diff options
Diffstat (limited to 'media/sphinxbase/src/libsphinxbase/util/blas_lite.c')
-rw-r--r-- | media/sphinxbase/src/libsphinxbase/util/blas_lite.c | 2147 |
1 files changed, 2147 insertions, 0 deletions
diff --git a/media/sphinxbase/src/libsphinxbase/util/blas_lite.c b/media/sphinxbase/src/libsphinxbase/util/blas_lite.c new file mode 100644 index 000000000..c175eaa52 --- /dev/null +++ b/media/sphinxbase/src/libsphinxbase/util/blas_lite.c @@ -0,0 +1,2147 @@ +/* +NOTE: This is generated code. Look in README.python for information on + remaking this file. +*/ +#include "sphinxbase/f2c.h" + +#ifdef HAVE_CONFIG +#include "config.h" +#else +extern doublereal slamch_(char *); +#define EPSILON slamch_("Epsilon") +#define SAFEMINIMUM slamch_("Safe minimum") +#define PRECISION slamch_("Precision") +#define BASE slamch_("Base") +#endif + + +extern doublereal slapy2_(real *, real *); + + + +/* Table of constant values */ + +static integer c__1 = 1; + +logical lsame_(char *ca, char *cb) +{ + /* System generated locals */ + logical ret_val; + + /* Local variables */ + static integer inta, intb, zcode; + + +/* + -- LAPACK auxiliary routine (version 3.0) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + September 30, 1994 + + + Purpose + ======= + + LSAME returns .TRUE. if CA is the same letter as CB regardless of + case. + + Arguments + ========= + + CA (input) CHARACTER*1 + CB (input) CHARACTER*1 + CA and CB specify the single characters to be compared. + + ===================================================================== + + + Test if the characters are equal +*/ + + ret_val = *(unsigned char *)ca == *(unsigned char *)cb; + if (ret_val) { + return ret_val; + } + +/* Now test for equivalence if both characters are alphabetic. */ + + zcode = 'Z'; + +/* + Use 'Z' rather than 'A' so that ASCII can be detected on Prime + machines, on which ICHAR returns a value with bit 8 set. + ICHAR('A') on Prime machines returns 193 which is the same as + ICHAR('A') on an EBCDIC machine. +*/ + + inta = *(unsigned char *)ca; + intb = *(unsigned char *)cb; + + if (zcode == 90 || zcode == 122) { + +/* + ASCII is assumed - ZCODE is the ASCII code of either lower or + upper case 'Z'. +*/ + + if (inta >= 97 && inta <= 122) { + inta += -32; + } + if (intb >= 97 && intb <= 122) { + intb += -32; + } + + } else if (zcode == 233 || zcode == 169) { + +/* + EBCDIC is assumed - ZCODE is the EBCDIC code of either lower or + upper case 'Z'. +*/ + + if (inta >= 129 && inta <= 137 || inta >= 145 && inta <= 153 || inta + >= 162 && inta <= 169) { + inta += 64; + } + if (intb >= 129 && intb <= 137 || intb >= 145 && intb <= 153 || intb + >= 162 && intb <= 169) { + intb += 64; + } + + } else if (zcode == 218 || zcode == 250) { + +/* + ASCII is assumed, on Prime machines - ZCODE is the ASCII code + plus 128 of either lower or upper case 'Z'. +*/ + + if (inta >= 225 && inta <= 250) { + inta += -32; + } + if (intb >= 225 && intb <= 250) { + intb += -32; + } + } + ret_val = inta == intb; + +/* + RETURN + + End of LSAME +*/ + + return ret_val; +} /* lsame_ */ + +doublereal sdot_(integer *n, real *sx, integer *incx, real *sy, integer *incy) +{ + /* System generated locals */ + integer i__1; + real ret_val; + + /* Local variables */ + static integer i__, m, ix, iy, mp1; + static real stemp; + + +/* + forms the dot product of two vectors. + uses unrolled loops for increments equal to one. + jack dongarra, linpack, 3/11/78. + modified 12/3/93, array(1) declarations changed to array(*) +*/ + + + /* Parameter adjustments */ + --sy; + --sx; + + /* Function Body */ + stemp = 0.f; + ret_val = 0.f; + if (*n <= 0) { + return ret_val; + } + if (*incx == 1 && *incy == 1) { + goto L20; + } + +/* + code for unequal increments or equal increments + not equal to 1 +*/ + + ix = 1; + iy = 1; + if (*incx < 0) { + ix = (-(*n) + 1) * *incx + 1; + } + if (*incy < 0) { + iy = (-(*n) + 1) * *incy + 1; + } + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + stemp += sx[ix] * sy[iy]; + ix += *incx; + iy += *incy; +/* L10: */ + } + ret_val = stemp; + return ret_val; + +/* + code for both increments equal to 1 + + + clean-up loop +*/ + +L20: + m = *n % 5; + if (m == 0) { + goto L40; + } + i__1 = m; + for (i__ = 1; i__ <= i__1; ++i__) { + stemp += sx[i__] * sy[i__]; +/* L30: */ + } + if (*n < 5) { + goto L60; + } +L40: + mp1 = m + 1; + i__1 = *n; + for (i__ = mp1; i__ <= i__1; i__ += 5) { + stemp = stemp + sx[i__] * sy[i__] + sx[i__ + 1] * sy[i__ + 1] + sx[ + i__ + 2] * sy[i__ + 2] + sx[i__ + 3] * sy[i__ + 3] + sx[i__ + + 4] * sy[i__ + 4]; +/* L50: */ + } +L60: + ret_val = stemp; + return ret_val; +} /* sdot_ */ + +/* Subroutine */ int sgemm_(char *transa, char *transb, integer *m, integer * + n, integer *k, real *alpha, real *a, integer *lda, real *b, integer * + ldb, real *beta, real *c__, integer *ldc) +{ + /* System generated locals */ + integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2, + i__3; + + /* Local variables */ + static integer i__, j, l, info; + static logical nota, notb; + static real temp; + static integer ncola; + extern logical lsame_(char *, char *); + static integer nrowa, nrowb; + extern /* Subroutine */ int xerbla_(char *, integer *); + + +/* + Purpose + ======= + + SGEMM performs one of the matrix-matrix operations + + C := alpha*op( A )*op( B ) + beta*C, + + where op( X ) is one of + + op( X ) = X or op( X ) = X', + + alpha and beta are scalars, and A, B and C are matrices, with op( A ) + an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. + + Parameters + ========== + + TRANSA - CHARACTER*1. + On entry, TRANSA specifies the form of op( A ) to be used in + the matrix multiplication as follows: + + TRANSA = 'N' or 'n', op( A ) = A. + + TRANSA = 'T' or 't', op( A ) = A'. + + TRANSA = 'C' or 'c', op( A ) = A'. + + Unchanged on exit. + + TRANSB - CHARACTER*1. + On entry, TRANSB specifies the form of op( B ) to be used in + the matrix multiplication as follows: + + TRANSB = 'N' or 'n', op( B ) = B. + + TRANSB = 'T' or 't', op( B ) = B'. + + TRANSB = 'C' or 'c', op( B ) = B'. + + Unchanged on exit. + + M - INTEGER. + On entry, M specifies the number of rows of the matrix + op( A ) and of the matrix C. M must be at least zero. + Unchanged on exit. + + N - INTEGER. + On entry, N specifies the number of columns of the matrix + op( B ) and the number of columns of the matrix C. N must be + at least zero. + Unchanged on exit. + + K - INTEGER. + On entry, K specifies the number of columns of the matrix + op( A ) and the number of rows of the matrix op( B ). K must + be at least zero. + Unchanged on exit. + + ALPHA - REAL . + On entry, ALPHA specifies the scalar alpha. + Unchanged on exit. + + A - REAL array of DIMENSION ( LDA, ka ), where ka is + k when TRANSA = 'N' or 'n', and is m otherwise. + Before entry with TRANSA = 'N' or 'n', the leading m by k + part of the array A must contain the matrix A, otherwise + the leading k by m part of the array A must contain the + matrix A. + Unchanged on exit. + + LDA - INTEGER. + On entry, LDA specifies the first dimension of A as declared + in the calling (sub) program. When TRANSA = 'N' or 'n' then + LDA must be at least max( 1, m ), otherwise LDA must be at + least max( 1, k ). + Unchanged on exit. + + B - REAL array of DIMENSION ( LDB, kb ), where kb is + n when TRANSB = 'N' or 'n', and is k otherwise. + Before entry with TRANSB = 'N' or 'n', the leading k by n + part of the array B must contain the matrix B, otherwise + the leading n by k part of the array B must contain the + matrix B. + Unchanged on exit. + + LDB - INTEGER. + On entry, LDB specifies the first dimension of B as declared + in the calling (sub) program. When TRANSB = 'N' or 'n' then + LDB must be at least max( 1, k ), otherwise LDB must be at + least max( 1, n ). + Unchanged on exit. + + BETA - REAL . + On entry, BETA specifies the scalar beta. When BETA is + supplied as zero then C need not be set on input. + Unchanged on exit. + + C - REAL array of DIMENSION ( LDC, n ). + Before entry, the leading m by n part of the array C must + contain the matrix C, except when beta is zero, in which + case C need not be set on entry. + On exit, the array C is overwritten by the m by n matrix + ( alpha*op( A )*op( B ) + beta*C ). + + LDC - INTEGER. + On entry, LDC specifies the first dimension of C as declared + in the calling (sub) program. LDC must be at least + max( 1, m ). + Unchanged on exit. + + + Level 3 Blas routine. + + -- Written on 8-February-1989. + Jack Dongarra, Argonne National Laboratory. + Iain Duff, AERE Harwell. + Jeremy Du Croz, Numerical Algorithms Group Ltd. + Sven Hammarling, Numerical Algorithms Group Ltd. + + + Set NOTA and NOTB as true if A and B respectively are not + transposed and set NROWA, NCOLA and NROWB as the number of rows + and columns of A and the number of rows of B respectively. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + c_dim1 = *ldc; + c_offset = 1 + c_dim1; + c__ -= c_offset; + + /* Function Body */ + nota = lsame_(transa, "N"); + notb = lsame_(transb, "N"); + if (nota) { + nrowa = *m; + ncola = *k; + } else { + nrowa = *k; + ncola = *m; + } + if (notb) { + nrowb = *k; + } else { + nrowb = *n; + } + +/* Test the input parameters. */ + + info = 0; + if (! nota && ! lsame_(transa, "C") && ! lsame_( + transa, "T")) { + info = 1; + } else if (! notb && ! lsame_(transb, "C") && ! + lsame_(transb, "T")) { + info = 2; + } else if (*m < 0) { + info = 3; + } else if (*n < 0) { + info = 4; + } else if (*k < 0) { + info = 5; + } else if (*lda < max(1,nrowa)) { + info = 8; + } else if (*ldb < max(1,nrowb)) { + info = 10; + } else if (*ldc < max(1,*m)) { + info = 13; + } + if (info != 0) { + xerbla_("SGEMM ", &info); + return 0; + } + +/* Quick return if possible. */ + + if (*m == 0 || *n == 0 || (*alpha == 0.f || *k == 0) && *beta == 1.f) { + return 0; + } + +/* And if alpha.eq.zero. */ + + if (*alpha == 0.f) { + if (*beta == 0.f) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = 0.f; +/* L10: */ + } +/* L20: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; +/* L30: */ + } +/* L40: */ + } + } + return 0; + } + +/* Start the operations. */ + + if (notb) { + if (nota) { + +/* Form C := alpha*A*B + beta*C. */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (*beta == 0.f) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = 0.f; +/* L50: */ + } + } else if (*beta != 1.f) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; +/* L60: */ + } + } + i__2 = *k; + for (l = 1; l <= i__2; ++l) { + if (b[l + j * b_dim1] != 0.f) { + temp = *alpha * b[l + j * b_dim1]; + i__3 = *m; + for (i__ = 1; i__ <= i__3; ++i__) { + c__[i__ + j * c_dim1] += temp * a[i__ + l * + a_dim1]; +/* L70: */ + } + } +/* L80: */ + } +/* L90: */ + } + } else { + +/* Form C := alpha*A'*B + beta*C */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + temp = 0.f; + i__3 = *k; + for (l = 1; l <= i__3; ++l) { + temp += a[l + i__ * a_dim1] * b[l + j * b_dim1]; +/* L100: */ + } + if (*beta == 0.f) { + c__[i__ + j * c_dim1] = *alpha * temp; + } else { + c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[ + i__ + j * c_dim1]; + } +/* L110: */ + } +/* L120: */ + } + } + } else { + if (nota) { + +/* Form C := alpha*A*B' + beta*C */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (*beta == 0.f) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = 0.f; +/* L130: */ + } + } else if (*beta != 1.f) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; +/* L140: */ + } + } + i__2 = *k; + for (l = 1; l <= i__2; ++l) { + if (b[j + l * b_dim1] != 0.f) { + temp = *alpha * b[j + l * b_dim1]; + i__3 = *m; + for (i__ = 1; i__ <= i__3; ++i__) { + c__[i__ + j * c_dim1] += temp * a[i__ + l * + a_dim1]; +/* L150: */ + } + } +/* L160: */ + } +/* L170: */ + } + } else { + +/* Form C := alpha*A'*B' + beta*C */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + temp = 0.f; + i__3 = *k; + for (l = 1; l <= i__3; ++l) { + temp += a[l + i__ * a_dim1] * b[j + l * b_dim1]; +/* L180: */ + } + if (*beta == 0.f) { + c__[i__ + j * c_dim1] = *alpha * temp; + } else { + c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[ + i__ + j * c_dim1]; + } +/* L190: */ + } +/* L200: */ + } + } + } + + return 0; + +/* End of SGEMM . */ + +} /* sgemm_ */ + +/* Subroutine */ int sgemv_(char *trans, integer *m, integer *n, real *alpha, + real *a, integer *lda, real *x, integer *incx, real *beta, real *y, + integer *incy) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2; + + /* Local variables */ + static integer i__, j, ix, iy, jx, jy, kx, ky, info; + static real temp; + static integer lenx, leny; + extern logical lsame_(char *, char *); + extern /* Subroutine */ int xerbla_(char *, integer *); + + +/* + Purpose + ======= + + SGEMV performs one of the matrix-vector operations + + y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, + + where alpha and beta are scalars, x and y are vectors and A is an + m by n matrix. + + Parameters + ========== + + TRANS - CHARACTER*1. + On entry, TRANS specifies the operation to be performed as + follows: + + TRANS = 'N' or 'n' y := alpha*A*x + beta*y. + + TRANS = 'T' or 't' y := alpha*A'*x + beta*y. + + TRANS = 'C' or 'c' y := alpha*A'*x + beta*y. + + Unchanged on exit. + + M - INTEGER. + On entry, M specifies the number of rows of the matrix A. + M must be at least zero. + Unchanged on exit. + + N - INTEGER. + On entry, N specifies the number of columns of the matrix A. + N must be at least zero. + Unchanged on exit. + + ALPHA - REAL . + On entry, ALPHA specifies the scalar alpha. + Unchanged on exit. + + A - REAL array of DIMENSION ( LDA, n ). + Before entry, the leading m by n part of the array A must + contain the matrix of coefficients. + Unchanged on exit. + + LDA - INTEGER. + On entry, LDA specifies the first dimension of A as declared + in the calling (sub) program. LDA must be at least + max( 1, m ). + Unchanged on exit. + + X - REAL array of DIMENSION at least + ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' + and at least + ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. + Before entry, the incremented array X must contain the + vector x. + Unchanged on exit. + + INCX - INTEGER. + On entry, INCX specifies the increment for the elements of + X. INCX must not be zero. + Unchanged on exit. + + BETA - REAL . + On entry, BETA specifies the scalar beta. When BETA is + supplied as zero then Y need not be set on input. + Unchanged on exit. + + Y - REAL array of DIMENSION at least + ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' + and at least + ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. + Before entry with BETA non-zero, the incremented array Y + must contain the vector y. On exit, Y is overwritten by the + updated vector y. + + INCY - INTEGER. + On entry, INCY specifies the increment for the elements of + Y. INCY must not be zero. + Unchanged on exit. + + + Level 2 Blas routine. + + -- Written on 22-October-1986. + Jack Dongarra, Argonne National Lab. + Jeremy Du Croz, Nag Central Office. + Sven Hammarling, Nag Central Office. + Richard Hanson, Sandia National Labs. + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --x; + --y; + + /* Function Body */ + info = 0; + if (! lsame_(trans, "N") && ! lsame_(trans, "T") && ! lsame_(trans, "C") + ) { + info = 1; + } else if (*m < 0) { + info = 2; + } else if (*n < 0) { + info = 3; + } else if (*lda < max(1,*m)) { + info = 6; + } else if (*incx == 0) { + info = 8; + } else if (*incy == 0) { + info = 11; + } + if (info != 0) { + xerbla_("SGEMV ", &info); + return 0; + } + +/* Quick return if possible. */ + + if (*m == 0 || *n == 0 || *alpha == 0.f && *beta == 1.f) { + return 0; + } + +/* + Set LENX and LENY, the lengths of the vectors x and y, and set + up the start points in X and Y. +*/ + + if (lsame_(trans, "N")) { + lenx = *n; + leny = *m; + } else { + lenx = *m; + leny = *n; + } + if (*incx > 0) { + kx = 1; + } else { + kx = 1 - (lenx - 1) * *incx; + } + if (*incy > 0) { + ky = 1; + } else { + ky = 1 - (leny - 1) * *incy; + } + +/* + Start the operations. In this version the elements of A are + accessed sequentially with one pass through A. + + First form y := beta*y. +*/ + + if (*beta != 1.f) { + if (*incy == 1) { + if (*beta == 0.f) { + i__1 = leny; + for (i__ = 1; i__ <= i__1; ++i__) { + y[i__] = 0.f; +/* L10: */ + } + } else { + i__1 = leny; + for (i__ = 1; i__ <= i__1; ++i__) { + y[i__] = *beta * y[i__]; +/* L20: */ + } + } + } else { + iy = ky; + if (*beta == 0.f) { + i__1 = leny; + for (i__ = 1; i__ <= i__1; ++i__) { + y[iy] = 0.f; + iy += *incy; +/* L30: */ + } + } else { + i__1 = leny; + for (i__ = 1; i__ <= i__1; ++i__) { + y[iy] = *beta * y[iy]; + iy += *incy; +/* L40: */ + } + } + } + } + if (*alpha == 0.f) { + return 0; + } + if (lsame_(trans, "N")) { + +/* Form y := alpha*A*x + y. */ + + jx = kx; + if (*incy == 1) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (x[jx] != 0.f) { + temp = *alpha * x[jx]; + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + y[i__] += temp * a[i__ + j * a_dim1]; +/* L50: */ + } + } + jx += *incx; +/* L60: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (x[jx] != 0.f) { + temp = *alpha * x[jx]; + iy = ky; + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + y[iy] += temp * a[i__ + j * a_dim1]; + iy += *incy; +/* L70: */ + } + } + jx += *incx; +/* L80: */ + } + } + } else { + +/* Form y := alpha*A'*x + y. */ + + jy = ky; + if (*incx == 1) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + temp = 0.f; + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + temp += a[i__ + j * a_dim1] * x[i__]; +/* L90: */ + } + y[jy] += *alpha * temp; + jy += *incy; +/* L100: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + temp = 0.f; + ix = kx; + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + temp += a[i__ + j * a_dim1] * x[ix]; + ix += *incx; +/* L110: */ + } + y[jy] += *alpha * temp; + jy += *incy; +/* L120: */ + } + } + } + + return 0; + +/* End of SGEMV . */ + +} /* sgemv_ */ + +/* Subroutine */ int sscal_(integer *n, real *sa, real *sx, integer *incx) +{ + /* System generated locals */ + integer i__1, i__2; + + /* Local variables */ + static integer i__, m, mp1, nincx; + + +/* + scales a vector by a constant. + uses unrolled loops for increment equal to 1. + jack dongarra, linpack, 3/11/78. + modified 3/93 to return if incx .le. 0. + modified 12/3/93, array(1) declarations changed to array(*) +*/ + + + /* Parameter adjustments */ + --sx; + + /* Function Body */ + if (*n <= 0 || *incx <= 0) { + return 0; + } + if (*incx == 1) { + goto L20; + } + +/* code for increment not equal to 1 */ + + nincx = *n * *incx; + i__1 = nincx; + i__2 = *incx; + for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { + sx[i__] = *sa * sx[i__]; +/* L10: */ + } + return 0; + +/* + code for increment equal to 1 + + + clean-up loop +*/ + +L20: + m = *n % 5; + if (m == 0) { + goto L40; + } + i__2 = m; + for (i__ = 1; i__ <= i__2; ++i__) { + sx[i__] = *sa * sx[i__]; +/* L30: */ + } + if (*n < 5) { + return 0; + } +L40: + mp1 = m + 1; + i__2 = *n; + for (i__ = mp1; i__ <= i__2; i__ += 5) { + sx[i__] = *sa * sx[i__]; + sx[i__ + 1] = *sa * sx[i__ + 1]; + sx[i__ + 2] = *sa * sx[i__ + 2]; + sx[i__ + 3] = *sa * sx[i__ + 3]; + sx[i__ + 4] = *sa * sx[i__ + 4]; +/* L50: */ + } + return 0; +} /* sscal_ */ + +/* Subroutine */ int ssymm_(char *side, char *uplo, integer *m, integer *n, + real *alpha, real *a, integer *lda, real *b, integer *ldb, real *beta, + real *c__, integer *ldc) +{ + /* System generated locals */ + integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2, + i__3; + + /* Local variables */ + static integer i__, j, k, info; + static real temp1, temp2; + extern logical lsame_(char *, char *); + static integer nrowa; + static logical upper; + extern /* Subroutine */ int xerbla_(char *, integer *); + + +/* + Purpose + ======= + + SSYMM performs one of the matrix-matrix operations + + C := alpha*A*B + beta*C, + + or + + C := alpha*B*A + beta*C, + + where alpha and beta are scalars, A is a symmetric matrix and B and + C are m by n matrices. + + Parameters + ========== + + SIDE - CHARACTER*1. + On entry, SIDE specifies whether the symmetric matrix A + appears on the left or right in the operation as follows: + + SIDE = 'L' or 'l' C := alpha*A*B + beta*C, + + SIDE = 'R' or 'r' C := alpha*B*A + beta*C, + + Unchanged on exit. + + UPLO - CHARACTER*1. + On entry, UPLO specifies whether the upper or lower + triangular part of the symmetric matrix A is to be + referenced as follows: + + UPLO = 'U' or 'u' Only the upper triangular part of the + symmetric matrix is to be referenced. + + UPLO = 'L' or 'l' Only the lower triangular part of the + symmetric matrix is to be referenced. + + Unchanged on exit. + + M - INTEGER. + On entry, M specifies the number of rows of the matrix C. + M must be at least zero. + Unchanged on exit. + + N - INTEGER. + On entry, N specifies the number of columns of the matrix C. + N must be at least zero. + Unchanged on exit. + + ALPHA - REAL . + On entry, ALPHA specifies the scalar alpha. + Unchanged on exit. + + A - REAL array of DIMENSION ( LDA, ka ), where ka is + m when SIDE = 'L' or 'l' and is n otherwise. + Before entry with SIDE = 'L' or 'l', the m by m part of + the array A must contain the symmetric matrix, such that + when UPLO = 'U' or 'u', the leading m by m upper triangular + part of the array A must contain the upper triangular part + of the symmetric matrix and the strictly lower triangular + part of A is not referenced, and when UPLO = 'L' or 'l', + the leading m by m lower triangular part of the array A + must contain the lower triangular part of the symmetric + matrix and the strictly upper triangular part of A is not + referenced. + Before entry with SIDE = 'R' or 'r', the n by n part of + the array A must contain the symmetric matrix, such that + when UPLO = 'U' or 'u', the leading n by n upper triangular + part of the array A must contain the upper triangular part + of the symmetric matrix and the strictly lower triangular + part of A is not referenced, and when UPLO = 'L' or 'l', + the leading n by n lower triangular part of the array A + must contain the lower triangular part of the symmetric + matrix and the strictly upper triangular part of A is not + referenced. + Unchanged on exit. + + LDA - INTEGER. + On entry, LDA specifies the first dimension of A as declared + in the calling (sub) program. When SIDE = 'L' or 'l' then + LDA must be at least max( 1, m ), otherwise LDA must be at + least max( 1, n ). + Unchanged on exit. + + B - REAL array of DIMENSION ( LDB, n ). + Before entry, the leading m by n part of the array B must + contain the matrix B. + Unchanged on exit. + + LDB - INTEGER. + On entry, LDB specifies the first dimension of B as declared + in the calling (sub) program. LDB must be at least + max( 1, m ). + Unchanged on exit. + + BETA - REAL . + On entry, BETA specifies the scalar beta. When BETA is + supplied as zero then C need not be set on input. + Unchanged on exit. + + C - REAL array of DIMENSION ( LDC, n ). + Before entry, the leading m by n part of the array C must + contain the matrix C, except when beta is zero, in which + case C need not be set on entry. + On exit, the array C is overwritten by the m by n updated + matrix. + + LDC - INTEGER. + On entry, LDC specifies the first dimension of C as declared + in the calling (sub) program. LDC must be at least + max( 1, m ). + Unchanged on exit. + + + Level 3 Blas routine. + + -- Written on 8-February-1989. + Jack Dongarra, Argonne National Laboratory. + Iain Duff, AERE Harwell. + Jeremy Du Croz, Numerical Algorithms Group Ltd. + Sven Hammarling, Numerical Algorithms Group Ltd. + + + Set NROWA as the number of rows of A. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + c_dim1 = *ldc; + c_offset = 1 + c_dim1; + c__ -= c_offset; + + /* Function Body */ + if (lsame_(side, "L")) { + nrowa = *m; + } else { + nrowa = *n; + } + upper = lsame_(uplo, "U"); + +/* Test the input parameters. */ + + info = 0; + if (! lsame_(side, "L") && ! lsame_(side, "R")) { + info = 1; + } else if (! upper && ! lsame_(uplo, "L")) { + info = 2; + } else if (*m < 0) { + info = 3; + } else if (*n < 0) { + info = 4; + } else if (*lda < max(1,nrowa)) { + info = 7; + } else if (*ldb < max(1,*m)) { + info = 9; + } else if (*ldc < max(1,*m)) { + info = 12; + } + if (info != 0) { + xerbla_("SSYMM ", &info); + return 0; + } + +/* Quick return if possible. */ + + if (*m == 0 || *n == 0 || *alpha == 0.f && *beta == 1.f) { + return 0; + } + +/* And when alpha.eq.zero. */ + + if (*alpha == 0.f) { + if (*beta == 0.f) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = 0.f; +/* L10: */ + } +/* L20: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; +/* L30: */ + } +/* L40: */ + } + } + return 0; + } + +/* Start the operations. */ + + if (lsame_(side, "L")) { + +/* Form C := alpha*A*B + beta*C. */ + + if (upper) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + temp1 = *alpha * b[i__ + j * b_dim1]; + temp2 = 0.f; + i__3 = i__ - 1; + for (k = 1; k <= i__3; ++k) { + c__[k + j * c_dim1] += temp1 * a[k + i__ * a_dim1]; + temp2 += b[k + j * b_dim1] * a[k + i__ * a_dim1]; +/* L50: */ + } + if (*beta == 0.f) { + c__[i__ + j * c_dim1] = temp1 * a[i__ + i__ * a_dim1] + + *alpha * temp2; + } else { + c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1] + + temp1 * a[i__ + i__ * a_dim1] + *alpha * + temp2; + } +/* L60: */ + } +/* L70: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + for (i__ = *m; i__ >= 1; --i__) { + temp1 = *alpha * b[i__ + j * b_dim1]; + temp2 = 0.f; + i__2 = *m; + for (k = i__ + 1; k <= i__2; ++k) { + c__[k + j * c_dim1] += temp1 * a[k + i__ * a_dim1]; + temp2 += b[k + j * b_dim1] * a[k + i__ * a_dim1]; +/* L80: */ + } + if (*beta == 0.f) { + c__[i__ + j * c_dim1] = temp1 * a[i__ + i__ * a_dim1] + + *alpha * temp2; + } else { + c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1] + + temp1 * a[i__ + i__ * a_dim1] + *alpha * + temp2; + } +/* L90: */ + } +/* L100: */ + } + } + } else { + +/* Form C := alpha*B*A + beta*C. */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + temp1 = *alpha * a[j + j * a_dim1]; + if (*beta == 0.f) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = temp1 * b[i__ + j * b_dim1]; +/* L110: */ + } + } else { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1] + + temp1 * b[i__ + j * b_dim1]; +/* L120: */ + } + } + i__2 = j - 1; + for (k = 1; k <= i__2; ++k) { + if (upper) { + temp1 = *alpha * a[k + j * a_dim1]; + } else { + temp1 = *alpha * a[j + k * a_dim1]; + } + i__3 = *m; + for (i__ = 1; i__ <= i__3; ++i__) { + c__[i__ + j * c_dim1] += temp1 * b[i__ + k * b_dim1]; +/* L130: */ + } +/* L140: */ + } + i__2 = *n; + for (k = j + 1; k <= i__2; ++k) { + if (upper) { + temp1 = *alpha * a[j + k * a_dim1]; + } else { + temp1 = *alpha * a[k + j * a_dim1]; + } + i__3 = *m; + for (i__ = 1; i__ <= i__3; ++i__) { + c__[i__ + j * c_dim1] += temp1 * b[i__ + k * b_dim1]; +/* L150: */ + } +/* L160: */ + } +/* L170: */ + } + } + + return 0; + +/* End of SSYMM . */ + +} /* ssymm_ */ + +/* Subroutine */ int ssyrk_(char *uplo, char *trans, integer *n, integer *k, + real *alpha, real *a, integer *lda, real *beta, real *c__, integer * + ldc) +{ + /* System generated locals */ + integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3; + + /* Local variables */ + static integer i__, j, l, info; + static real temp; + extern logical lsame_(char *, char *); + static integer nrowa; + static logical upper; + extern /* Subroutine */ int xerbla_(char *, integer *); + + +/* + Purpose + ======= + + SSYRK performs one of the symmetric rank k operations + + C := alpha*A*A' + beta*C, + + or + + C := alpha*A'*A + beta*C, + + where alpha and beta are scalars, C is an n by n symmetric matrix + and A is an n by k matrix in the first case and a k by n matrix + in the second case. + + Parameters + ========== + + UPLO - CHARACTER*1. + On entry, UPLO specifies whether the upper or lower + triangular part of the array C is to be referenced as + follows: + + UPLO = 'U' or 'u' Only the upper triangular part of C + is to be referenced. + + UPLO = 'L' or 'l' Only the lower triangular part of C + is to be referenced. + + Unchanged on exit. + + TRANS - CHARACTER*1. + On entry, TRANS specifies the operation to be performed as + follows: + + TRANS = 'N' or 'n' C := alpha*A*A' + beta*C. + + TRANS = 'T' or 't' C := alpha*A'*A + beta*C. + + TRANS = 'C' or 'c' C := alpha*A'*A + beta*C. + + Unchanged on exit. + + N - INTEGER. + On entry, N specifies the order of the matrix C. N must be + at least zero. + Unchanged on exit. + + K - INTEGER. + On entry with TRANS = 'N' or 'n', K specifies the number + of columns of the matrix A, and on entry with + TRANS = 'T' or 't' or 'C' or 'c', K specifies the number + of rows of the matrix A. K must be at least zero. + Unchanged on exit. + + ALPHA - REAL . + On entry, ALPHA specifies the scalar alpha. + Unchanged on exit. + + A - REAL array of DIMENSION ( LDA, ka ), where ka is + k when TRANS = 'N' or 'n', and is n otherwise. + Before entry with TRANS = 'N' or 'n', the leading n by k + part of the array A must contain the matrix A, otherwise + the leading k by n part of the array A must contain the + matrix A. + Unchanged on exit. + + LDA - INTEGER. + On entry, LDA specifies the first dimension of A as declared + in the calling (sub) program. When TRANS = 'N' or 'n' + then LDA must be at least max( 1, n ), otherwise LDA must + be at least max( 1, k ). + Unchanged on exit. + + BETA - REAL . + On entry, BETA specifies the scalar beta. + Unchanged on exit. + + C - REAL array of DIMENSION ( LDC, n ). + Before entry with UPLO = 'U' or 'u', the leading n by n + upper triangular part of the array C must contain the upper + triangular part of the symmetric matrix and the strictly + lower triangular part of C is not referenced. On exit, the + upper triangular part of the array C is overwritten by the + upper triangular part of the updated matrix. + Before entry with UPLO = 'L' or 'l', the leading n by n + lower triangular part of the array C must contain the lower + triangular part of the symmetric matrix and the strictly + upper triangular part of C is not referenced. On exit, the + lower triangular part of the array C is overwritten by the + lower triangular part of the updated matrix. + + LDC - INTEGER. + On entry, LDC specifies the first dimension of C as declared + in the calling (sub) program. LDC must be at least + max( 1, n ). + Unchanged on exit. + + + Level 3 Blas routine. + + -- Written on 8-February-1989. + Jack Dongarra, Argonne National Laboratory. + Iain Duff, AERE Harwell. + Jeremy Du Croz, Numerical Algorithms Group Ltd. + Sven Hammarling, Numerical Algorithms Group Ltd. + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + c_dim1 = *ldc; + c_offset = 1 + c_dim1; + c__ -= c_offset; + + /* Function Body */ + if (lsame_(trans, "N")) { + nrowa = *n; + } else { + nrowa = *k; + } + upper = lsame_(uplo, "U"); + + info = 0; + if (! upper && ! lsame_(uplo, "L")) { + info = 1; + } else if (! lsame_(trans, "N") && ! lsame_(trans, + "T") && ! lsame_(trans, "C")) { + info = 2; + } else if (*n < 0) { + info = 3; + } else if (*k < 0) { + info = 4; + } else if (*lda < max(1,nrowa)) { + info = 7; + } else if (*ldc < max(1,*n)) { + info = 10; + } + if (info != 0) { + xerbla_("SSYRK ", &info); + return 0; + } + +/* Quick return if possible. */ + + if (*n == 0 || (*alpha == 0.f || *k == 0) && *beta == 1.f) { + return 0; + } + +/* And when alpha.eq.zero. */ + + if (*alpha == 0.f) { + if (upper) { + if (*beta == 0.f) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j; + for (i__ = 1; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = 0.f; +/* L10: */ + } +/* L20: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j; + for (i__ = 1; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; +/* L30: */ + } +/* L40: */ + } + } + } else { + if (*beta == 0.f) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *n; + for (i__ = j; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = 0.f; +/* L50: */ + } +/* L60: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *n; + for (i__ = j; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; +/* L70: */ + } +/* L80: */ + } + } + } + return 0; + } + +/* Start the operations. */ + + if (lsame_(trans, "N")) { + +/* Form C := alpha*A*A' + beta*C. */ + + if (upper) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (*beta == 0.f) { + i__2 = j; + for (i__ = 1; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = 0.f; +/* L90: */ + } + } else if (*beta != 1.f) { + i__2 = j; + for (i__ = 1; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; +/* L100: */ + } + } + i__2 = *k; + for (l = 1; l <= i__2; ++l) { + if (a[j + l * a_dim1] != 0.f) { + temp = *alpha * a[j + l * a_dim1]; + i__3 = j; + for (i__ = 1; i__ <= i__3; ++i__) { + c__[i__ + j * c_dim1] += temp * a[i__ + l * + a_dim1]; +/* L110: */ + } + } +/* L120: */ + } +/* L130: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (*beta == 0.f) { + i__2 = *n; + for (i__ = j; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = 0.f; +/* L140: */ + } + } else if (*beta != 1.f) { + i__2 = *n; + for (i__ = j; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; +/* L150: */ + } + } + i__2 = *k; + for (l = 1; l <= i__2; ++l) { + if (a[j + l * a_dim1] != 0.f) { + temp = *alpha * a[j + l * a_dim1]; + i__3 = *n; + for (i__ = j; i__ <= i__3; ++i__) { + c__[i__ + j * c_dim1] += temp * a[i__ + l * + a_dim1]; +/* L160: */ + } + } +/* L170: */ + } +/* L180: */ + } + } + } else { + +/* Form C := alpha*A'*A + beta*C. */ + + if (upper) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j; + for (i__ = 1; i__ <= i__2; ++i__) { + temp = 0.f; + i__3 = *k; + for (l = 1; l <= i__3; ++l) { + temp += a[l + i__ * a_dim1] * a[l + j * a_dim1]; +/* L190: */ + } + if (*beta == 0.f) { + c__[i__ + j * c_dim1] = *alpha * temp; + } else { + c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[ + i__ + j * c_dim1]; + } +/* L200: */ + } +/* L210: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *n; + for (i__ = j; i__ <= i__2; ++i__) { + temp = 0.f; + i__3 = *k; + for (l = 1; l <= i__3; ++l) { + temp += a[l + i__ * a_dim1] * a[l + j * a_dim1]; +/* L220: */ + } + if (*beta == 0.f) { + c__[i__ + j * c_dim1] = *alpha * temp; + } else { + c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[ + i__ + j * c_dim1]; + } +/* L230: */ + } +/* L240: */ + } + } + } + + return 0; + +/* End of SSYRK . */ + +} /* ssyrk_ */ + +/* Subroutine */ int strsm_(char *side, char *uplo, char *transa, char *diag, + integer *m, integer *n, real *alpha, real *a, integer *lda, real *b, + integer *ldb) +{ + /* System generated locals */ + integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3; + + /* Local variables */ + static integer i__, j, k, info; + static real temp; + static logical lside; + extern logical lsame_(char *, char *); + static integer nrowa; + static logical upper; + extern /* Subroutine */ int xerbla_(char *, integer *); + static logical nounit; + + +/* + Purpose + ======= + + STRSM solves one of the matrix equations + + op( A )*X = alpha*B, or X*op( A ) = alpha*B, + + where alpha is a scalar, X and B are m by n matrices, A is a unit, or + non-unit, upper or lower triangular matrix and op( A ) is one of + + op( A ) = A or op( A ) = A'. + + The matrix X is overwritten on B. + + Parameters + ========== + + SIDE - CHARACTER*1. + On entry, SIDE specifies whether op( A ) appears on the left + or right of X as follows: + + SIDE = 'L' or 'l' op( A )*X = alpha*B. + + SIDE = 'R' or 'r' X*op( A ) = alpha*B. + + Unchanged on exit. + + UPLO - CHARACTER*1. + On entry, UPLO specifies whether the matrix A is an upper or + lower triangular matrix as follows: + + UPLO = 'U' or 'u' A is an upper triangular matrix. + + UPLO = 'L' or 'l' A is a lower triangular matrix. + + Unchanged on exit. + + TRANSA - CHARACTER*1. + On entry, TRANSA specifies the form of op( A ) to be used in + the matrix multiplication as follows: + + TRANSA = 'N' or 'n' op( A ) = A. + + TRANSA = 'T' or 't' op( A ) = A'. + + TRANSA = 'C' or 'c' op( A ) = A'. + + Unchanged on exit. + + DIAG - CHARACTER*1. + On entry, DIAG specifies whether or not A is unit triangular + as follows: + + DIAG = 'U' or 'u' A is assumed to be unit triangular. + + DIAG = 'N' or 'n' A is not assumed to be unit + triangular. + + Unchanged on exit. + + M - INTEGER. + On entry, M specifies the number of rows of B. M must be at + least zero. + Unchanged on exit. + + N - INTEGER. + On entry, N specifies the number of columns of B. N must be + at least zero. + Unchanged on exit. + + ALPHA - REAL . + On entry, ALPHA specifies the scalar alpha. When alpha is + zero then A is not referenced and B need not be set before + entry. + Unchanged on exit. + + A - REAL array of DIMENSION ( LDA, k ), where k is m + when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. + Before entry with UPLO = 'U' or 'u', the leading k by k + upper triangular part of the array A must contain the upper + triangular matrix and the strictly lower triangular part of + A is not referenced. + Before entry with UPLO = 'L' or 'l', the leading k by k + lower triangular part of the array A must contain the lower + triangular matrix and the strictly upper triangular part of + A is not referenced. + Note that when DIAG = 'U' or 'u', the diagonal elements of + A are not referenced either, but are assumed to be unity. + Unchanged on exit. + + LDA - INTEGER. + On entry, LDA specifies the first dimension of A as declared + in the calling (sub) program. When SIDE = 'L' or 'l' then + LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' + then LDA must be at least max( 1, n ). + Unchanged on exit. + + B - REAL array of DIMENSION ( LDB, n ). + Before entry, the leading m by n part of the array B must + contain the right-hand side matrix B, and on exit is + overwritten by the solution matrix X. + + LDB - INTEGER. + On entry, LDB specifies the first dimension of B as declared + in the calling (sub) program. LDB must be at least + max( 1, m ). + Unchanged on exit. + + + Level 3 Blas routine. + + + -- Written on 8-February-1989. + Jack Dongarra, Argonne National Laboratory. + Iain Duff, AERE Harwell. + Jeremy Du Croz, Numerical Algorithms Group Ltd. + Sven Hammarling, Numerical Algorithms Group Ltd. + + + Test the input parameters. +*/ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + + /* Function Body */ + lside = lsame_(side, "L"); + if (lside) { + nrowa = *m; + } else { + nrowa = *n; + } + nounit = lsame_(diag, "N"); + upper = lsame_(uplo, "U"); + + info = 0; + if (! lside && ! lsame_(side, "R")) { + info = 1; + } else if (! upper && ! lsame_(uplo, "L")) { + info = 2; + } else if (! lsame_(transa, "N") && ! lsame_(transa, + "T") && ! lsame_(transa, "C")) { + info = 3; + } else if (! lsame_(diag, "U") && ! lsame_(diag, + "N")) { + info = 4; + } else if (*m < 0) { + info = 5; + } else if (*n < 0) { + info = 6; + } else if (*lda < max(1,nrowa)) { + info = 9; + } else if (*ldb < max(1,*m)) { + info = 11; + } + if (info != 0) { + xerbla_("STRSM ", &info); + return 0; + } + +/* Quick return if possible. */ + + if (*n == 0) { + return 0; + } + +/* And when alpha.eq.zero. */ + + if (*alpha == 0.f) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + b[i__ + j * b_dim1] = 0.f; +/* L10: */ + } +/* L20: */ + } + return 0; + } + +/* Start the operations. */ + + if (lside) { + if (lsame_(transa, "N")) { + +/* Form B := alpha*inv( A )*B. */ + + if (upper) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (*alpha != 1.f) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1] + ; +/* L30: */ + } + } + for (k = *m; k >= 1; --k) { + if (b[k + j * b_dim1] != 0.f) { + if (nounit) { + b[k + j * b_dim1] /= a[k + k * a_dim1]; + } + i__2 = k - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + b[i__ + j * b_dim1] -= b[k + j * b_dim1] * a[ + i__ + k * a_dim1]; +/* L40: */ + } + } +/* L50: */ + } +/* L60: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (*alpha != 1.f) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1] + ; +/* L70: */ + } + } + i__2 = *m; + for (k = 1; k <= i__2; ++k) { + if (b[k + j * b_dim1] != 0.f) { + if (nounit) { + b[k + j * b_dim1] /= a[k + k * a_dim1]; + } + i__3 = *m; + for (i__ = k + 1; i__ <= i__3; ++i__) { + b[i__ + j * b_dim1] -= b[k + j * b_dim1] * a[ + i__ + k * a_dim1]; +/* L80: */ + } + } +/* L90: */ + } +/* L100: */ + } + } + } else { + +/* Form B := alpha*inv( A' )*B. */ + + if (upper) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + temp = *alpha * b[i__ + j * b_dim1]; + i__3 = i__ - 1; + for (k = 1; k <= i__3; ++k) { + temp -= a[k + i__ * a_dim1] * b[k + j * b_dim1]; +/* L110: */ + } + if (nounit) { + temp /= a[i__ + i__ * a_dim1]; + } + b[i__ + j * b_dim1] = temp; +/* L120: */ + } +/* L130: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + for (i__ = *m; i__ >= 1; --i__) { + temp = *alpha * b[i__ + j * b_dim1]; + i__2 = *m; + for (k = i__ + 1; k <= i__2; ++k) { + temp -= a[k + i__ * a_dim1] * b[k + j * b_dim1]; +/* L140: */ + } + if (nounit) { + temp /= a[i__ + i__ * a_dim1]; + } + b[i__ + j * b_dim1] = temp; +/* L150: */ + } +/* L160: */ + } + } + } + } else { + if (lsame_(transa, "N")) { + +/* Form B := alpha*B*inv( A ). */ + + if (upper) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (*alpha != 1.f) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1] + ; +/* L170: */ + } + } + i__2 = j - 1; + for (k = 1; k <= i__2; ++k) { + if (a[k + j * a_dim1] != 0.f) { + i__3 = *m; + for (i__ = 1; i__ <= i__3; ++i__) { + b[i__ + j * b_dim1] -= a[k + j * a_dim1] * b[ + i__ + k * b_dim1]; +/* L180: */ + } + } +/* L190: */ + } + if (nounit) { + temp = 1.f / a[j + j * a_dim1]; + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + b[i__ + j * b_dim1] = temp * b[i__ + j * b_dim1]; +/* L200: */ + } + } +/* L210: */ + } + } else { + for (j = *n; j >= 1; --j) { + if (*alpha != 1.f) { + i__1 = *m; + for (i__ = 1; i__ <= i__1; ++i__) { + b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1] + ; +/* L220: */ + } + } + i__1 = *n; + for (k = j + 1; k <= i__1; ++k) { + if (a[k + j * a_dim1] != 0.f) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + b[i__ + j * b_dim1] -= a[k + j * a_dim1] * b[ + i__ + k * b_dim1]; +/* L230: */ + } + } +/* L240: */ + } + if (nounit) { + temp = 1.f / a[j + j * a_dim1]; + i__1 = *m; + for (i__ = 1; i__ <= i__1; ++i__) { + b[i__ + j * b_dim1] = temp * b[i__ + j * b_dim1]; +/* L250: */ + } + } +/* L260: */ + } + } + } else { + +/* Form B := alpha*B*inv( A' ). */ + + if (upper) { + for (k = *n; k >= 1; --k) { + if (nounit) { + temp = 1.f / a[k + k * a_dim1]; + i__1 = *m; + for (i__ = 1; i__ <= i__1; ++i__) { + b[i__ + k * b_dim1] = temp * b[i__ + k * b_dim1]; +/* L270: */ + } + } + i__1 = k - 1; + for (j = 1; j <= i__1; ++j) { + if (a[j + k * a_dim1] != 0.f) { + temp = a[j + k * a_dim1]; + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + b[i__ + j * b_dim1] -= temp * b[i__ + k * + b_dim1]; +/* L280: */ + } + } +/* L290: */ + } + if (*alpha != 1.f) { + i__1 = *m; + for (i__ = 1; i__ <= i__1; ++i__) { + b[i__ + k * b_dim1] = *alpha * b[i__ + k * b_dim1] + ; +/* L300: */ + } + } +/* L310: */ + } + } else { + i__1 = *n; + for (k = 1; k <= i__1; ++k) { + if (nounit) { + temp = 1.f / a[k + k * a_dim1]; + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + b[i__ + k * b_dim1] = temp * b[i__ + k * b_dim1]; +/* L320: */ + } + } + i__2 = *n; + for (j = k + 1; j <= i__2; ++j) { + if (a[j + k * a_dim1] != 0.f) { + temp = a[j + k * a_dim1]; + i__3 = *m; + for (i__ = 1; i__ <= i__3; ++i__) { + b[i__ + j * b_dim1] -= temp * b[i__ + k * + b_dim1]; +/* L330: */ + } + } +/* L340: */ + } + if (*alpha != 1.f) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + b[i__ + k * b_dim1] = *alpha * b[i__ + k * b_dim1] + ; +/* L350: */ + } + } +/* L360: */ + } + } + } + } + + return 0; + +/* End of STRSM . */ + +} /* strsm_ */ + +/* Subroutine */ int xerbla_(char *srname, integer *info) +{ + /* Format strings */ + static char fmt_9999[] = "(\002 ** On entry to \002,a6,\002 parameter nu" + "mber \002,i2,\002 had \002,\002an illegal value\002)"; + + /* Builtin functions */ + integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); + /* Subroutine */ int s_stop(char *, ftnlen); + + /* Fortran I/O blocks */ + static cilist io___60 = { 0, 6, 0, fmt_9999, 0 }; + + +/* + -- LAPACK auxiliary routine (preliminary version) -- + Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., + Courant Institute, Argonne National Lab, and Rice University + February 29, 1992 + + + Purpose + ======= + + XERBLA is an error handler for the LAPACK routines. + It is called by an LAPACK routine if an input parameter has an + invalid value. A message is printed and execution stops. + + Installers may consider modifying the STOP statement in order to + call system-specific exception-handling facilities. + + Arguments + ========= + + SRNAME (input) CHARACTER*6 + The name of the routine which called XERBLA. + + INFO (input) INTEGER + The position of the invalid parameter in the parameter list + of the calling routine. +*/ + + + s_wsfe(&io___60); + do_fio(&c__1, srname, (ftnlen)6); + do_fio(&c__1, (char *)&(*info), (ftnlen)sizeof(integer)); + e_wsfe(); + + s_stop("", (ftnlen)0); + + +/* End of XERBLA */ + + return 0; +} /* xerbla_ */ + |