summaryrefslogtreecommitdiffstats
path: root/media/sphinxbase/src/libsphinxbase/util/slamch.c
diff options
context:
space:
mode:
Diffstat (limited to 'media/sphinxbase/src/libsphinxbase/util/slamch.c')
-rw-r--r--media/sphinxbase/src/libsphinxbase/util/slamch.c1029
1 files changed, 0 insertions, 1029 deletions
diff --git a/media/sphinxbase/src/libsphinxbase/util/slamch.c b/media/sphinxbase/src/libsphinxbase/util/slamch.c
deleted file mode 100644
index 229458470..000000000
--- a/media/sphinxbase/src/libsphinxbase/util/slamch.c
+++ /dev/null
@@ -1,1029 +0,0 @@
-/* src/slamch.f -- translated by f2c (version 20050501).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
-
- http://www.netlib.org/f2c/libf2c.zip
-*/
-
-#include "sphinxbase/f2c.h"
-
-#ifdef _MSC_VER
-#pragma warning (disable: 4244)
-#endif
-
-/* Table of constant values */
-
-static integer c__1 = 1;
-static real c_b32 = 0.f;
-
-doublereal
-slamch_(char *cmach, ftnlen cmach_len)
-{
- /* Initialized data */
-
- static logical first = TRUE_;
-
- /* System generated locals */
- integer i__1;
- real ret_val;
-
- /* Builtin functions */
- double pow_ri(real *, integer *);
-
- /* Local variables */
- static real t;
- static integer it;
- static real rnd, eps, base;
- static integer beta;
- static real emin, prec, emax;
- static integer imin, imax;
- static logical lrnd;
- static real rmin, rmax, rmach;
- extern logical lsame_(char *, char *, ftnlen, ftnlen);
- static real small, sfmin;
- extern /* Subroutine */ int slamc2_(integer *, integer *, logical *, real
- *, integer *, real *, integer *,
- real *);
-
-
-/* -- LAPACK auxiliary routine (version 3.0) -- */
-/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
-/* Courant Institute, Argonne National Lab, and Rice University */
-/* October 31, 1992 */
-
-/* .. Scalar Arguments .. */
-/* .. */
-
-/* Purpose */
-/* ======= */
-
-/* SLAMCH determines single precision machine parameters. */
-
-/* Arguments */
-/* ========= */
-
-/* CMACH (input) CHARACTER*1 */
-/* Specifies the value to be returned by SLAMCH: */
-/* = 'E' or 'e', SLAMCH := eps */
-/* = 'S' or 's , SLAMCH := sfmin */
-/* = 'B' or 'b', SLAMCH := base */
-/* = 'P' or 'p', SLAMCH := eps*base */
-/* = 'N' or 'n', SLAMCH := t */
-/* = 'R' or 'r', SLAMCH := rnd */
-/* = 'M' or 'm', SLAMCH := emin */
-/* = 'U' or 'u', SLAMCH := rmin */
-/* = 'L' or 'l', SLAMCH := emax */
-/* = 'O' or 'o', SLAMCH := rmax */
-
-/* where */
-
-/* eps = relative machine precision */
-/* sfmin = safe minimum, such that 1/sfmin does not overflow */
-/* base = base of the machine */
-/* prec = eps*base */
-/* t = number of (base) digits in the mantissa */
-/* rnd = 1.0 when rounding occurs in addition, 0.0 otherwise */
-/* emin = minimum exponent before (gradual) underflow */
-/* rmin = underflow threshold - base**(emin-1) */
-/* emax = largest exponent before overflow */
-/* rmax = overflow threshold - (base**emax)*(1-eps) */
-
-/* ===================================================================== */
-
-/* .. Parameters .. */
-/* .. */
-/* .. Local Scalars .. */
-/* .. */
-/* .. External Functions .. */
-/* .. */
-/* .. External Subroutines .. */
-/* .. */
-/* .. Save statement .. */
-/* .. */
-/* .. Data statements .. */
-/* .. */
-/* .. Executable Statements .. */
-
- if (first) {
- first = FALSE_;
- slamc2_(&beta, &it, &lrnd, &eps, &imin, &rmin, &imax, &rmax);
- base = (real) beta;
- t = (real) it;
- if (lrnd) {
- rnd = 1.f;
- i__1 = 1 - it;
- eps = pow_ri(&base, &i__1) / 2;
- }
- else {
- rnd = 0.f;
- i__1 = 1 - it;
- eps = pow_ri(&base, &i__1);
- }
- prec = eps * base;
- emin = (real) imin;
- emax = (real) imax;
- sfmin = rmin;
- small = 1.f / rmax;
- if (small >= sfmin) {
-
-/* Use SMALL plus a bit, to avoid the possibility of rounding */
-/* causing overflow when computing 1/sfmin. */
-
- sfmin = small * (eps + 1.f);
- }
- }
-
- if (lsame_(cmach, "E", (ftnlen) 1, (ftnlen) 1)) {
- rmach = eps;
- }
- else if (lsame_(cmach, "S", (ftnlen) 1, (ftnlen) 1)) {
- rmach = sfmin;
- }
- else if (lsame_(cmach, "B", (ftnlen) 1, (ftnlen) 1)) {
- rmach = base;
- }
- else if (lsame_(cmach, "P", (ftnlen) 1, (ftnlen) 1)) {
- rmach = prec;
- }
- else if (lsame_(cmach, "N", (ftnlen) 1, (ftnlen) 1)) {
- rmach = t;
- }
- else if (lsame_(cmach, "R", (ftnlen) 1, (ftnlen) 1)) {
- rmach = rnd;
- }
- else if (lsame_(cmach, "M", (ftnlen) 1, (ftnlen) 1)) {
- rmach = emin;
- }
- else if (lsame_(cmach, "U", (ftnlen) 1, (ftnlen) 1)) {
- rmach = rmin;
- }
- else if (lsame_(cmach, "L", (ftnlen) 1, (ftnlen) 1)) {
- rmach = emax;
- }
- else if (lsame_(cmach, "O", (ftnlen) 1, (ftnlen) 1)) {
- rmach = rmax;
- }
-
- ret_val = rmach;
- return ret_val;
-
-/* End of SLAMCH */
-
-} /* slamch_ */
-
-
-/* *********************************************************************** */
-
-/* Subroutine */ int
-slamc1_(integer * beta, integer * t, logical * rnd, logical * ieee1)
-{
- /* Initialized data */
-
- static logical first = TRUE_;
-
- /* System generated locals */
- real r__1, r__2;
-
- /* Local variables */
- static real a, b, c__, f, t1, t2;
- static integer lt;
- static real one, qtr;
- static logical lrnd;
- static integer lbeta;
- static real savec;
- static logical lieee1;
- extern doublereal slamc3_(real *, real *);
-
-
-/* -- LAPACK auxiliary routine (version 3.0) -- */
-/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
-/* Courant Institute, Argonne National Lab, and Rice University */
-/* October 31, 1992 */
-
-/* .. Scalar Arguments .. */
-/* .. */
-
-/* Purpose */
-/* ======= */
-
-/* SLAMC1 determines the machine parameters given by BETA, T, RND, and */
-/* IEEE1. */
-
-/* Arguments */
-/* ========= */
-
-/* BETA (output) INTEGER */
-/* The base of the machine. */
-
-/* T (output) INTEGER */
-/* The number of ( BETA ) digits in the mantissa. */
-
-/* RND (output) LOGICAL */
-/* Specifies whether proper rounding ( RND = .TRUE. ) or */
-/* chopping ( RND = .FALSE. ) occurs in addition. This may not */
-/* be a reliable guide to the way in which the machine performs */
-/* its arithmetic. */
-
-/* IEEE1 (output) LOGICAL */
-/* Specifies whether rounding appears to be done in the IEEE */
-/* 'round to nearest' style. */
-
-/* Further Details */
-/* =============== */
-
-/* The routine is based on the routine ENVRON by Malcolm and */
-/* incorporates suggestions by Gentleman and Marovich. See */
-
-/* Malcolm M. A. (1972) Algorithms to reveal properties of */
-/* floating-point arithmetic. Comms. of the ACM, 15, 949-951. */
-
-/* Gentleman W. M. and Marovich S. B. (1974) More on algorithms */
-/* that reveal properties of floating point arithmetic units. */
-/* Comms. of the ACM, 17, 276-277. */
-
-/* ===================================================================== */
-
-/* .. Local Scalars .. */
-/* .. */
-/* .. External Functions .. */
-/* .. */
-/* .. Save statement .. */
-/* .. */
-/* .. Data statements .. */
-/* .. */
-/* .. Executable Statements .. */
-
- if (first) {
- first = FALSE_;
- one = 1.f;
-
-/* LBETA, LIEEE1, LT and LRND are the local values of BETA, */
-/* IEEE1, T and RND. */
-
-/* Throughout this routine we use the function SLAMC3 to ensure */
-/* that relevant values are stored and not held in registers, or */
-/* are not affected by optimizers. */
-
-/* Compute a = 2.0**m with the smallest positive integer m such */
-/* that */
-
-/* fl( a + 1.0 ) = a. */
-
- a = 1.f;
- c__ = 1.f;
-
-/* + WHILE( C.EQ.ONE )LOOP */
- L10:
- if (c__ == one) {
- a *= 2;
- c__ = slamc3_(&a, &one);
- r__1 = -a;
- c__ = slamc3_(&c__, &r__1);
- goto L10;
- }
-/* + END WHILE */
-
-/* Now compute b = 2.0**m with the smallest positive integer m */
-/* such that */
-
-/* fl( a + b ) .gt. a. */
-
- b = 1.f;
- c__ = slamc3_(&a, &b);
-
-/* + WHILE( C.EQ.A )LOOP */
- L20:
- if (c__ == a) {
- b *= 2;
- c__ = slamc3_(&a, &b);
- goto L20;
- }
-/* + END WHILE */
-
-/* Now compute the base. a and c are neighbouring floating point */
-/* numbers in the interval ( beta**t, beta**( t + 1 ) ) and so */
-/* their difference is beta. Adding 0.25 to c is to ensure that it */
-/* is truncated to beta and not ( beta - 1 ). */
-
- qtr = one / 4;
- savec = c__;
- r__1 = -a;
- c__ = slamc3_(&c__, &r__1);
- lbeta = c__ + qtr;
-
-/* Now determine whether rounding or chopping occurs, by adding a */
-/* bit less than beta/2 and a bit more than beta/2 to a. */
-
- b = (real) lbeta;
- r__1 = b / 2;
- r__2 = -b / 100;
- f = slamc3_(&r__1, &r__2);
- c__ = slamc3_(&f, &a);
- if (c__ == a) {
- lrnd = TRUE_;
- }
- else {
- lrnd = FALSE_;
- }
- r__1 = b / 2;
- r__2 = b / 100;
- f = slamc3_(&r__1, &r__2);
- c__ = slamc3_(&f, &a);
- if (lrnd && c__ == a) {
- lrnd = FALSE_;
- }
-
-/* Try and decide whether rounding is done in the IEEE 'round to */
-/* nearest' style. B/2 is half a unit in the last place of the two */
-/* numbers A and SAVEC. Furthermore, A is even, i.e. has last bit */
-/* zero, and SAVEC is odd. Thus adding B/2 to A should not change */
-/* A, but adding B/2 to SAVEC should change SAVEC. */
-
- r__1 = b / 2;
- t1 = slamc3_(&r__1, &a);
- r__1 = b / 2;
- t2 = slamc3_(&r__1, &savec);
- lieee1 = t1 == a && t2 > savec && lrnd;
-
-/* Now find the mantissa, t. It should be the integer part of */
-/* log to the base beta of a, however it is safer to determine t */
-/* by powering. So we find t as the smallest positive integer for */
-/* which */
-
-/* fl( beta**t + 1.0 ) = 1.0. */
-
- lt = 0;
- a = 1.f;
- c__ = 1.f;
-
-/* + WHILE( C.EQ.ONE )LOOP */
- L30:
- if (c__ == one) {
- ++lt;
- a *= lbeta;
- c__ = slamc3_(&a, &one);
- r__1 = -a;
- c__ = slamc3_(&c__, &r__1);
- goto L30;
- }
-/* + END WHILE */
-
- }
-
- *beta = lbeta;
- *t = lt;
- *rnd = lrnd;
- *ieee1 = lieee1;
- return 0;
-
-/* End of SLAMC1 */
-
-} /* slamc1_ */
-
-
-/* *********************************************************************** */
-
-/* Subroutine */ int
-slamc2_(integer * beta, integer * t, logical * rnd, real *
- eps, integer * emin, real * rmin, integer * emax, real * rmax)
-{
- /* Initialized data */
-
- static logical first = TRUE_;
- static logical iwarn = FALSE_;
-
- /* Format strings */
- static char fmt_9999[] =
- "(//\002 WARNING. The value EMIN may be incorre"
- "ct:-\002,\002 EMIN = \002,i8,/\002 If, after inspection, the va"
- "lue EMIN looks\002,\002 acceptable please comment out \002,/\002"
- " the IF block as marked within the code of routine\002,\002 SLAM"
- "C2,\002,/\002 otherwise supply EMIN explicitly.\002,/)";
-
- /* System generated locals */
- integer i__1;
- real r__1, r__2, r__3, r__4, r__5;
-
- /* Builtin functions */
- double pow_ri(real *, integer *);
- integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen),
- e_wsfe(void);
-
- /* Local variables */
- static real a, b, c__;
- static integer i__, lt;
- static real one, two;
- static logical ieee;
- static real half;
- static logical lrnd;
- static real leps, zero;
- static integer lbeta;
- static real rbase;
- static integer lemin, lemax, gnmin;
- static real small;
- static integer gpmin;
- static real third, lrmin, lrmax, sixth;
- static logical lieee1;
- extern /* Subroutine */ int slamc1_(integer *, integer *, logical *,
- logical *);
- extern doublereal slamc3_(real *, real *);
- extern /* Subroutine */ int slamc4_(integer *, real *, integer *),
- slamc5_(integer *, integer *, integer *, logical *, integer *,
- real *);
- static integer ngnmin, ngpmin;
-
- /* Fortran I/O blocks */
- static cilist io___58 = { 0, 6, 0, fmt_9999, 0 };
-
-
-
-/* -- LAPACK auxiliary routine (version 3.0) -- */
-/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
-/* Courant Institute, Argonne National Lab, and Rice University */
-/* October 31, 1992 */
-
-/* .. Scalar Arguments .. */
-/* .. */
-
-/* Purpose */
-/* ======= */
-
-/* SLAMC2 determines the machine parameters specified in its argument */
-/* list. */
-
-/* Arguments */
-/* ========= */
-
-/* BETA (output) INTEGER */
-/* The base of the machine. */
-
-/* T (output) INTEGER */
-/* The number of ( BETA ) digits in the mantissa. */
-
-/* RND (output) LOGICAL */
-/* Specifies whether proper rounding ( RND = .TRUE. ) or */
-/* chopping ( RND = .FALSE. ) occurs in addition. This may not */
-/* be a reliable guide to the way in which the machine performs */
-/* its arithmetic. */
-
-/* EPS (output) REAL */
-/* The smallest positive number such that */
-
-/* fl( 1.0 - EPS ) .LT. 1.0, */
-
-/* where fl denotes the computed value. */
-
-/* EMIN (output) INTEGER */
-/* The minimum exponent before (gradual) underflow occurs. */
-
-/* RMIN (output) REAL */
-/* The smallest normalized number for the machine, given by */
-/* BASE**( EMIN - 1 ), where BASE is the floating point value */
-/* of BETA. */
-
-/* EMAX (output) INTEGER */
-/* The maximum exponent before overflow occurs. */
-
-/* RMAX (output) REAL */
-/* The largest positive number for the machine, given by */
-/* BASE**EMAX * ( 1 - EPS ), where BASE is the floating point */
-/* value of BETA. */
-
-/* Further Details */
-/* =============== */
-
-/* The computation of EPS is based on a routine PARANOIA by */
-/* W. Kahan of the University of California at Berkeley. */
-
-/* ===================================================================== */
-
-/* .. Local Scalars .. */
-/* .. */
-/* .. External Functions .. */
-/* .. */
-/* .. External Subroutines .. */
-/* .. */
-/* .. Intrinsic Functions .. */
-/* .. */
-/* .. Save statement .. */
-/* .. */
-/* .. Data statements .. */
-/* .. */
-/* .. Executable Statements .. */
-
- if (first) {
- first = FALSE_;
- zero = 0.f;
- one = 1.f;
- two = 2.f;
-
-/* LBETA, LT, LRND, LEPS, LEMIN and LRMIN are the local values of */
-/* BETA, T, RND, EPS, EMIN and RMIN. */
-
-/* Throughout this routine we use the function SLAMC3 to ensure */
-/* that relevant values are stored and not held in registers, or */
-/* are not affected by optimizers. */
-
-/* SLAMC1 returns the parameters LBETA, LT, LRND and LIEEE1. */
-
- slamc1_(&lbeta, &lt, &lrnd, &lieee1);
-
-/* Start to find EPS. */
-
- b = (real) lbeta;
- i__1 = -lt;
- a = pow_ri(&b, &i__1);
- leps = a;
-
-/* Try some tricks to see whether or not this is the correct EPS. */
-
- b = two / 3;
- half = one / 2;
- r__1 = -half;
- sixth = slamc3_(&b, &r__1);
- third = slamc3_(&sixth, &sixth);
- r__1 = -half;
- b = slamc3_(&third, &r__1);
- b = slamc3_(&b, &sixth);
- b = dabs(b);
- if (b < leps) {
- b = leps;
- }
-
- leps = 1.f;
-
-/* + WHILE( ( LEPS.GT.B ).AND.( B.GT.ZERO ) )LOOP */
- L10:
- if (leps > b && b > zero) {
- leps = b;
- r__1 = half * leps;
-/* Computing 5th power */
- r__3 = two, r__4 = r__3, r__3 *= r__3;
-/* Computing 2nd power */
- r__5 = leps;
- r__2 = r__4 * (r__3 * r__3) * (r__5 * r__5);
- c__ = slamc3_(&r__1, &r__2);
- r__1 = -c__;
- c__ = slamc3_(&half, &r__1);
- b = slamc3_(&half, &c__);
- r__1 = -b;
- c__ = slamc3_(&half, &r__1);
- b = slamc3_(&half, &c__);
- goto L10;
- }
-/* + END WHILE */
-
- if (a < leps) {
- leps = a;
- }
-
-/* Computation of EPS complete. */
-
-/* Now find EMIN. Let A = + or - 1, and + or - (1 + BASE**(-3)). */
-/* Keep dividing A by BETA until (gradual) underflow occurs. This */
-/* is detected when we cannot recover the previous A. */
-
- rbase = one / lbeta;
- small = one;
- for (i__ = 1; i__ <= 3; ++i__) {
- r__1 = small * rbase;
- small = slamc3_(&r__1, &zero);
-/* L20: */
- }
- a = slamc3_(&one, &small);
- slamc4_(&ngpmin, &one, &lbeta);
- r__1 = -one;
- slamc4_(&ngnmin, &r__1, &lbeta);
- slamc4_(&gpmin, &a, &lbeta);
- r__1 = -a;
- slamc4_(&gnmin, &r__1, &lbeta);
- ieee = FALSE_;
-
- if (ngpmin == ngnmin && gpmin == gnmin) {
- if (ngpmin == gpmin) {
- lemin = ngpmin;
-/* ( Non twos-complement machines, no gradual underflow; */
-/* e.g., VAX ) */
- }
- else if (gpmin - ngpmin == 3) {
- lemin = ngpmin - 1 + lt;
- ieee = TRUE_;
-/* ( Non twos-complement machines, with gradual underflow; */
-/* e.g., IEEE standard followers ) */
- }
- else {
- lemin = min(ngpmin, gpmin);
-/* ( A guess; no known machine ) */
- iwarn = TRUE_;
- }
-
- }
- else if (ngpmin == gpmin && ngnmin == gnmin) {
- if ((i__1 = ngpmin - ngnmin, abs(i__1)) == 1) {
- lemin = max(ngpmin, ngnmin);
-/* ( Twos-complement machines, no gradual underflow; */
-/* e.g., CYBER 205 ) */
- }
- else {
- lemin = min(ngpmin, ngnmin);
-/* ( A guess; no known machine ) */
- iwarn = TRUE_;
- }
-
- }
- else if ((i__1 = ngpmin - ngnmin, abs(i__1)) == 1
- && gpmin == gnmin) {
- if (gpmin - min(ngpmin, ngnmin) == 3) {
- lemin = max(ngpmin, ngnmin) - 1 + lt;
-/* ( Twos-complement machines with gradual underflow; */
-/* no known machine ) */
- }
- else {
- lemin = min(ngpmin, ngnmin);
-/* ( A guess; no known machine ) */
- iwarn = TRUE_;
- }
-
- }
- else {
-/* Computing MIN */
- i__1 = min(ngpmin, ngnmin), i__1 = min(i__1, gpmin);
- lemin = min(i__1, gnmin);
-/* ( A guess; no known machine ) */
- iwarn = TRUE_;
- }
-/* ** */
-/* Comment out this if block if EMIN is ok */
- if (iwarn) {
- first = TRUE_;
- s_wsfe(&io___58);
- do_fio(&c__1, (char *) &lemin, (ftnlen) sizeof(integer));
- e_wsfe();
- }
-/* ** */
-
-/* Assume IEEE arithmetic if we found denormalised numbers above, */
-/* or if arithmetic seems to round in the IEEE style, determined */
-/* in routine SLAMC1. A true IEEE machine should have both things */
-/* true; however, faulty machines may have one or the other. */
-
- ieee = ieee || lieee1;
-
-/* Compute RMIN by successive division by BETA. We could compute */
-/* RMIN as BASE**( EMIN - 1 ), but some machines underflow during */
-/* this computation. */
-
- lrmin = 1.f;
- i__1 = 1 - lemin;
- for (i__ = 1; i__ <= i__1; ++i__) {
- r__1 = lrmin * rbase;
- lrmin = slamc3_(&r__1, &zero);
-/* L30: */
- }
-
-/* Finally, call SLAMC5 to compute EMAX and RMAX. */
-
- slamc5_(&lbeta, &lt, &lemin, &ieee, &lemax, &lrmax);
- }
-
- *beta = lbeta;
- *t = lt;
- *rnd = lrnd;
- *eps = leps;
- *emin = lemin;
- *rmin = lrmin;
- *emax = lemax;
- *rmax = lrmax;
-
- return 0;
-
-
-/* End of SLAMC2 */
-
-} /* slamc2_ */
-
-
-/* *********************************************************************** */
-
-doublereal
-slamc3_(real * a, real * b)
-{
- /* System generated locals */
- real ret_val;
-
-
-/* -- LAPACK auxiliary routine (version 3.0) -- */
-/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
-/* Courant Institute, Argonne National Lab, and Rice University */
-/* October 31, 1992 */
-
-/* .. Scalar Arguments .. */
-/* .. */
-
-/* Purpose */
-/* ======= */
-
-/* SLAMC3 is intended to force A and B to be stored prior to doing */
-/* the addition of A and B , for use in situations where optimizers */
-/* might hold one of these in a register. */
-
-/* Arguments */
-/* ========= */
-
-/* A, B (input) REAL */
-/* The values A and B. */
-
-/* ===================================================================== */
-
-/* .. Executable Statements .. */
-
- ret_val = *a + *b;
-
- return ret_val;
-
-/* End of SLAMC3 */
-
-} /* slamc3_ */
-
-
-/* *********************************************************************** */
-
-/* Subroutine */ int
-slamc4_(integer * emin, real * start, integer * base)
-{
- /* System generated locals */
- integer i__1;
- real r__1;
-
- /* Local variables */
- static real a;
- static integer i__;
- static real b1, b2, c1, c2, d1, d2, one, zero, rbase;
- extern doublereal slamc3_(real *, real *);
-
-
-/* -- LAPACK auxiliary routine (version 3.0) -- */
-/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
-/* Courant Institute, Argonne National Lab, and Rice University */
-/* October 31, 1992 */
-
-/* .. Scalar Arguments .. */
-/* .. */
-
-/* Purpose */
-/* ======= */
-
-/* SLAMC4 is a service routine for SLAMC2. */
-
-/* Arguments */
-/* ========= */
-
-/* EMIN (output) EMIN */
-/* The minimum exponent before (gradual) underflow, computed by */
-/* setting A = START and dividing by BASE until the previous A */
-/* can not be recovered. */
-
-/* START (input) REAL */
-/* The starting point for determining EMIN. */
-
-/* BASE (input) INTEGER */
-/* The base of the machine. */
-
-/* ===================================================================== */
-
-/* .. Local Scalars .. */
-/* .. */
-/* .. External Functions .. */
-/* .. */
-/* .. Executable Statements .. */
-
- a = *start;
- one = 1.f;
- rbase = one / *base;
- zero = 0.f;
- *emin = 1;
- r__1 = a * rbase;
- b1 = slamc3_(&r__1, &zero);
- c1 = a;
- c2 = a;
- d1 = a;
- d2 = a;
-/* + WHILE( ( C1.EQ.A ).AND.( C2.EQ.A ).AND. */
-/* $ ( D1.EQ.A ).AND.( D2.EQ.A ) )LOOP */
- L10:
- if (c1 == a && c2 == a && d1 == a && d2 == a) {
- --(*emin);
- a = b1;
- r__1 = a / *base;
- b1 = slamc3_(&r__1, &zero);
- r__1 = b1 * *base;
- c1 = slamc3_(&r__1, &zero);
- d1 = zero;
- i__1 = *base;
- for (i__ = 1; i__ <= i__1; ++i__) {
- d1 += b1;
-/* L20: */
- }
- r__1 = a * rbase;
- b2 = slamc3_(&r__1, &zero);
- r__1 = b2 / rbase;
- c2 = slamc3_(&r__1, &zero);
- d2 = zero;
- i__1 = *base;
- for (i__ = 1; i__ <= i__1; ++i__) {
- d2 += b2;
-/* L30: */
- }
- goto L10;
- }
-/* + END WHILE */
-
- return 0;
-
-/* End of SLAMC4 */
-
-} /* slamc4_ */
-
-
-/* *********************************************************************** */
-
-/* Subroutine */ int
-slamc5_(integer * beta, integer * p, integer * emin,
- logical * ieee, integer * emax, real * rmax)
-{
- /* System generated locals */
- integer i__1;
- real r__1;
-
- /* Local variables */
- static integer i__;
- static real y, z__;
- static integer try__, lexp;
- static real oldy;
- static integer uexp, nbits;
- extern doublereal slamc3_(real *, real *);
- static real recbas;
- static integer exbits, expsum;
-
-
-/* -- LAPACK auxiliary routine (version 3.0) -- */
-/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
-/* Courant Institute, Argonne National Lab, and Rice University */
-/* October 31, 1992 */
-
-/* .. Scalar Arguments .. */
-/* .. */
-
-/* Purpose */
-/* ======= */
-
-/* SLAMC5 attempts to compute RMAX, the largest machine floating-point */
-/* number, without overflow. It assumes that EMAX + abs(EMIN) sum */
-/* approximately to a power of 2. It will fail on machines where this */
-/* assumption does not hold, for example, the Cyber 205 (EMIN = -28625, */
-/* EMAX = 28718). It will also fail if the value supplied for EMIN is */
-/* too large (i.e. too close to zero), probably with overflow. */
-
-/* Arguments */
-/* ========= */
-
-/* BETA (input) INTEGER */
-/* The base of floating-point arithmetic. */
-
-/* P (input) INTEGER */
-/* The number of base BETA digits in the mantissa of a */
-/* floating-point value. */
-
-/* EMIN (input) INTEGER */
-/* The minimum exponent before (gradual) underflow. */
-
-/* IEEE (input) LOGICAL */
-/* A logical flag specifying whether or not the arithmetic */
-/* system is thought to comply with the IEEE standard. */
-
-/* EMAX (output) INTEGER */
-/* The largest exponent before overflow */
-
-/* RMAX (output) REAL */
-/* The largest machine floating-point number. */
-
-/* ===================================================================== */
-
-/* .. Parameters .. */
-/* .. */
-/* .. Local Scalars .. */
-/* .. */
-/* .. External Functions .. */
-/* .. */
-/* .. Intrinsic Functions .. */
-/* .. */
-/* .. Executable Statements .. */
-
-/* First compute LEXP and UEXP, two powers of 2 that bound */
-/* abs(EMIN). We then assume that EMAX + abs(EMIN) will sum */
-/* approximately to the bound that is closest to abs(EMIN). */
-/* (EMAX is the exponent of the required number RMAX). */
-
- lexp = 1;
- exbits = 1;
- L10:
- try__ = lexp << 1;
- if (try__ <= -(*emin)) {
- lexp = try__;
- ++exbits;
- goto L10;
- }
- if (lexp == -(*emin)) {
- uexp = lexp;
- }
- else {
- uexp = try__;
- ++exbits;
- }
-
-/* Now -LEXP is less than or equal to EMIN, and -UEXP is greater */
-/* than or equal to EMIN. EXBITS is the number of bits needed to */
-/* store the exponent. */
-
- if (uexp + *emin > -lexp - *emin) {
- expsum = lexp << 1;
- }
- else {
- expsum = uexp << 1;
- }
-
-/* EXPSUM is the exponent range, approximately equal to */
-/* EMAX - EMIN + 1 . */
-
- *emax = expsum + *emin - 1;
- nbits = exbits + 1 + *p;
-
-/* NBITS is the total number of bits needed to store a */
-/* floating-point number. */
-
- if (nbits % 2 == 1 && *beta == 2) {
-
-/* Either there are an odd number of bits used to store a */
-/* floating-point number, which is unlikely, or some bits are */
-/* not used in the representation of numbers, which is possible, */
-/* (e.g. Cray machines) or the mantissa has an implicit bit, */
-/* (e.g. IEEE machines, Dec Vax machines), which is perhaps the */
-/* most likely. We have to assume the last alternative. */
-/* If this is true, then we need to reduce EMAX by one because */
-/* there must be some way of representing zero in an implicit-bit */
-/* system. On machines like Cray, we are reducing EMAX by one */
-/* unnecessarily. */
-
- --(*emax);
- }
-
- if (*ieee) {
-
-/* Assume we are on an IEEE machine which reserves one exponent */
-/* for infinity and NaN. */
-
- --(*emax);
- }
-
-/* Now create RMAX, the largest machine number, which should */
-/* be equal to (1.0 - BETA**(-P)) * BETA**EMAX . */
-
-/* First compute 1.0 - BETA**(-P), being careful that the */
-/* result is less than 1.0 . */
-
- recbas = 1.f / *beta;
- z__ = *beta - 1.f;
- y = 0.f;
- i__1 = *p;
- for (i__ = 1; i__ <= i__1; ++i__) {
- z__ *= recbas;
- if (y < 1.f) {
- oldy = y;
- }
- y = slamc3_(&y, &z__);
-/* L20: */
- }
- if (y >= 1.f) {
- y = oldy;
- }
-
-/* Now multiply by BETA**EMAX to get RMAX. */
-
- i__1 = *emax;
- for (i__ = 1; i__ <= i__1; ++i__) {
- r__1 = y * *beta;
- y = slamc3_(&r__1, &c_b32);
-/* L30: */
- }
-
- *rmax = y;
- return 0;
-
-/* End of SLAMC5 */
-
-} /* slamc5_ */