diff options
Diffstat (limited to 'media/sphinxbase/src/libsphinxbase/util/blas_lite.c')
-rw-r--r-- | media/sphinxbase/src/libsphinxbase/util/blas_lite.c | 2147 |
1 files changed, 0 insertions, 2147 deletions
diff --git a/media/sphinxbase/src/libsphinxbase/util/blas_lite.c b/media/sphinxbase/src/libsphinxbase/util/blas_lite.c deleted file mode 100644 index c175eaa52..000000000 --- a/media/sphinxbase/src/libsphinxbase/util/blas_lite.c +++ /dev/null @@ -1,2147 +0,0 @@ -/* -NOTE: This is generated code. Look in README.python for information on - remaking this file. -*/ -#include "sphinxbase/f2c.h" - -#ifdef HAVE_CONFIG -#include "config.h" -#else -extern doublereal slamch_(char *); -#define EPSILON slamch_("Epsilon") -#define SAFEMINIMUM slamch_("Safe minimum") -#define PRECISION slamch_("Precision") -#define BASE slamch_("Base") -#endif - - -extern doublereal slapy2_(real *, real *); - - - -/* Table of constant values */ - -static integer c__1 = 1; - -logical lsame_(char *ca, char *cb) -{ - /* System generated locals */ - logical ret_val; - - /* Local variables */ - static integer inta, intb, zcode; - - -/* - -- LAPACK auxiliary routine (version 3.0) -- - Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., - Courant Institute, Argonne National Lab, and Rice University - September 30, 1994 - - - Purpose - ======= - - LSAME returns .TRUE. if CA is the same letter as CB regardless of - case. - - Arguments - ========= - - CA (input) CHARACTER*1 - CB (input) CHARACTER*1 - CA and CB specify the single characters to be compared. - - ===================================================================== - - - Test if the characters are equal -*/ - - ret_val = *(unsigned char *)ca == *(unsigned char *)cb; - if (ret_val) { - return ret_val; - } - -/* Now test for equivalence if both characters are alphabetic. */ - - zcode = 'Z'; - -/* - Use 'Z' rather than 'A' so that ASCII can be detected on Prime - machines, on which ICHAR returns a value with bit 8 set. - ICHAR('A') on Prime machines returns 193 which is the same as - ICHAR('A') on an EBCDIC machine. -*/ - - inta = *(unsigned char *)ca; - intb = *(unsigned char *)cb; - - if (zcode == 90 || zcode == 122) { - -/* - ASCII is assumed - ZCODE is the ASCII code of either lower or - upper case 'Z'. -*/ - - if (inta >= 97 && inta <= 122) { - inta += -32; - } - if (intb >= 97 && intb <= 122) { - intb += -32; - } - - } else if (zcode == 233 || zcode == 169) { - -/* - EBCDIC is assumed - ZCODE is the EBCDIC code of either lower or - upper case 'Z'. -*/ - - if (inta >= 129 && inta <= 137 || inta >= 145 && inta <= 153 || inta - >= 162 && inta <= 169) { - inta += 64; - } - if (intb >= 129 && intb <= 137 || intb >= 145 && intb <= 153 || intb - >= 162 && intb <= 169) { - intb += 64; - } - - } else if (zcode == 218 || zcode == 250) { - -/* - ASCII is assumed, on Prime machines - ZCODE is the ASCII code - plus 128 of either lower or upper case 'Z'. -*/ - - if (inta >= 225 && inta <= 250) { - inta += -32; - } - if (intb >= 225 && intb <= 250) { - intb += -32; - } - } - ret_val = inta == intb; - -/* - RETURN - - End of LSAME -*/ - - return ret_val; -} /* lsame_ */ - -doublereal sdot_(integer *n, real *sx, integer *incx, real *sy, integer *incy) -{ - /* System generated locals */ - integer i__1; - real ret_val; - - /* Local variables */ - static integer i__, m, ix, iy, mp1; - static real stemp; - - -/* - forms the dot product of two vectors. - uses unrolled loops for increments equal to one. - jack dongarra, linpack, 3/11/78. - modified 12/3/93, array(1) declarations changed to array(*) -*/ - - - /* Parameter adjustments */ - --sy; - --sx; - - /* Function Body */ - stemp = 0.f; - ret_val = 0.f; - if (*n <= 0) { - return ret_val; - } - if (*incx == 1 && *incy == 1) { - goto L20; - } - -/* - code for unequal increments or equal increments - not equal to 1 -*/ - - ix = 1; - iy = 1; - if (*incx < 0) { - ix = (-(*n) + 1) * *incx + 1; - } - if (*incy < 0) { - iy = (-(*n) + 1) * *incy + 1; - } - i__1 = *n; - for (i__ = 1; i__ <= i__1; ++i__) { - stemp += sx[ix] * sy[iy]; - ix += *incx; - iy += *incy; -/* L10: */ - } - ret_val = stemp; - return ret_val; - -/* - code for both increments equal to 1 - - - clean-up loop -*/ - -L20: - m = *n % 5; - if (m == 0) { - goto L40; - } - i__1 = m; - for (i__ = 1; i__ <= i__1; ++i__) { - stemp += sx[i__] * sy[i__]; -/* L30: */ - } - if (*n < 5) { - goto L60; - } -L40: - mp1 = m + 1; - i__1 = *n; - for (i__ = mp1; i__ <= i__1; i__ += 5) { - stemp = stemp + sx[i__] * sy[i__] + sx[i__ + 1] * sy[i__ + 1] + sx[ - i__ + 2] * sy[i__ + 2] + sx[i__ + 3] * sy[i__ + 3] + sx[i__ + - 4] * sy[i__ + 4]; -/* L50: */ - } -L60: - ret_val = stemp; - return ret_val; -} /* sdot_ */ - -/* Subroutine */ int sgemm_(char *transa, char *transb, integer *m, integer * - n, integer *k, real *alpha, real *a, integer *lda, real *b, integer * - ldb, real *beta, real *c__, integer *ldc) -{ - /* System generated locals */ - integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2, - i__3; - - /* Local variables */ - static integer i__, j, l, info; - static logical nota, notb; - static real temp; - static integer ncola; - extern logical lsame_(char *, char *); - static integer nrowa, nrowb; - extern /* Subroutine */ int xerbla_(char *, integer *); - - -/* - Purpose - ======= - - SGEMM performs one of the matrix-matrix operations - - C := alpha*op( A )*op( B ) + beta*C, - - where op( X ) is one of - - op( X ) = X or op( X ) = X', - - alpha and beta are scalars, and A, B and C are matrices, with op( A ) - an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. - - Parameters - ========== - - TRANSA - CHARACTER*1. - On entry, TRANSA specifies the form of op( A ) to be used in - the matrix multiplication as follows: - - TRANSA = 'N' or 'n', op( A ) = A. - - TRANSA = 'T' or 't', op( A ) = A'. - - TRANSA = 'C' or 'c', op( A ) = A'. - - Unchanged on exit. - - TRANSB - CHARACTER*1. - On entry, TRANSB specifies the form of op( B ) to be used in - the matrix multiplication as follows: - - TRANSB = 'N' or 'n', op( B ) = B. - - TRANSB = 'T' or 't', op( B ) = B'. - - TRANSB = 'C' or 'c', op( B ) = B'. - - Unchanged on exit. - - M - INTEGER. - On entry, M specifies the number of rows of the matrix - op( A ) and of the matrix C. M must be at least zero. - Unchanged on exit. - - N - INTEGER. - On entry, N specifies the number of columns of the matrix - op( B ) and the number of columns of the matrix C. N must be - at least zero. - Unchanged on exit. - - K - INTEGER. - On entry, K specifies the number of columns of the matrix - op( A ) and the number of rows of the matrix op( B ). K must - be at least zero. - Unchanged on exit. - - ALPHA - REAL . - On entry, ALPHA specifies the scalar alpha. - Unchanged on exit. - - A - REAL array of DIMENSION ( LDA, ka ), where ka is - k when TRANSA = 'N' or 'n', and is m otherwise. - Before entry with TRANSA = 'N' or 'n', the leading m by k - part of the array A must contain the matrix A, otherwise - the leading k by m part of the array A must contain the - matrix A. - Unchanged on exit. - - LDA - INTEGER. - On entry, LDA specifies the first dimension of A as declared - in the calling (sub) program. When TRANSA = 'N' or 'n' then - LDA must be at least max( 1, m ), otherwise LDA must be at - least max( 1, k ). - Unchanged on exit. - - B - REAL array of DIMENSION ( LDB, kb ), where kb is - n when TRANSB = 'N' or 'n', and is k otherwise. - Before entry with TRANSB = 'N' or 'n', the leading k by n - part of the array B must contain the matrix B, otherwise - the leading n by k part of the array B must contain the - matrix B. - Unchanged on exit. - - LDB - INTEGER. - On entry, LDB specifies the first dimension of B as declared - in the calling (sub) program. When TRANSB = 'N' or 'n' then - LDB must be at least max( 1, k ), otherwise LDB must be at - least max( 1, n ). - Unchanged on exit. - - BETA - REAL . - On entry, BETA specifies the scalar beta. When BETA is - supplied as zero then C need not be set on input. - Unchanged on exit. - - C - REAL array of DIMENSION ( LDC, n ). - Before entry, the leading m by n part of the array C must - contain the matrix C, except when beta is zero, in which - case C need not be set on entry. - On exit, the array C is overwritten by the m by n matrix - ( alpha*op( A )*op( B ) + beta*C ). - - LDC - INTEGER. - On entry, LDC specifies the first dimension of C as declared - in the calling (sub) program. LDC must be at least - max( 1, m ). - Unchanged on exit. - - - Level 3 Blas routine. - - -- Written on 8-February-1989. - Jack Dongarra, Argonne National Laboratory. - Iain Duff, AERE Harwell. - Jeremy Du Croz, Numerical Algorithms Group Ltd. - Sven Hammarling, Numerical Algorithms Group Ltd. - - - Set NOTA and NOTB as true if A and B respectively are not - transposed and set NROWA, NCOLA and NROWB as the number of rows - and columns of A and the number of rows of B respectively. -*/ - - /* Parameter adjustments */ - a_dim1 = *lda; - a_offset = 1 + a_dim1; - a -= a_offset; - b_dim1 = *ldb; - b_offset = 1 + b_dim1; - b -= b_offset; - c_dim1 = *ldc; - c_offset = 1 + c_dim1; - c__ -= c_offset; - - /* Function Body */ - nota = lsame_(transa, "N"); - notb = lsame_(transb, "N"); - if (nota) { - nrowa = *m; - ncola = *k; - } else { - nrowa = *k; - ncola = *m; - } - if (notb) { - nrowb = *k; - } else { - nrowb = *n; - } - -/* Test the input parameters. */ - - info = 0; - if (! nota && ! lsame_(transa, "C") && ! lsame_( - transa, "T")) { - info = 1; - } else if (! notb && ! lsame_(transb, "C") && ! - lsame_(transb, "T")) { - info = 2; - } else if (*m < 0) { - info = 3; - } else if (*n < 0) { - info = 4; - } else if (*k < 0) { - info = 5; - } else if (*lda < max(1,nrowa)) { - info = 8; - } else if (*ldb < max(1,nrowb)) { - info = 10; - } else if (*ldc < max(1,*m)) { - info = 13; - } - if (info != 0) { - xerbla_("SGEMM ", &info); - return 0; - } - -/* Quick return if possible. */ - - if (*m == 0 || *n == 0 || (*alpha == 0.f || *k == 0) && *beta == 1.f) { - return 0; - } - -/* And if alpha.eq.zero. */ - - if (*alpha == 0.f) { - if (*beta == 0.f) { - i__1 = *n; - for (j = 1; j <= i__1; ++j) { - i__2 = *m; - for (i__ = 1; i__ <= i__2; ++i__) { - c__[i__ + j * c_dim1] = 0.f; -/* L10: */ - } -/* L20: */ - } - } else { - i__1 = *n; - for (j = 1; j <= i__1; ++j) { - i__2 = *m; - for (i__ = 1; i__ <= i__2; ++i__) { - c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; -/* L30: */ - } -/* L40: */ - } - } - return 0; - } - -/* Start the operations. */ - - if (notb) { - if (nota) { - -/* Form C := alpha*A*B + beta*C. */ - - i__1 = *n; - for (j = 1; j <= i__1; ++j) { - if (*beta == 0.f) { - i__2 = *m; - for (i__ = 1; i__ <= i__2; ++i__) { - c__[i__ + j * c_dim1] = 0.f; -/* L50: */ - } - } else if (*beta != 1.f) { - i__2 = *m; - for (i__ = 1; i__ <= i__2; ++i__) { - c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; -/* L60: */ - } - } - i__2 = *k; - for (l = 1; l <= i__2; ++l) { - if (b[l + j * b_dim1] != 0.f) { - temp = *alpha * b[l + j * b_dim1]; - i__3 = *m; - for (i__ = 1; i__ <= i__3; ++i__) { - c__[i__ + j * c_dim1] += temp * a[i__ + l * - a_dim1]; -/* L70: */ - } - } -/* L80: */ - } -/* L90: */ - } - } else { - -/* Form C := alpha*A'*B + beta*C */ - - i__1 = *n; - for (j = 1; j <= i__1; ++j) { - i__2 = *m; - for (i__ = 1; i__ <= i__2; ++i__) { - temp = 0.f; - i__3 = *k; - for (l = 1; l <= i__3; ++l) { - temp += a[l + i__ * a_dim1] * b[l + j * b_dim1]; -/* L100: */ - } - if (*beta == 0.f) { - c__[i__ + j * c_dim1] = *alpha * temp; - } else { - c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[ - i__ + j * c_dim1]; - } -/* L110: */ - } -/* L120: */ - } - } - } else { - if (nota) { - -/* Form C := alpha*A*B' + beta*C */ - - i__1 = *n; - for (j = 1; j <= i__1; ++j) { - if (*beta == 0.f) { - i__2 = *m; - for (i__ = 1; i__ <= i__2; ++i__) { - c__[i__ + j * c_dim1] = 0.f; -/* L130: */ - } - } else if (*beta != 1.f) { - i__2 = *m; - for (i__ = 1; i__ <= i__2; ++i__) { - c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; -/* L140: */ - } - } - i__2 = *k; - for (l = 1; l <= i__2; ++l) { - if (b[j + l * b_dim1] != 0.f) { - temp = *alpha * b[j + l * b_dim1]; - i__3 = *m; - for (i__ = 1; i__ <= i__3; ++i__) { - c__[i__ + j * c_dim1] += temp * a[i__ + l * - a_dim1]; -/* L150: */ - } - } -/* L160: */ - } -/* L170: */ - } - } else { - -/* Form C := alpha*A'*B' + beta*C */ - - i__1 = *n; - for (j = 1; j <= i__1; ++j) { - i__2 = *m; - for (i__ = 1; i__ <= i__2; ++i__) { - temp = 0.f; - i__3 = *k; - for (l = 1; l <= i__3; ++l) { - temp += a[l + i__ * a_dim1] * b[j + l * b_dim1]; -/* L180: */ - } - if (*beta == 0.f) { - c__[i__ + j * c_dim1] = *alpha * temp; - } else { - c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[ - i__ + j * c_dim1]; - } -/* L190: */ - } -/* L200: */ - } - } - } - - return 0; - -/* End of SGEMM . */ - -} /* sgemm_ */ - -/* Subroutine */ int sgemv_(char *trans, integer *m, integer *n, real *alpha, - real *a, integer *lda, real *x, integer *incx, real *beta, real *y, - integer *incy) -{ - /* System generated locals */ - integer a_dim1, a_offset, i__1, i__2; - - /* Local variables */ - static integer i__, j, ix, iy, jx, jy, kx, ky, info; - static real temp; - static integer lenx, leny; - extern logical lsame_(char *, char *); - extern /* Subroutine */ int xerbla_(char *, integer *); - - -/* - Purpose - ======= - - SGEMV performs one of the matrix-vector operations - - y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, - - where alpha and beta are scalars, x and y are vectors and A is an - m by n matrix. - - Parameters - ========== - - TRANS - CHARACTER*1. - On entry, TRANS specifies the operation to be performed as - follows: - - TRANS = 'N' or 'n' y := alpha*A*x + beta*y. - - TRANS = 'T' or 't' y := alpha*A'*x + beta*y. - - TRANS = 'C' or 'c' y := alpha*A'*x + beta*y. - - Unchanged on exit. - - M - INTEGER. - On entry, M specifies the number of rows of the matrix A. - M must be at least zero. - Unchanged on exit. - - N - INTEGER. - On entry, N specifies the number of columns of the matrix A. - N must be at least zero. - Unchanged on exit. - - ALPHA - REAL . - On entry, ALPHA specifies the scalar alpha. - Unchanged on exit. - - A - REAL array of DIMENSION ( LDA, n ). - Before entry, the leading m by n part of the array A must - contain the matrix of coefficients. - Unchanged on exit. - - LDA - INTEGER. - On entry, LDA specifies the first dimension of A as declared - in the calling (sub) program. LDA must be at least - max( 1, m ). - Unchanged on exit. - - X - REAL array of DIMENSION at least - ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' - and at least - ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. - Before entry, the incremented array X must contain the - vector x. - Unchanged on exit. - - INCX - INTEGER. - On entry, INCX specifies the increment for the elements of - X. INCX must not be zero. - Unchanged on exit. - - BETA - REAL . - On entry, BETA specifies the scalar beta. When BETA is - supplied as zero then Y need not be set on input. - Unchanged on exit. - - Y - REAL array of DIMENSION at least - ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' - and at least - ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. - Before entry with BETA non-zero, the incremented array Y - must contain the vector y. On exit, Y is overwritten by the - updated vector y. - - INCY - INTEGER. - On entry, INCY specifies the increment for the elements of - Y. INCY must not be zero. - Unchanged on exit. - - - Level 2 Blas routine. - - -- Written on 22-October-1986. - Jack Dongarra, Argonne National Lab. - Jeremy Du Croz, Nag Central Office. - Sven Hammarling, Nag Central Office. - Richard Hanson, Sandia National Labs. - - - Test the input parameters. -*/ - - /* Parameter adjustments */ - a_dim1 = *lda; - a_offset = 1 + a_dim1; - a -= a_offset; - --x; - --y; - - /* Function Body */ - info = 0; - if (! lsame_(trans, "N") && ! lsame_(trans, "T") && ! lsame_(trans, "C") - ) { - info = 1; - } else if (*m < 0) { - info = 2; - } else if (*n < 0) { - info = 3; - } else if (*lda < max(1,*m)) { - info = 6; - } else if (*incx == 0) { - info = 8; - } else if (*incy == 0) { - info = 11; - } - if (info != 0) { - xerbla_("SGEMV ", &info); - return 0; - } - -/* Quick return if possible. */ - - if (*m == 0 || *n == 0 || *alpha == 0.f && *beta == 1.f) { - return 0; - } - -/* - Set LENX and LENY, the lengths of the vectors x and y, and set - up the start points in X and Y. -*/ - - if (lsame_(trans, "N")) { - lenx = *n; - leny = *m; - } else { - lenx = *m; - leny = *n; - } - if (*incx > 0) { - kx = 1; - } else { - kx = 1 - (lenx - 1) * *incx; - } - if (*incy > 0) { - ky = 1; - } else { - ky = 1 - (leny - 1) * *incy; - } - -/* - Start the operations. In this version the elements of A are - accessed sequentially with one pass through A. - - First form y := beta*y. -*/ - - if (*beta != 1.f) { - if (*incy == 1) { - if (*beta == 0.f) { - i__1 = leny; - for (i__ = 1; i__ <= i__1; ++i__) { - y[i__] = 0.f; -/* L10: */ - } - } else { - i__1 = leny; - for (i__ = 1; i__ <= i__1; ++i__) { - y[i__] = *beta * y[i__]; -/* L20: */ - } - } - } else { - iy = ky; - if (*beta == 0.f) { - i__1 = leny; - for (i__ = 1; i__ <= i__1; ++i__) { - y[iy] = 0.f; - iy += *incy; -/* L30: */ - } - } else { - i__1 = leny; - for (i__ = 1; i__ <= i__1; ++i__) { - y[iy] = *beta * y[iy]; - iy += *incy; -/* L40: */ - } - } - } - } - if (*alpha == 0.f) { - return 0; - } - if (lsame_(trans, "N")) { - -/* Form y := alpha*A*x + y. */ - - jx = kx; - if (*incy == 1) { - i__1 = *n; - for (j = 1; j <= i__1; ++j) { - if (x[jx] != 0.f) { - temp = *alpha * x[jx]; - i__2 = *m; - for (i__ = 1; i__ <= i__2; ++i__) { - y[i__] += temp * a[i__ + j * a_dim1]; -/* L50: */ - } - } - jx += *incx; -/* L60: */ - } - } else { - i__1 = *n; - for (j = 1; j <= i__1; ++j) { - if (x[jx] != 0.f) { - temp = *alpha * x[jx]; - iy = ky; - i__2 = *m; - for (i__ = 1; i__ <= i__2; ++i__) { - y[iy] += temp * a[i__ + j * a_dim1]; - iy += *incy; -/* L70: */ - } - } - jx += *incx; -/* L80: */ - } - } - } else { - -/* Form y := alpha*A'*x + y. */ - - jy = ky; - if (*incx == 1) { - i__1 = *n; - for (j = 1; j <= i__1; ++j) { - temp = 0.f; - i__2 = *m; - for (i__ = 1; i__ <= i__2; ++i__) { - temp += a[i__ + j * a_dim1] * x[i__]; -/* L90: */ - } - y[jy] += *alpha * temp; - jy += *incy; -/* L100: */ - } - } else { - i__1 = *n; - for (j = 1; j <= i__1; ++j) { - temp = 0.f; - ix = kx; - i__2 = *m; - for (i__ = 1; i__ <= i__2; ++i__) { - temp += a[i__ + j * a_dim1] * x[ix]; - ix += *incx; -/* L110: */ - } - y[jy] += *alpha * temp; - jy += *incy; -/* L120: */ - } - } - } - - return 0; - -/* End of SGEMV . */ - -} /* sgemv_ */ - -/* Subroutine */ int sscal_(integer *n, real *sa, real *sx, integer *incx) -{ - /* System generated locals */ - integer i__1, i__2; - - /* Local variables */ - static integer i__, m, mp1, nincx; - - -/* - scales a vector by a constant. - uses unrolled loops for increment equal to 1. - jack dongarra, linpack, 3/11/78. - modified 3/93 to return if incx .le. 0. - modified 12/3/93, array(1) declarations changed to array(*) -*/ - - - /* Parameter adjustments */ - --sx; - - /* Function Body */ - if (*n <= 0 || *incx <= 0) { - return 0; - } - if (*incx == 1) { - goto L20; - } - -/* code for increment not equal to 1 */ - - nincx = *n * *incx; - i__1 = nincx; - i__2 = *incx; - for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { - sx[i__] = *sa * sx[i__]; -/* L10: */ - } - return 0; - -/* - code for increment equal to 1 - - - clean-up loop -*/ - -L20: - m = *n % 5; - if (m == 0) { - goto L40; - } - i__2 = m; - for (i__ = 1; i__ <= i__2; ++i__) { - sx[i__] = *sa * sx[i__]; -/* L30: */ - } - if (*n < 5) { - return 0; - } -L40: - mp1 = m + 1; - i__2 = *n; - for (i__ = mp1; i__ <= i__2; i__ += 5) { - sx[i__] = *sa * sx[i__]; - sx[i__ + 1] = *sa * sx[i__ + 1]; - sx[i__ + 2] = *sa * sx[i__ + 2]; - sx[i__ + 3] = *sa * sx[i__ + 3]; - sx[i__ + 4] = *sa * sx[i__ + 4]; -/* L50: */ - } - return 0; -} /* sscal_ */ - -/* Subroutine */ int ssymm_(char *side, char *uplo, integer *m, integer *n, - real *alpha, real *a, integer *lda, real *b, integer *ldb, real *beta, - real *c__, integer *ldc) -{ - /* System generated locals */ - integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2, - i__3; - - /* Local variables */ - static integer i__, j, k, info; - static real temp1, temp2; - extern logical lsame_(char *, char *); - static integer nrowa; - static logical upper; - extern /* Subroutine */ int xerbla_(char *, integer *); - - -/* - Purpose - ======= - - SSYMM performs one of the matrix-matrix operations - - C := alpha*A*B + beta*C, - - or - - C := alpha*B*A + beta*C, - - where alpha and beta are scalars, A is a symmetric matrix and B and - C are m by n matrices. - - Parameters - ========== - - SIDE - CHARACTER*1. - On entry, SIDE specifies whether the symmetric matrix A - appears on the left or right in the operation as follows: - - SIDE = 'L' or 'l' C := alpha*A*B + beta*C, - - SIDE = 'R' or 'r' C := alpha*B*A + beta*C, - - Unchanged on exit. - - UPLO - CHARACTER*1. - On entry, UPLO specifies whether the upper or lower - triangular part of the symmetric matrix A is to be - referenced as follows: - - UPLO = 'U' or 'u' Only the upper triangular part of the - symmetric matrix is to be referenced. - - UPLO = 'L' or 'l' Only the lower triangular part of the - symmetric matrix is to be referenced. - - Unchanged on exit. - - M - INTEGER. - On entry, M specifies the number of rows of the matrix C. - M must be at least zero. - Unchanged on exit. - - N - INTEGER. - On entry, N specifies the number of columns of the matrix C. - N must be at least zero. - Unchanged on exit. - - ALPHA - REAL . - On entry, ALPHA specifies the scalar alpha. - Unchanged on exit. - - A - REAL array of DIMENSION ( LDA, ka ), where ka is - m when SIDE = 'L' or 'l' and is n otherwise. - Before entry with SIDE = 'L' or 'l', the m by m part of - the array A must contain the symmetric matrix, such that - when UPLO = 'U' or 'u', the leading m by m upper triangular - part of the array A must contain the upper triangular part - of the symmetric matrix and the strictly lower triangular - part of A is not referenced, and when UPLO = 'L' or 'l', - the leading m by m lower triangular part of the array A - must contain the lower triangular part of the symmetric - matrix and the strictly upper triangular part of A is not - referenced. - Before entry with SIDE = 'R' or 'r', the n by n part of - the array A must contain the symmetric matrix, such that - when UPLO = 'U' or 'u', the leading n by n upper triangular - part of the array A must contain the upper triangular part - of the symmetric matrix and the strictly lower triangular - part of A is not referenced, and when UPLO = 'L' or 'l', - the leading n by n lower triangular part of the array A - must contain the lower triangular part of the symmetric - matrix and the strictly upper triangular part of A is not - referenced. - Unchanged on exit. - - LDA - INTEGER. - On entry, LDA specifies the first dimension of A as declared - in the calling (sub) program. When SIDE = 'L' or 'l' then - LDA must be at least max( 1, m ), otherwise LDA must be at - least max( 1, n ). - Unchanged on exit. - - B - REAL array of DIMENSION ( LDB, n ). - Before entry, the leading m by n part of the array B must - contain the matrix B. - Unchanged on exit. - - LDB - INTEGER. - On entry, LDB specifies the first dimension of B as declared - in the calling (sub) program. LDB must be at least - max( 1, m ). - Unchanged on exit. - - BETA - REAL . - On entry, BETA specifies the scalar beta. When BETA is - supplied as zero then C need not be set on input. - Unchanged on exit. - - C - REAL array of DIMENSION ( LDC, n ). - Before entry, the leading m by n part of the array C must - contain the matrix C, except when beta is zero, in which - case C need not be set on entry. - On exit, the array C is overwritten by the m by n updated - matrix. - - LDC - INTEGER. - On entry, LDC specifies the first dimension of C as declared - in the calling (sub) program. LDC must be at least - max( 1, m ). - Unchanged on exit. - - - Level 3 Blas routine. - - -- Written on 8-February-1989. - Jack Dongarra, Argonne National Laboratory. - Iain Duff, AERE Harwell. - Jeremy Du Croz, Numerical Algorithms Group Ltd. - Sven Hammarling, Numerical Algorithms Group Ltd. - - - Set NROWA as the number of rows of A. -*/ - - /* Parameter adjustments */ - a_dim1 = *lda; - a_offset = 1 + a_dim1; - a -= a_offset; - b_dim1 = *ldb; - b_offset = 1 + b_dim1; - b -= b_offset; - c_dim1 = *ldc; - c_offset = 1 + c_dim1; - c__ -= c_offset; - - /* Function Body */ - if (lsame_(side, "L")) { - nrowa = *m; - } else { - nrowa = *n; - } - upper = lsame_(uplo, "U"); - -/* Test the input parameters. */ - - info = 0; - if (! lsame_(side, "L") && ! lsame_(side, "R")) { - info = 1; - } else if (! upper && ! lsame_(uplo, "L")) { - info = 2; - } else if (*m < 0) { - info = 3; - } else if (*n < 0) { - info = 4; - } else if (*lda < max(1,nrowa)) { - info = 7; - } else if (*ldb < max(1,*m)) { - info = 9; - } else if (*ldc < max(1,*m)) { - info = 12; - } - if (info != 0) { - xerbla_("SSYMM ", &info); - return 0; - } - -/* Quick return if possible. */ - - if (*m == 0 || *n == 0 || *alpha == 0.f && *beta == 1.f) { - return 0; - } - -/* And when alpha.eq.zero. */ - - if (*alpha == 0.f) { - if (*beta == 0.f) { - i__1 = *n; - for (j = 1; j <= i__1; ++j) { - i__2 = *m; - for (i__ = 1; i__ <= i__2; ++i__) { - c__[i__ + j * c_dim1] = 0.f; -/* L10: */ - } -/* L20: */ - } - } else { - i__1 = *n; - for (j = 1; j <= i__1; ++j) { - i__2 = *m; - for (i__ = 1; i__ <= i__2; ++i__) { - c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; -/* L30: */ - } -/* L40: */ - } - } - return 0; - } - -/* Start the operations. */ - - if (lsame_(side, "L")) { - -/* Form C := alpha*A*B + beta*C. */ - - if (upper) { - i__1 = *n; - for (j = 1; j <= i__1; ++j) { - i__2 = *m; - for (i__ = 1; i__ <= i__2; ++i__) { - temp1 = *alpha * b[i__ + j * b_dim1]; - temp2 = 0.f; - i__3 = i__ - 1; - for (k = 1; k <= i__3; ++k) { - c__[k + j * c_dim1] += temp1 * a[k + i__ * a_dim1]; - temp2 += b[k + j * b_dim1] * a[k + i__ * a_dim1]; -/* L50: */ - } - if (*beta == 0.f) { - c__[i__ + j * c_dim1] = temp1 * a[i__ + i__ * a_dim1] - + *alpha * temp2; - } else { - c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1] - + temp1 * a[i__ + i__ * a_dim1] + *alpha * - temp2; - } -/* L60: */ - } -/* L70: */ - } - } else { - i__1 = *n; - for (j = 1; j <= i__1; ++j) { - for (i__ = *m; i__ >= 1; --i__) { - temp1 = *alpha * b[i__ + j * b_dim1]; - temp2 = 0.f; - i__2 = *m; - for (k = i__ + 1; k <= i__2; ++k) { - c__[k + j * c_dim1] += temp1 * a[k + i__ * a_dim1]; - temp2 += b[k + j * b_dim1] * a[k + i__ * a_dim1]; -/* L80: */ - } - if (*beta == 0.f) { - c__[i__ + j * c_dim1] = temp1 * a[i__ + i__ * a_dim1] - + *alpha * temp2; - } else { - c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1] - + temp1 * a[i__ + i__ * a_dim1] + *alpha * - temp2; - } -/* L90: */ - } -/* L100: */ - } - } - } else { - -/* Form C := alpha*B*A + beta*C. */ - - i__1 = *n; - for (j = 1; j <= i__1; ++j) { - temp1 = *alpha * a[j + j * a_dim1]; - if (*beta == 0.f) { - i__2 = *m; - for (i__ = 1; i__ <= i__2; ++i__) { - c__[i__ + j * c_dim1] = temp1 * b[i__ + j * b_dim1]; -/* L110: */ - } - } else { - i__2 = *m; - for (i__ = 1; i__ <= i__2; ++i__) { - c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1] + - temp1 * b[i__ + j * b_dim1]; -/* L120: */ - } - } - i__2 = j - 1; - for (k = 1; k <= i__2; ++k) { - if (upper) { - temp1 = *alpha * a[k + j * a_dim1]; - } else { - temp1 = *alpha * a[j + k * a_dim1]; - } - i__3 = *m; - for (i__ = 1; i__ <= i__3; ++i__) { - c__[i__ + j * c_dim1] += temp1 * b[i__ + k * b_dim1]; -/* L130: */ - } -/* L140: */ - } - i__2 = *n; - for (k = j + 1; k <= i__2; ++k) { - if (upper) { - temp1 = *alpha * a[j + k * a_dim1]; - } else { - temp1 = *alpha * a[k + j * a_dim1]; - } - i__3 = *m; - for (i__ = 1; i__ <= i__3; ++i__) { - c__[i__ + j * c_dim1] += temp1 * b[i__ + k * b_dim1]; -/* L150: */ - } -/* L160: */ - } -/* L170: */ - } - } - - return 0; - -/* End of SSYMM . */ - -} /* ssymm_ */ - -/* Subroutine */ int ssyrk_(char *uplo, char *trans, integer *n, integer *k, - real *alpha, real *a, integer *lda, real *beta, real *c__, integer * - ldc) -{ - /* System generated locals */ - integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3; - - /* Local variables */ - static integer i__, j, l, info; - static real temp; - extern logical lsame_(char *, char *); - static integer nrowa; - static logical upper; - extern /* Subroutine */ int xerbla_(char *, integer *); - - -/* - Purpose - ======= - - SSYRK performs one of the symmetric rank k operations - - C := alpha*A*A' + beta*C, - - or - - C := alpha*A'*A + beta*C, - - where alpha and beta are scalars, C is an n by n symmetric matrix - and A is an n by k matrix in the first case and a k by n matrix - in the second case. - - Parameters - ========== - - UPLO - CHARACTER*1. - On entry, UPLO specifies whether the upper or lower - triangular part of the array C is to be referenced as - follows: - - UPLO = 'U' or 'u' Only the upper triangular part of C - is to be referenced. - - UPLO = 'L' or 'l' Only the lower triangular part of C - is to be referenced. - - Unchanged on exit. - - TRANS - CHARACTER*1. - On entry, TRANS specifies the operation to be performed as - follows: - - TRANS = 'N' or 'n' C := alpha*A*A' + beta*C. - - TRANS = 'T' or 't' C := alpha*A'*A + beta*C. - - TRANS = 'C' or 'c' C := alpha*A'*A + beta*C. - - Unchanged on exit. - - N - INTEGER. - On entry, N specifies the order of the matrix C. N must be - at least zero. - Unchanged on exit. - - K - INTEGER. - On entry with TRANS = 'N' or 'n', K specifies the number - of columns of the matrix A, and on entry with - TRANS = 'T' or 't' or 'C' or 'c', K specifies the number - of rows of the matrix A. K must be at least zero. - Unchanged on exit. - - ALPHA - REAL . - On entry, ALPHA specifies the scalar alpha. - Unchanged on exit. - - A - REAL array of DIMENSION ( LDA, ka ), where ka is - k when TRANS = 'N' or 'n', and is n otherwise. - Before entry with TRANS = 'N' or 'n', the leading n by k - part of the array A must contain the matrix A, otherwise - the leading k by n part of the array A must contain the - matrix A. - Unchanged on exit. - - LDA - INTEGER. - On entry, LDA specifies the first dimension of A as declared - in the calling (sub) program. When TRANS = 'N' or 'n' - then LDA must be at least max( 1, n ), otherwise LDA must - be at least max( 1, k ). - Unchanged on exit. - - BETA - REAL . - On entry, BETA specifies the scalar beta. - Unchanged on exit. - - C - REAL array of DIMENSION ( LDC, n ). - Before entry with UPLO = 'U' or 'u', the leading n by n - upper triangular part of the array C must contain the upper - triangular part of the symmetric matrix and the strictly - lower triangular part of C is not referenced. On exit, the - upper triangular part of the array C is overwritten by the - upper triangular part of the updated matrix. - Before entry with UPLO = 'L' or 'l', the leading n by n - lower triangular part of the array C must contain the lower - triangular part of the symmetric matrix and the strictly - upper triangular part of C is not referenced. On exit, the - lower triangular part of the array C is overwritten by the - lower triangular part of the updated matrix. - - LDC - INTEGER. - On entry, LDC specifies the first dimension of C as declared - in the calling (sub) program. LDC must be at least - max( 1, n ). - Unchanged on exit. - - - Level 3 Blas routine. - - -- Written on 8-February-1989. - Jack Dongarra, Argonne National Laboratory. - Iain Duff, AERE Harwell. - Jeremy Du Croz, Numerical Algorithms Group Ltd. - Sven Hammarling, Numerical Algorithms Group Ltd. - - - Test the input parameters. -*/ - - /* Parameter adjustments */ - a_dim1 = *lda; - a_offset = 1 + a_dim1; - a -= a_offset; - c_dim1 = *ldc; - c_offset = 1 + c_dim1; - c__ -= c_offset; - - /* Function Body */ - if (lsame_(trans, "N")) { - nrowa = *n; - } else { - nrowa = *k; - } - upper = lsame_(uplo, "U"); - - info = 0; - if (! upper && ! lsame_(uplo, "L")) { - info = 1; - } else if (! lsame_(trans, "N") && ! lsame_(trans, - "T") && ! lsame_(trans, "C")) { - info = 2; - } else if (*n < 0) { - info = 3; - } else if (*k < 0) { - info = 4; - } else if (*lda < max(1,nrowa)) { - info = 7; - } else if (*ldc < max(1,*n)) { - info = 10; - } - if (info != 0) { - xerbla_("SSYRK ", &info); - return 0; - } - -/* Quick return if possible. */ - - if (*n == 0 || (*alpha == 0.f || *k == 0) && *beta == 1.f) { - return 0; - } - -/* And when alpha.eq.zero. */ - - if (*alpha == 0.f) { - if (upper) { - if (*beta == 0.f) { - i__1 = *n; - for (j = 1; j <= i__1; ++j) { - i__2 = j; - for (i__ = 1; i__ <= i__2; ++i__) { - c__[i__ + j * c_dim1] = 0.f; -/* L10: */ - } -/* L20: */ - } - } else { - i__1 = *n; - for (j = 1; j <= i__1; ++j) { - i__2 = j; - for (i__ = 1; i__ <= i__2; ++i__) { - c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; -/* L30: */ - } -/* L40: */ - } - } - } else { - if (*beta == 0.f) { - i__1 = *n; - for (j = 1; j <= i__1; ++j) { - i__2 = *n; - for (i__ = j; i__ <= i__2; ++i__) { - c__[i__ + j * c_dim1] = 0.f; -/* L50: */ - } -/* L60: */ - } - } else { - i__1 = *n; - for (j = 1; j <= i__1; ++j) { - i__2 = *n; - for (i__ = j; i__ <= i__2; ++i__) { - c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; -/* L70: */ - } -/* L80: */ - } - } - } - return 0; - } - -/* Start the operations. */ - - if (lsame_(trans, "N")) { - -/* Form C := alpha*A*A' + beta*C. */ - - if (upper) { - i__1 = *n; - for (j = 1; j <= i__1; ++j) { - if (*beta == 0.f) { - i__2 = j; - for (i__ = 1; i__ <= i__2; ++i__) { - c__[i__ + j * c_dim1] = 0.f; -/* L90: */ - } - } else if (*beta != 1.f) { - i__2 = j; - for (i__ = 1; i__ <= i__2; ++i__) { - c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; -/* L100: */ - } - } - i__2 = *k; - for (l = 1; l <= i__2; ++l) { - if (a[j + l * a_dim1] != 0.f) { - temp = *alpha * a[j + l * a_dim1]; - i__3 = j; - for (i__ = 1; i__ <= i__3; ++i__) { - c__[i__ + j * c_dim1] += temp * a[i__ + l * - a_dim1]; -/* L110: */ - } - } -/* L120: */ - } -/* L130: */ - } - } else { - i__1 = *n; - for (j = 1; j <= i__1; ++j) { - if (*beta == 0.f) { - i__2 = *n; - for (i__ = j; i__ <= i__2; ++i__) { - c__[i__ + j * c_dim1] = 0.f; -/* L140: */ - } - } else if (*beta != 1.f) { - i__2 = *n; - for (i__ = j; i__ <= i__2; ++i__) { - c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; -/* L150: */ - } - } - i__2 = *k; - for (l = 1; l <= i__2; ++l) { - if (a[j + l * a_dim1] != 0.f) { - temp = *alpha * a[j + l * a_dim1]; - i__3 = *n; - for (i__ = j; i__ <= i__3; ++i__) { - c__[i__ + j * c_dim1] += temp * a[i__ + l * - a_dim1]; -/* L160: */ - } - } -/* L170: */ - } -/* L180: */ - } - } - } else { - -/* Form C := alpha*A'*A + beta*C. */ - - if (upper) { - i__1 = *n; - for (j = 1; j <= i__1; ++j) { - i__2 = j; - for (i__ = 1; i__ <= i__2; ++i__) { - temp = 0.f; - i__3 = *k; - for (l = 1; l <= i__3; ++l) { - temp += a[l + i__ * a_dim1] * a[l + j * a_dim1]; -/* L190: */ - } - if (*beta == 0.f) { - c__[i__ + j * c_dim1] = *alpha * temp; - } else { - c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[ - i__ + j * c_dim1]; - } -/* L200: */ - } -/* L210: */ - } - } else { - i__1 = *n; - for (j = 1; j <= i__1; ++j) { - i__2 = *n; - for (i__ = j; i__ <= i__2; ++i__) { - temp = 0.f; - i__3 = *k; - for (l = 1; l <= i__3; ++l) { - temp += a[l + i__ * a_dim1] * a[l + j * a_dim1]; -/* L220: */ - } - if (*beta == 0.f) { - c__[i__ + j * c_dim1] = *alpha * temp; - } else { - c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[ - i__ + j * c_dim1]; - } -/* L230: */ - } -/* L240: */ - } - } - } - - return 0; - -/* End of SSYRK . */ - -} /* ssyrk_ */ - -/* Subroutine */ int strsm_(char *side, char *uplo, char *transa, char *diag, - integer *m, integer *n, real *alpha, real *a, integer *lda, real *b, - integer *ldb) -{ - /* System generated locals */ - integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3; - - /* Local variables */ - static integer i__, j, k, info; - static real temp; - static logical lside; - extern logical lsame_(char *, char *); - static integer nrowa; - static logical upper; - extern /* Subroutine */ int xerbla_(char *, integer *); - static logical nounit; - - -/* - Purpose - ======= - - STRSM solves one of the matrix equations - - op( A )*X = alpha*B, or X*op( A ) = alpha*B, - - where alpha is a scalar, X and B are m by n matrices, A is a unit, or - non-unit, upper or lower triangular matrix and op( A ) is one of - - op( A ) = A or op( A ) = A'. - - The matrix X is overwritten on B. - - Parameters - ========== - - SIDE - CHARACTER*1. - On entry, SIDE specifies whether op( A ) appears on the left - or right of X as follows: - - SIDE = 'L' or 'l' op( A )*X = alpha*B. - - SIDE = 'R' or 'r' X*op( A ) = alpha*B. - - Unchanged on exit. - - UPLO - CHARACTER*1. - On entry, UPLO specifies whether the matrix A is an upper or - lower triangular matrix as follows: - - UPLO = 'U' or 'u' A is an upper triangular matrix. - - UPLO = 'L' or 'l' A is a lower triangular matrix. - - Unchanged on exit. - - TRANSA - CHARACTER*1. - On entry, TRANSA specifies the form of op( A ) to be used in - the matrix multiplication as follows: - - TRANSA = 'N' or 'n' op( A ) = A. - - TRANSA = 'T' or 't' op( A ) = A'. - - TRANSA = 'C' or 'c' op( A ) = A'. - - Unchanged on exit. - - DIAG - CHARACTER*1. - On entry, DIAG specifies whether or not A is unit triangular - as follows: - - DIAG = 'U' or 'u' A is assumed to be unit triangular. - - DIAG = 'N' or 'n' A is not assumed to be unit - triangular. - - Unchanged on exit. - - M - INTEGER. - On entry, M specifies the number of rows of B. M must be at - least zero. - Unchanged on exit. - - N - INTEGER. - On entry, N specifies the number of columns of B. N must be - at least zero. - Unchanged on exit. - - ALPHA - REAL . - On entry, ALPHA specifies the scalar alpha. When alpha is - zero then A is not referenced and B need not be set before - entry. - Unchanged on exit. - - A - REAL array of DIMENSION ( LDA, k ), where k is m - when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. - Before entry with UPLO = 'U' or 'u', the leading k by k - upper triangular part of the array A must contain the upper - triangular matrix and the strictly lower triangular part of - A is not referenced. - Before entry with UPLO = 'L' or 'l', the leading k by k - lower triangular part of the array A must contain the lower - triangular matrix and the strictly upper triangular part of - A is not referenced. - Note that when DIAG = 'U' or 'u', the diagonal elements of - A are not referenced either, but are assumed to be unity. - Unchanged on exit. - - LDA - INTEGER. - On entry, LDA specifies the first dimension of A as declared - in the calling (sub) program. When SIDE = 'L' or 'l' then - LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' - then LDA must be at least max( 1, n ). - Unchanged on exit. - - B - REAL array of DIMENSION ( LDB, n ). - Before entry, the leading m by n part of the array B must - contain the right-hand side matrix B, and on exit is - overwritten by the solution matrix X. - - LDB - INTEGER. - On entry, LDB specifies the first dimension of B as declared - in the calling (sub) program. LDB must be at least - max( 1, m ). - Unchanged on exit. - - - Level 3 Blas routine. - - - -- Written on 8-February-1989. - Jack Dongarra, Argonne National Laboratory. - Iain Duff, AERE Harwell. - Jeremy Du Croz, Numerical Algorithms Group Ltd. - Sven Hammarling, Numerical Algorithms Group Ltd. - - - Test the input parameters. -*/ - - /* Parameter adjustments */ - a_dim1 = *lda; - a_offset = 1 + a_dim1; - a -= a_offset; - b_dim1 = *ldb; - b_offset = 1 + b_dim1; - b -= b_offset; - - /* Function Body */ - lside = lsame_(side, "L"); - if (lside) { - nrowa = *m; - } else { - nrowa = *n; - } - nounit = lsame_(diag, "N"); - upper = lsame_(uplo, "U"); - - info = 0; - if (! lside && ! lsame_(side, "R")) { - info = 1; - } else if (! upper && ! lsame_(uplo, "L")) { - info = 2; - } else if (! lsame_(transa, "N") && ! lsame_(transa, - "T") && ! lsame_(transa, "C")) { - info = 3; - } else if (! lsame_(diag, "U") && ! lsame_(diag, - "N")) { - info = 4; - } else if (*m < 0) { - info = 5; - } else if (*n < 0) { - info = 6; - } else if (*lda < max(1,nrowa)) { - info = 9; - } else if (*ldb < max(1,*m)) { - info = 11; - } - if (info != 0) { - xerbla_("STRSM ", &info); - return 0; - } - -/* Quick return if possible. */ - - if (*n == 0) { - return 0; - } - -/* And when alpha.eq.zero. */ - - if (*alpha == 0.f) { - i__1 = *n; - for (j = 1; j <= i__1; ++j) { - i__2 = *m; - for (i__ = 1; i__ <= i__2; ++i__) { - b[i__ + j * b_dim1] = 0.f; -/* L10: */ - } -/* L20: */ - } - return 0; - } - -/* Start the operations. */ - - if (lside) { - if (lsame_(transa, "N")) { - -/* Form B := alpha*inv( A )*B. */ - - if (upper) { - i__1 = *n; - for (j = 1; j <= i__1; ++j) { - if (*alpha != 1.f) { - i__2 = *m; - for (i__ = 1; i__ <= i__2; ++i__) { - b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1] - ; -/* L30: */ - } - } - for (k = *m; k >= 1; --k) { - if (b[k + j * b_dim1] != 0.f) { - if (nounit) { - b[k + j * b_dim1] /= a[k + k * a_dim1]; - } - i__2 = k - 1; - for (i__ = 1; i__ <= i__2; ++i__) { - b[i__ + j * b_dim1] -= b[k + j * b_dim1] * a[ - i__ + k * a_dim1]; -/* L40: */ - } - } -/* L50: */ - } -/* L60: */ - } - } else { - i__1 = *n; - for (j = 1; j <= i__1; ++j) { - if (*alpha != 1.f) { - i__2 = *m; - for (i__ = 1; i__ <= i__2; ++i__) { - b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1] - ; -/* L70: */ - } - } - i__2 = *m; - for (k = 1; k <= i__2; ++k) { - if (b[k + j * b_dim1] != 0.f) { - if (nounit) { - b[k + j * b_dim1] /= a[k + k * a_dim1]; - } - i__3 = *m; - for (i__ = k + 1; i__ <= i__3; ++i__) { - b[i__ + j * b_dim1] -= b[k + j * b_dim1] * a[ - i__ + k * a_dim1]; -/* L80: */ - } - } -/* L90: */ - } -/* L100: */ - } - } - } else { - -/* Form B := alpha*inv( A' )*B. */ - - if (upper) { - i__1 = *n; - for (j = 1; j <= i__1; ++j) { - i__2 = *m; - for (i__ = 1; i__ <= i__2; ++i__) { - temp = *alpha * b[i__ + j * b_dim1]; - i__3 = i__ - 1; - for (k = 1; k <= i__3; ++k) { - temp -= a[k + i__ * a_dim1] * b[k + j * b_dim1]; -/* L110: */ - } - if (nounit) { - temp /= a[i__ + i__ * a_dim1]; - } - b[i__ + j * b_dim1] = temp; -/* L120: */ - } -/* L130: */ - } - } else { - i__1 = *n; - for (j = 1; j <= i__1; ++j) { - for (i__ = *m; i__ >= 1; --i__) { - temp = *alpha * b[i__ + j * b_dim1]; - i__2 = *m; - for (k = i__ + 1; k <= i__2; ++k) { - temp -= a[k + i__ * a_dim1] * b[k + j * b_dim1]; -/* L140: */ - } - if (nounit) { - temp /= a[i__ + i__ * a_dim1]; - } - b[i__ + j * b_dim1] = temp; -/* L150: */ - } -/* L160: */ - } - } - } - } else { - if (lsame_(transa, "N")) { - -/* Form B := alpha*B*inv( A ). */ - - if (upper) { - i__1 = *n; - for (j = 1; j <= i__1; ++j) { - if (*alpha != 1.f) { - i__2 = *m; - for (i__ = 1; i__ <= i__2; ++i__) { - b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1] - ; -/* L170: */ - } - } - i__2 = j - 1; - for (k = 1; k <= i__2; ++k) { - if (a[k + j * a_dim1] != 0.f) { - i__3 = *m; - for (i__ = 1; i__ <= i__3; ++i__) { - b[i__ + j * b_dim1] -= a[k + j * a_dim1] * b[ - i__ + k * b_dim1]; -/* L180: */ - } - } -/* L190: */ - } - if (nounit) { - temp = 1.f / a[j + j * a_dim1]; - i__2 = *m; - for (i__ = 1; i__ <= i__2; ++i__) { - b[i__ + j * b_dim1] = temp * b[i__ + j * b_dim1]; -/* L200: */ - } - } -/* L210: */ - } - } else { - for (j = *n; j >= 1; --j) { - if (*alpha != 1.f) { - i__1 = *m; - for (i__ = 1; i__ <= i__1; ++i__) { - b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1] - ; -/* L220: */ - } - } - i__1 = *n; - for (k = j + 1; k <= i__1; ++k) { - if (a[k + j * a_dim1] != 0.f) { - i__2 = *m; - for (i__ = 1; i__ <= i__2; ++i__) { - b[i__ + j * b_dim1] -= a[k + j * a_dim1] * b[ - i__ + k * b_dim1]; -/* L230: */ - } - } -/* L240: */ - } - if (nounit) { - temp = 1.f / a[j + j * a_dim1]; - i__1 = *m; - for (i__ = 1; i__ <= i__1; ++i__) { - b[i__ + j * b_dim1] = temp * b[i__ + j * b_dim1]; -/* L250: */ - } - } -/* L260: */ - } - } - } else { - -/* Form B := alpha*B*inv( A' ). */ - - if (upper) { - for (k = *n; k >= 1; --k) { - if (nounit) { - temp = 1.f / a[k + k * a_dim1]; - i__1 = *m; - for (i__ = 1; i__ <= i__1; ++i__) { - b[i__ + k * b_dim1] = temp * b[i__ + k * b_dim1]; -/* L270: */ - } - } - i__1 = k - 1; - for (j = 1; j <= i__1; ++j) { - if (a[j + k * a_dim1] != 0.f) { - temp = a[j + k * a_dim1]; - i__2 = *m; - for (i__ = 1; i__ <= i__2; ++i__) { - b[i__ + j * b_dim1] -= temp * b[i__ + k * - b_dim1]; -/* L280: */ - } - } -/* L290: */ - } - if (*alpha != 1.f) { - i__1 = *m; - for (i__ = 1; i__ <= i__1; ++i__) { - b[i__ + k * b_dim1] = *alpha * b[i__ + k * b_dim1] - ; -/* L300: */ - } - } -/* L310: */ - } - } else { - i__1 = *n; - for (k = 1; k <= i__1; ++k) { - if (nounit) { - temp = 1.f / a[k + k * a_dim1]; - i__2 = *m; - for (i__ = 1; i__ <= i__2; ++i__) { - b[i__ + k * b_dim1] = temp * b[i__ + k * b_dim1]; -/* L320: */ - } - } - i__2 = *n; - for (j = k + 1; j <= i__2; ++j) { - if (a[j + k * a_dim1] != 0.f) { - temp = a[j + k * a_dim1]; - i__3 = *m; - for (i__ = 1; i__ <= i__3; ++i__) { - b[i__ + j * b_dim1] -= temp * b[i__ + k * - b_dim1]; -/* L330: */ - } - } -/* L340: */ - } - if (*alpha != 1.f) { - i__2 = *m; - for (i__ = 1; i__ <= i__2; ++i__) { - b[i__ + k * b_dim1] = *alpha * b[i__ + k * b_dim1] - ; -/* L350: */ - } - } -/* L360: */ - } - } - } - } - - return 0; - -/* End of STRSM . */ - -} /* strsm_ */ - -/* Subroutine */ int xerbla_(char *srname, integer *info) -{ - /* Format strings */ - static char fmt_9999[] = "(\002 ** On entry to \002,a6,\002 parameter nu" - "mber \002,i2,\002 had \002,\002an illegal value\002)"; - - /* Builtin functions */ - integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); - /* Subroutine */ int s_stop(char *, ftnlen); - - /* Fortran I/O blocks */ - static cilist io___60 = { 0, 6, 0, fmt_9999, 0 }; - - -/* - -- LAPACK auxiliary routine (preliminary version) -- - Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., - Courant Institute, Argonne National Lab, and Rice University - February 29, 1992 - - - Purpose - ======= - - XERBLA is an error handler for the LAPACK routines. - It is called by an LAPACK routine if an input parameter has an - invalid value. A message is printed and execution stops. - - Installers may consider modifying the STOP statement in order to - call system-specific exception-handling facilities. - - Arguments - ========= - - SRNAME (input) CHARACTER*6 - The name of the routine which called XERBLA. - - INFO (input) INTEGER - The position of the invalid parameter in the parameter list - of the calling routine. -*/ - - - s_wsfe(&io___60); - do_fio(&c__1, srname, (ftnlen)6); - do_fio(&c__1, (char *)&(*info), (ftnlen)sizeof(integer)); - e_wsfe(); - - s_stop("", (ftnlen)0); - - -/* End of XERBLA */ - - return 0; -} /* xerbla_ */ - |