;
+ }
+ } else if (*(unsigned char *)c3 == 'M') {
+ if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ",
+ (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
+ ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
+ 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
+ c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
+ ftnlen)2, (ftnlen)2) == 0) {
+ nb = 32;
+ }
+ }
+ } else if (s_cmp(c2, "GB", (ftnlen)2, (ftnlen)2) == 0) {
+ if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) {
+ if (sname) {
+ if (*n4 <= 64) {
+ nb = 1;
+ } else {
+ nb = 32;
+ }
+ } else {
+ if (*n4 <= 64) {
+ nb = 1;
+ } else {
+ nb = 32;
+ }
+ }
+ }
+ } else if (s_cmp(c2, "PB", (ftnlen)2, (ftnlen)2) == 0) {
+ if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) {
+ if (sname) {
+ if (*n2 <= 64) {
+ nb = 1;
+ } else {
+ nb = 32;
+ }
+ } else {
+ if (*n2 <= 64) {
+ nb = 1;
+ } else {
+ nb = 32;
+ }
+ }
+ }
+ } else if (s_cmp(c2, "TR", (ftnlen)2, (ftnlen)2) == 0) {
+ if (s_cmp(c3, "TRI", (ftnlen)3, (ftnlen)3) == 0) {
+ if (sname) {
+ nb = 64;
+ } else {
+ nb = 64;
+ }
+ }
+ } else if (s_cmp(c2, "LA", (ftnlen)2, (ftnlen)2) == 0) {
+ if (s_cmp(c3, "UUM", (ftnlen)3, (ftnlen)3) == 0) {
+ if (sname) {
+ nb = 64;
+ } else {
+ nb = 64;
+ }
+ }
+ } else if (sname && s_cmp(c2, "ST", (ftnlen)2, (ftnlen)2) == 0) {
+ if (s_cmp(c3, "EBZ", (ftnlen)3, (ftnlen)3) == 0) {
+ nb = 1;
+ }
+ }
+ ret_val = nb;
+ return ret_val;
+
+L200:
+
+/* ISPEC = 2: minimum block size */
+
+ nbmin = 2;
+ if (s_cmp(c2, "GE", (ftnlen)2, (ftnlen)2) == 0) {
+ if (s_cmp(c3, "QRF", (ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, "RQF", (
+ ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, "LQF", (ftnlen)3, (
+ ftnlen)3) == 0 || s_cmp(c3, "QLF", (ftnlen)3, (ftnlen)3) == 0)
+ {
+ if (sname) {
+ nbmin = 2;
+ } else {
+ nbmin = 2;
+ }
+ } else if (s_cmp(c3, "HRD", (ftnlen)3, (ftnlen)3) == 0) {
+ if (sname) {
+ nbmin = 2;
+ } else {
+ nbmin = 2;
+ }
+ } else if (s_cmp(c3, "BRD", (ftnlen)3, (ftnlen)3) == 0) {
+ if (sname) {
+ nbmin = 2;
+ } else {
+ nbmin = 2;
+ }
+ } else if (s_cmp(c3, "TRI", (ftnlen)3, (ftnlen)3) == 0) {
+ if (sname) {
+ nbmin = 2;
+ } else {
+ nbmin = 2;
+ }
+ }
+ } else if (s_cmp(c2, "SY", (ftnlen)2, (ftnlen)2) == 0) {
+ if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) {
+ if (sname) {
+ nbmin = 8;
+ } else {
+ nbmin = 8;
+ }
+ } else if (sname && s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0) {
+ nbmin = 2;
+ }
+ } else if (cname && s_cmp(c2, "HE", (ftnlen)2, (ftnlen)2) == 0) {
+ if (s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0) {
+ nbmin = 2;
+ }
+ } else if (sname && s_cmp(c2, "OR", (ftnlen)2, (ftnlen)2) == 0) {
+ if (*(unsigned char *)c3 == 'G') {
+ if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ",
+ (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
+ ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
+ 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
+ c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
+ ftnlen)2, (ftnlen)2) == 0) {
+ nbmin = 2;
+ }
+ } else if (*(unsigned char *)c3 == 'M') {
+ if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ",
+ (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
+ ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
+ 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
+ c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
+ ftnlen)2, (ftnlen)2) == 0) {
+ nbmin = 2;
+ }
+ }
+ } else if (cname && s_cmp(c2, "UN", (ftnlen)2, (ftnlen)2) == 0) {
+ if (*(unsigned char *)c3 == 'G') {
+ if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ",
+ (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
+ ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
+ 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
+ c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
+ ftnlen)2, (ftnlen)2) == 0) {
+ nbmin = 2;
+ }
+ } else if (*(unsigned char *)c3 == 'M') {
+ if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ",
+ (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
+ ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
+ 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
+ c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
+ ftnlen)2, (ftnlen)2) == 0) {
+ nbmin = 2;
+ }
+ }
+ }
+ ret_val = nbmin;
+ return ret_val;
+
+L300:
+
+/* ISPEC = 3: crossover point */
+
+ nx = 0;
+ if (s_cmp(c2, "GE", (ftnlen)2, (ftnlen)2) == 0) {
+ if (s_cmp(c3, "QRF", (ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, "RQF", (
+ ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, "LQF", (ftnlen)3, (
+ ftnlen)3) == 0 || s_cmp(c3, "QLF", (ftnlen)3, (ftnlen)3) == 0)
+ {
+ if (sname) {
+ nx = 128;
+ } else {
+ nx = 128;
+ }
+ } else if (s_cmp(c3, "HRD", (ftnlen)3, (ftnlen)3) == 0) {
+ if (sname) {
+ nx = 128;
+ } else {
+ nx = 128;
+ }
+ } else if (s_cmp(c3, "BRD", (ftnlen)3, (ftnlen)3) == 0) {
+ if (sname) {
+ nx = 128;
+ } else {
+ nx = 128;
+ }
+ }
+ } else if (s_cmp(c2, "SY", (ftnlen)2, (ftnlen)2) == 0) {
+ if (sname && s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0) {
+ nx = 32;
+ }
+ } else if (cname && s_cmp(c2, "HE", (ftnlen)2, (ftnlen)2) == 0) {
+ if (s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0) {
+ nx = 32;
+ }
+ } else if (sname && s_cmp(c2, "OR", (ftnlen)2, (ftnlen)2) == 0) {
+ if (*(unsigned char *)c3 == 'G') {
+ if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ",
+ (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
+ ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
+ 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
+ c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
+ ftnlen)2, (ftnlen)2) == 0) {
+ nx = 128;
+ }
+ }
+ } else if (cname && s_cmp(c2, "UN", (ftnlen)2, (ftnlen)2) == 0) {
+ if (*(unsigned char *)c3 == 'G') {
+ if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ",
+ (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
+ ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
+ 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
+ c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
+ ftnlen)2, (ftnlen)2) == 0) {
+ nx = 128;
+ }
+ }
+ }
+ ret_val = nx;
+ return ret_val;
+
+L400:
+
+/* ISPEC = 4: number of shifts (used by xHSEQR) */
+
+ ret_val = 6;
+ return ret_val;
+
+L500:
+
+/* ISPEC = 5: minimum column dimension (not used) */
+
+ ret_val = 2;
+ return ret_val;
+
+L600:
+
+/* ISPEC = 6: crossover point for SVD (used by xGELSS and xGESVD) */
+
+ ret_val = (integer) ((real) min(*n1,*n2) * 1.6f);
+ return ret_val;
+
+L700:
+
+/* ISPEC = 7: number of processors (not used) */
+
+ ret_val = 1;
+ return ret_val;
+
+L800:
+
+/* ISPEC = 8: crossover point for multishift (used by xHSEQR) */
+
+ ret_val = 50;
+ return ret_val;
+
+L900:
+
+/*
+ ISPEC = 9: maximum size of the subproblems at the bottom of the
+ computation tree in the divide-and-conquer algorithm
+ (used by xGELSD and xGESDD)
+*/
+
+ ret_val = 25;
+ return ret_val;
+
+L1000:
+
+/*
+ ISPEC = 10: ieee NaN arithmetic can be trusted not to trap
+
+ ILAENV = 0
+*/
+ ret_val = 1;
+ if (ret_val == 1) {
+ ret_val = ieeeck_(&c__0, &c_b163, &c_b164);
+ }
+ return ret_val;
+
+L1100:
+
+/*
+ ISPEC = 11: infinity arithmetic can be trusted not to trap
+
+ ILAENV = 0
+*/
+ ret_val = 1;
+ if (ret_val == 1) {
+ ret_val = ieeeck_(&c__1, &c_b163, &c_b164);
+ }
+ return ret_val;
+
+/* End of ILAENV */
+
+} /* ilaenv_ */
+
+/* Subroutine */ int sposv_(char *uplo, integer *n, integer *nrhs, real *a,
+ integer *lda, real *b, integer *ldb, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, b_dim1, b_offset, i__1;
+
+ /* Local variables */
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int xerbla_(char *, integer *), spotrf_(
+ char *, integer *, real *, integer *, integer *), spotrs_(
+ char *, integer *, integer *, real *, integer *, real *, integer *
+ , integer *);
+
+
+/*
+ -- LAPACK driver routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ March 31, 1993
+
+
+ Purpose
+ =======
+
+ SPOSV computes the solution to a real system of linear equations
+ A * X = B,
+ where A is an N-by-N symmetric positive definite matrix and X and B
+ are N-by-NRHS matrices.
+
+ The Cholesky decomposition is used to factor A as
+ A = U**T* U, if UPLO = 'U', or
+ A = L * L**T, if UPLO = 'L',
+ where U is an upper triangular matrix and L is a lower triangular
+ matrix. The factored form of A is then used to solve the system of
+ equations A * X = B.
+
+ Arguments
+ =========
+
+ UPLO (input) CHARACTER*1
+ = 'U': Upper triangle of A is stored;
+ = 'L': Lower triangle of A is stored.
+
+ N (input) INTEGER
+ The number of linear equations, i.e., the order of the
+ matrix A. N >= 0.
+
+ NRHS (input) INTEGER
+ The number of right hand sides, i.e., the number of columns
+ of the matrix B. NRHS >= 0.
+
+ A (input/output) REAL array, dimension (LDA,N)
+ On entry, the symmetric matrix A. If UPLO = 'U', the leading
+ N-by-N upper triangular part of A contains the upper
+ triangular part of the matrix A, and the strictly lower
+ triangular part of A is not referenced. If UPLO = 'L', the
+ leading N-by-N lower triangular part of A contains the lower
+ triangular part of the matrix A, and the strictly upper
+ triangular part of A is not referenced.
+
+ On exit, if INFO = 0, the factor U or L from the Cholesky
+ factorization A = U**T*U or A = L*L**T.
+
+ LDA (input) INTEGER
+ The leading dimension of the array A. LDA >= max(1,N).
+
+ B (input/output) REAL array, dimension (LDB,NRHS)
+ On entry, the N-by-NRHS right hand side matrix B.
+ On exit, if INFO = 0, the N-by-NRHS solution matrix X.
+
+ LDB (input) INTEGER
+ The leading dimension of the array B. LDB >= max(1,N).
+
+ INFO (output) INTEGER
+ = 0: successful exit
+ < 0: if INFO = -i, the i-th argument had an illegal value
+ > 0: if INFO = i, the leading minor of order i of A is not
+ positive definite, so the factorization could not be
+ completed, and the solution has not been computed.
+
+ =====================================================================
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Function Body */
+ *info = 0;
+ if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
+ *info = -1;
+ } else if (*n < 0) {
+ *info = -2;
+ } else if (*nrhs < 0) {
+ *info = -3;
+ } else if (*lda < max(1,*n)) {
+ *info = -5;
+ } else if (*ldb < max(1,*n)) {
+ *info = -7;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("SPOSV ", &i__1);
+ return 0;
+ }
+
+/* Compute the Cholesky factorization A = U'*U or A = L*L'. */
+
+ spotrf_(uplo, n, &a[a_offset], lda, info);
+ if (*info == 0) {
+
+/* Solve the system A*X = B, overwriting B with X. */
+
+ spotrs_(uplo, n, nrhs, &a[a_offset], lda, &b[b_offset], ldb, info);
+
+ }
+ return 0;
+
+/* End of SPOSV */
+
+} /* sposv_ */
+
+/* Subroutine */ int spotf2_(char *uplo, integer *n, real *a, integer *lda,
+ integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3;
+ real r__1;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+
+ /* Local variables */
+ static integer j;
+ static real ajj;
+ extern doublereal sdot_(integer *, real *, integer *, real *, integer *);
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *),
+ sgemv_(char *, integer *, integer *, real *, real *, integer *,
+ real *, integer *, real *, real *, integer *);
+ static logical upper;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ February 29, 1992
+
+
+ Purpose
+ =======
+
+ SPOTF2 computes the Cholesky factorization of a real symmetric
+ positive definite matrix A.
+
+ The factorization has the form
+ A = U' * U , if UPLO = 'U', or
+ A = L * L', if UPLO = 'L',
+ where U is an upper triangular matrix and L is lower triangular.
+
+ This is the unblocked version of the algorithm, calling Level 2 BLAS.
+
+ Arguments
+ =========
+
+ UPLO (input) CHARACTER*1
+ Specifies whether the upper or lower triangular part of the
+ symmetric matrix A is stored.
+ = 'U': Upper triangular
+ = 'L': Lower triangular
+
+ N (input) INTEGER
+ The order of the matrix A. N >= 0.
+
+ A (input/output) REAL array, dimension (LDA,N)
+ On entry, the symmetric matrix A. If UPLO = 'U', the leading
+ n by n upper triangular part of A contains the upper
+ triangular part of the matrix A, and the strictly lower
+ triangular part of A is not referenced. If UPLO = 'L', the
+ leading n by n lower triangular part of A contains the lower
+ triangular part of the matrix A, and the strictly upper
+ triangular part of A is not referenced.
+
+ On exit, if INFO = 0, the factor U or L from the Cholesky
+ factorization A = U'*U or A = L*L'.
+
+ LDA (input) INTEGER
+ The leading dimension of the array A. LDA >= max(1,N).
+
+ INFO (output) INTEGER
+ = 0: successful exit
+ < 0: if INFO = -k, the k-th argument had an illegal value
+ > 0: if INFO = k, the leading minor of order k is not
+ positive definite, and the factorization could not be
+ completed.
+
+ =====================================================================
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+
+ /* Function Body */
+ *info = 0;
+ upper = lsame_(uplo, "U");
+ if (! upper && ! lsame_(uplo, "L")) {
+ *info = -1;
+ } else if (*n < 0) {
+ *info = -2;
+ } else if (*lda < max(1,*n)) {
+ *info = -4;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("SPOTF2", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+ if (upper) {
+
+/* Compute the Cholesky factorization A = U'*U. */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+
+/* Compute U(J,J) and test for non-positive-definiteness. */
+
+ i__2 = j - 1;
+ ajj = a[j + j * a_dim1] - sdot_(&i__2, &a[j * a_dim1 + 1], &c__1,
+ &a[j * a_dim1 + 1], &c__1);
+ if (ajj <= 0.f) {
+ a[j + j * a_dim1] = ajj;
+ goto L30;
+ }
+ ajj = sqrt(ajj);
+ a[j + j * a_dim1] = ajj;
+
+/* Compute elements J+1:N of row J. */
+
+ if (j < *n) {
+ i__2 = j - 1;
+ i__3 = *n - j;
+ sgemv_("Transpose", &i__2, &i__3, &c_b181, &a[(j + 1) *
+ a_dim1 + 1], lda, &a[j * a_dim1 + 1], &c__1, &c_b164,
+ &a[j + (j + 1) * a_dim1], lda);
+ i__2 = *n - j;
+ r__1 = 1.f / ajj;
+ sscal_(&i__2, &r__1, &a[j + (j + 1) * a_dim1], lda);
+ }
+/* L10: */
+ }
+ } else {
+
+/* Compute the Cholesky factorization A = L*L'. */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+
+/* Compute L(J,J) and test for non-positive-definiteness. */
+
+ i__2 = j - 1;
+ ajj = a[j + j * a_dim1] - sdot_(&i__2, &a[j + a_dim1], lda, &a[j
+ + a_dim1], lda);
+ if (ajj <= 0.f) {
+ a[j + j * a_dim1] = ajj;
+ goto L30;
+ }
+ ajj = sqrt(ajj);
+ a[j + j * a_dim1] = ajj;
+
+/* Compute elements J+1:N of column J. */
+
+ if (j < *n) {
+ i__2 = *n - j;
+ i__3 = j - 1;
+ sgemv_("No transpose", &i__2, &i__3, &c_b181, &a[j + 1 +
+ a_dim1], lda, &a[j + a_dim1], lda, &c_b164, &a[j + 1
+ + j * a_dim1], &c__1);
+ i__2 = *n - j;
+ r__1 = 1.f / ajj;
+ sscal_(&i__2, &r__1, &a[j + 1 + j * a_dim1], &c__1);
+ }
+/* L20: */
+ }
+ }
+ goto L40;
+
+L30:
+ *info = j;
+
+L40:
+ return 0;
+
+/* End of SPOTF2 */
+
+} /* spotf2_ */
+
+/* Subroutine */ int spotrf_(char *uplo, integer *n, real *a, integer *lda,
+ integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
+
+ /* Local variables */
+ static integer j, jb, nb;
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *,
+ integer *, real *, real *, integer *, real *, integer *, real *,
+ real *, integer *);
+ static logical upper;
+ extern /* Subroutine */ int strsm_(char *, char *, char *, char *,
+ integer *, integer *, real *, real *, integer *, real *, integer *
+ ), ssyrk_(char *, char *, integer
+ *, integer *, real *, real *, integer *, real *, real *, integer *
+ ), spotf2_(char *, integer *, real *, integer *,
+ integer *), xerbla_(char *, integer *);
+ extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
+ integer *, integer *, ftnlen, ftnlen);
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ March 31, 1993
+
+
+ Purpose
+ =======
+
+ SPOTRF computes the Cholesky factorization of a real symmetric
+ positive definite matrix A.
+
+ The factorization has the form
+ A = U**T * U, if UPLO = 'U', or
+ A = L * L**T, if UPLO = 'L',
+ where U is an upper triangular matrix and L is lower triangular.
+
+ This is the block version of the algorithm, calling Level 3 BLAS.
+
+ Arguments
+ =========
+
+ UPLO (input) CHARACTER*1
+ = 'U': Upper triangle of A is stored;
+ = 'L': Lower triangle of A is stored.
+
+ N (input) INTEGER
+ The order of the matrix A. N >= 0.
+
+ A (input/output) REAL array, dimension (LDA,N)
+ On entry, the symmetric matrix A. If UPLO = 'U', the leading
+ N-by-N upper triangular part of A contains the upper
+ triangular part of the matrix A, and the strictly lower
+ triangular part of A is not referenced. If UPLO = 'L', the
+ leading N-by-N lower triangular part of A contains the lower
+ triangular part of the matrix A, and the strictly upper
+ triangular part of A is not referenced.
+
+ On exit, if INFO = 0, the factor U or L from the Cholesky
+ factorization A = U**T*U or A = L*L**T.
+
+ LDA (input) INTEGER
+ The leading dimension of the array A. LDA >= max(1,N).
+
+ INFO (output) INTEGER
+ = 0: successful exit
+ < 0: if INFO = -i, the i-th argument had an illegal value
+ > 0: if INFO = i, the leading minor of order i is not
+ positive definite, and the factorization could not be
+ completed.
+
+ =====================================================================
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+
+ /* Function Body */
+ *info = 0;
+ upper = lsame_(uplo, "U");
+ if (! upper && ! lsame_(uplo, "L")) {
+ *info = -1;
+ } else if (*n < 0) {
+ *info = -2;
+ } else if (*lda < max(1,*n)) {
+ *info = -4;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("SPOTRF", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+/* Determine the block size for this environment. */
+
+ nb = ilaenv_(&c__1, "SPOTRF", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)6, (
+ ftnlen)1);
+ if (nb <= 1 || nb >= *n) {
+
+/* Use unblocked code. */
+
+ spotf2_(uplo, n, &a[a_offset], lda, info);
+ } else {
+
+/* Use blocked code. */
+
+ if (upper) {
+
+/* Compute the Cholesky factorization A = U'*U. */
+
+ i__1 = *n;
+ i__2 = nb;
+ for (j = 1; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
+
+/*
+ Update and factorize the current diagonal block and test
+ for non-positive-definiteness.
+
+ Computing MIN
+*/
+ i__3 = nb, i__4 = *n - j + 1;
+ jb = min(i__3,i__4);
+ i__3 = j - 1;
+ ssyrk_("Upper", "Transpose", &jb, &i__3, &c_b181, &a[j *
+ a_dim1 + 1], lda, &c_b164, &a[j + j * a_dim1], lda);
+ spotf2_("Upper", &jb, &a[j + j * a_dim1], lda, info);
+ if (*info != 0) {
+ goto L30;
+ }
+ if (j + jb <= *n) {
+
+/* Compute the current block row. */
+
+ i__3 = *n - j - jb + 1;
+ i__4 = j - 1;
+ sgemm_("Transpose", "No transpose", &jb, &i__3, &i__4, &
+ c_b181, &a[j * a_dim1 + 1], lda, &a[(j + jb) *
+ a_dim1 + 1], lda, &c_b164, &a[j + (j + jb) *
+ a_dim1], lda);
+ i__3 = *n - j - jb + 1;
+ strsm_("Left", "Upper", "Transpose", "Non-unit", &jb, &
+ i__3, &c_b164, &a[j + j * a_dim1], lda, &a[j + (j
+ + jb) * a_dim1], lda);
+ }
+/* L10: */
+ }
+
+ } else {
+
+/* Compute the Cholesky factorization A = L*L'. */
+
+ i__2 = *n;
+ i__1 = nb;
+ for (j = 1; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {
+
+/*
+ Update and factorize the current diagonal block and test
+ for non-positive-definiteness.
+
+ Computing MIN
+*/
+ i__3 = nb, i__4 = *n - j + 1;
+ jb = min(i__3,i__4);
+ i__3 = j - 1;
+ ssyrk_("Lower", "No transpose", &jb, &i__3, &c_b181, &a[j +
+ a_dim1], lda, &c_b164, &a[j + j * a_dim1], lda);
+ spotf2_("Lower", &jb, &a[j + j * a_dim1], lda, info);
+ if (*info != 0) {
+ goto L30;
+ }
+ if (j + jb <= *n) {
+
+/* Compute the current block column. */
+
+ i__3 = *n - j - jb + 1;
+ i__4 = j - 1;
+ sgemm_("No transpose", "Transpose", &i__3, &jb, &i__4, &
+ c_b181, &a[j + jb + a_dim1], lda, &a[j + a_dim1],
+ lda, &c_b164, &a[j + jb + j * a_dim1], lda);
+ i__3 = *n - j - jb + 1;
+ strsm_("Right", "Lower", "Transpose", "Non-unit", &i__3, &
+ jb, &c_b164, &a[j + j * a_dim1], lda, &a[j + jb +
+ j * a_dim1], lda);
+ }
+/* L20: */
+ }
+ }
+ }
+ goto L40;
+
+L30:
+ *info = *info + j - 1;
+
+L40:
+ return 0;
+
+/* End of SPOTRF */
+
+} /* spotrf_ */
+
+/* Subroutine */ int spotrs_(char *uplo, integer *n, integer *nrhs, real *a,
+ integer *lda, real *b, integer *ldb, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, b_dim1, b_offset, i__1;
+
+ /* Local variables */
+ extern logical lsame_(char *, char *);
+ static logical upper;
+ extern /* Subroutine */ int strsm_(char *, char *, char *, char *,
+ integer *, integer *, real *, real *, integer *, real *, integer *
+ ), xerbla_(char *, integer *);
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ March 31, 1993
+
+
+ Purpose
+ =======
+
+ SPOTRS solves a system of linear equations A*X = B with a symmetric
+ positive definite matrix A using the Cholesky factorization
+ A = U**T*U or A = L*L**T computed by SPOTRF.
+
+ Arguments
+ =========
+
+ UPLO (input) CHARACTER*1
+ = 'U': Upper triangle of A is stored;
+ = 'L': Lower triangle of A is stored.
+
+ N (input) INTEGER
+ The order of the matrix A. N >= 0.
+
+ NRHS (input) INTEGER
+ The number of right hand sides, i.e., the number of columns
+ of the matrix B. NRHS >= 0.
+
+ A (input) REAL array, dimension (LDA,N)
+ The triangular factor U or L from the Cholesky factorization
+ A = U**T*U or A = L*L**T, as computed by SPOTRF.
+
+ LDA (input) INTEGER
+ The leading dimension of the array A. LDA >= max(1,N).
+
+ B (input/output) REAL array, dimension (LDB,NRHS)
+ On entry, the right hand side matrix B.
+ On exit, the solution matrix X.
+
+ LDB (input) INTEGER
+ The leading dimension of the array B. LDB >= max(1,N).
+
+ INFO (output) INTEGER
+ = 0: successful exit
+ < 0: if INFO = -i, the i-th argument had an illegal value
+
+ =====================================================================
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Function Body */
+ *info = 0;
+ upper = lsame_(uplo, "U");
+ if (! upper && ! lsame_(uplo, "L")) {
+ *info = -1;
+ } else if (*n < 0) {
+ *info = -2;
+ } else if (*nrhs < 0) {
+ *info = -3;
+ } else if (*lda < max(1,*n)) {
+ *info = -5;
+ } else if (*ldb < max(1,*n)) {
+ *info = -7;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("SPOTRS", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0 || *nrhs == 0) {
+ return 0;
+ }
+
+ if (upper) {
+
+/*
+ Solve A*X = B where A = U'*U.
+
+ Solve U'*X = B, overwriting B with X.
+*/
+
+ strsm_("Left", "Upper", "Transpose", "Non-unit", n, nrhs, &c_b164, &a[
+ a_offset], lda, &b[b_offset], ldb);
+
+/* Solve U*X = B, overwriting B with X. */
+
+ strsm_("Left", "Upper", "No transpose", "Non-unit", n, nrhs, &c_b164,
+ &a[a_offset], lda, &b[b_offset], ldb);
+ } else {
+
+/*
+ Solve A*X = B where A = L*L'.
+
+ Solve L*X = B, overwriting B with X.
+*/
+
+ strsm_("Left", "Lower", "No transpose", "Non-unit", n, nrhs, &c_b164,
+ &a[a_offset], lda, &b[b_offset], ldb);
+
+/* Solve L'*X = B, overwriting B with X. */
+
+ strsm_("Left", "Lower", "Transpose", "Non-unit", n, nrhs, &c_b164, &a[
+ a_offset], lda, &b[b_offset], ldb);
+ }
+
+ return 0;
+
+/* End of SPOTRS */
+
+} /* spotrs_ */
+