summaryrefslogtreecommitdiffstats
path: root/media/sphinxbase/src/libsphinxbase/lm/ngram_model.c
diff options
context:
space:
mode:
Diffstat (limited to 'media/sphinxbase/src/libsphinxbase/lm/ngram_model.c')
-rw-r--r--media/sphinxbase/src/libsphinxbase/lm/ngram_model.c1129
1 files changed, 0 insertions, 1129 deletions
diff --git a/media/sphinxbase/src/libsphinxbase/lm/ngram_model.c b/media/sphinxbase/src/libsphinxbase/lm/ngram_model.c
deleted file mode 100644
index 02af4151b..000000000
--- a/media/sphinxbase/src/libsphinxbase/lm/ngram_model.c
+++ /dev/null
@@ -1,1129 +0,0 @@
-/* -*- c-basic-offset: 4; indent-tabs-mode: nil -*- */
-/* ====================================================================
- * Copyright (c) 1999-2007 Carnegie Mellon University. All rights
- * reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- *
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in
- * the documentation and/or other materials provided with the
- * distribution.
- *
- * This work was supported in part by funding from the Defense Advanced
- * Research Projects Agency and the National Science Foundation of the
- * United States of America, and the CMU Sphinx Speech Consortium.
- *
- * THIS SOFTWARE IS PROVIDED BY CARNEGIE MELLON UNIVERSITY ``AS IS'' AND
- * ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
- * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
- * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY
- * NOR ITS EMPLOYEES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- * ====================================================================
- *
- */
-/*
- * \file ngram_model.c N-Gram language models.
- *
- * Author: David Huggins-Daines, much code taken from sphinx3/src/libs3decoder/liblm
- */
-
-#ifdef HAVE_CONFIG_H
-#include <config.h>
-#endif
-
-#include <string.h>
-#include <assert.h>
-
-#include "sphinxbase/ngram_model.h"
-#include "sphinxbase/ckd_alloc.h"
-#include "sphinxbase/filename.h"
-#include "sphinxbase/pio.h"
-#include "sphinxbase/err.h"
-#include "sphinxbase/logmath.h"
-#include "sphinxbase/strfuncs.h"
-#include "sphinxbase/case.h"
-
-#include "ngram_model_internal.h"
-
-ngram_file_type_t
-ngram_file_name_to_type(const char *file_name)
-{
- const char *ext;
-
- ext = strrchr(file_name, '.');
- if (ext == NULL) {
- return NGRAM_INVALID;
- }
- if (0 == strcmp_nocase(ext, ".gz")) {
- while (--ext >= file_name) {
- if (*ext == '.') break;
- }
- if (ext < file_name) {
- return NGRAM_INVALID;
- }
- }
- else if (0 == strcmp_nocase(ext, ".bz2")) {
- while (--ext >= file_name) {
- if (*ext == '.') break;
- }
- if (ext < file_name) {
- return NGRAM_INVALID;
- }
- }
- /* We use strncmp because there might be a .gz on the end. */
- if (0 == strncmp_nocase(ext, ".ARPA", 5))
- return NGRAM_ARPA;
- if (0 == strncmp_nocase(ext, ".DMP", 4))
- return NGRAM_DMP;
- return NGRAM_INVALID;
- }
-
-ngram_file_type_t
-ngram_str_to_type(const char *str_name)
-{
- if (0 == strcmp_nocase(str_name, "arpa"))
- return NGRAM_ARPA;
- if (0 == strcmp_nocase(str_name, "dmp"))
- return NGRAM_DMP;
- return NGRAM_INVALID;
-}
-
-char const *
-ngram_type_to_str(int type)
-{
- switch (type) {
- case NGRAM_ARPA:
- return "arpa";
- case NGRAM_DMP:
- return "dmp";
- default:
- return NULL;
- }
-}
-
-
- ngram_model_t *
- ngram_model_read(cmd_ln_t *config,
- const char *file_name,
- ngram_file_type_t file_type,
- logmath_t *lmath)
- {
- ngram_model_t *model = NULL;
-
- switch (file_type) {
- case NGRAM_AUTO: {
- if ((model = ngram_model_arpa_read(config, file_name, lmath)) != NULL)
- break;
- if ((model = ngram_model_dmp_read(config, file_name, lmath)) != NULL)
- break;
- return NULL;
- }
- case NGRAM_ARPA:
- model = ngram_model_arpa_read(config, file_name, lmath);
- break;
- case NGRAM_DMP:
- model = ngram_model_dmp_read(config, file_name, lmath);
- break;
- default:
- E_ERROR("language model file type not supported\n");
- return NULL;
- }
-
- /* Now set weights based on config if present. */
- if (config) {
- float32 lw = 1.0;
- float32 wip = 1.0;
- float32 uw = 1.0;
-
- if (cmd_ln_exists_r(config, "-lw"))
- lw = cmd_ln_float32_r(config, "-lw");
- if (cmd_ln_exists_r(config, "-wip"))
- wip = cmd_ln_float32_r(config, "-wip");
- if (cmd_ln_exists_r(config, "-uw"))
- uw = cmd_ln_float32_r(config, "-uw");
-
- ngram_model_apply_weights(model, lw, wip, uw);
- }
-
- return model;
- }
-
- int
- ngram_model_write(ngram_model_t *model, const char *file_name,
- ngram_file_type_t file_type)
- {
- switch (file_type) {
- case NGRAM_AUTO: {
- file_type = ngram_file_name_to_type(file_name);
- /* Default to ARPA (catches .lm and other things) */
- if (file_type == NGRAM_INVALID)
- file_type = NGRAM_ARPA;
- return ngram_model_write(model, file_name, file_type);
- }
- case NGRAM_ARPA:
- return ngram_model_arpa_write(model, file_name);
- case NGRAM_DMP:
- return ngram_model_dmp_write(model, file_name);
- default:
- E_ERROR("language model file type not supported\n");
- return -1;
- }
- E_ERROR("language model file type not supported\n");
- return -1;
- }
-
- int32
- ngram_model_init(ngram_model_t *base,
- ngram_funcs_t *funcs,
- logmath_t *lmath,
- int32 n, int32 n_unigram)
- {
- base->refcount = 1;
- base->funcs = funcs;
- base->n = n;
- /* If this was previously initialized... */
- if (base->n_counts == NULL)
- base->n_counts = ckd_calloc(3, sizeof(*base->n_counts));
- /* Don't reset weights if logmath object hasn't changed. */
- if (base->lmath != lmath) {
- /* Set default values for weights. */
- base->lw = 1.0;
- base->log_wip = 0; /* i.e. 1.0 */
- base->log_uw = 0; /* i.e. 1.0 */
- base->log_uniform = logmath_log(lmath, 1.0 / n_unigram);
- base->log_uniform_weight = logmath_get_zero(lmath);
- base->log_zero = logmath_get_zero(lmath);
- base->lmath = lmath;
- }
- /* Allocate or reallocate space for word strings. */
- if (base->word_str) {
- /* Free all previous word strings if they were allocated. */
- if (base->writable) {
- int32 i;
- for (i = 0; i < base->n_words; ++i) {
- ckd_free(base->word_str[i]);
- base->word_str[i] = NULL;
- }
- }
- base->word_str = ckd_realloc(base->word_str, n_unigram * sizeof(char *));
- }
- else
- base->word_str = ckd_calloc(n_unigram, sizeof(char *));
- /* NOTE: They are no longer case-insensitive since we are allowing
- * other encodings for word strings. Beware. */
- if (base->wid)
- hash_table_empty(base->wid);
- else
- base->wid = hash_table_new(n_unigram, FALSE);
- base->n_counts[0] = base->n_1g_alloc = base->n_words = n_unigram;
-
- return 0;
-}
-
-ngram_model_t *
-ngram_model_retain(ngram_model_t *model)
-{
- ++model->refcount;
- return model;
-}
-
-
-void
-ngram_model_flush(ngram_model_t *model)
-{
- if (model->funcs && model->funcs->flush)
- (*model->funcs->flush)(model);
-}
-
-int
-ngram_model_free(ngram_model_t *model)
-{
- int i;
-
- if (model == NULL)
- return 0;
- if (--model->refcount > 0)
- return model->refcount;
- if (model->funcs && model->funcs->free)
- (*model->funcs->free)(model);
- if (model->writable) {
- /* Free all words. */
- for (i = 0; i < model->n_words; ++i) {
- ckd_free(model->word_str[i]);
- }
- }
- else {
- /* Free all class words. */
- for (i = 0; i < model->n_classes; ++i) {
- ngram_class_t *lmclass;
- int32 j;
-
- lmclass = model->classes[i];
- for (j = 0; j < lmclass->n_words; ++j) {
- ckd_free(model->word_str[lmclass->start_wid + j]);
- }
- for (j = 0; j < lmclass->n_hash; ++j) {
- if (lmclass->nword_hash[j].wid != -1) {
- ckd_free(model->word_str[lmclass->nword_hash[j].wid]);
- }
- }
- }
- }
- for (i = 0; i < model->n_classes; ++i) {
- ngram_class_free(model->classes[i]);
- }
- ckd_free(model->classes);
- hash_table_free(model->wid);
- ckd_free(model->word_str);
- ckd_free(model->n_counts);
- ckd_free(model);
- return 0;
-}
-
-int
-ngram_model_casefold(ngram_model_t *model, int kase)
-{
- int writable, i;
- hash_table_t *new_wid;
-
- /* Were word strings already allocated? */
- writable = model->writable;
- /* Either way, we are going to allocate some word strings. */
- model->writable = TRUE;
-
- /* And, don't forget, we need to rebuild the word to unigram ID
- * mapping. */
- new_wid = hash_table_new(model->n_words, FALSE);
- for (i = 0; i < model->n_words; ++i) {
- char *outstr;
- if (writable) {
- outstr = model->word_str[i];
- }
- else {
- outstr = ckd_salloc(model->word_str[i]);
- }
- /* Don't case-fold <tags> or [classes] */
- if (outstr[0] == '<' || outstr[0] == '[') {
- }
- else {
- switch (kase) {
- case NGRAM_UPPER:
- ucase(outstr);
- break;
- case NGRAM_LOWER:
- lcase(outstr);
- break;
- default:
- ;
- }
- }
- model->word_str[i] = outstr;
-
- /* Now update the hash table. We might have terrible
- * collisions here, so warn about them. */
- if (hash_table_enter_int32(new_wid, model->word_str[i], i) != i) {
- E_WARN("Duplicate word in dictionary after conversion: %s\n",
- model->word_str[i]);
- }
- }
- /* Swap out the hash table. */
- hash_table_free(model->wid);
- model->wid = new_wid;
- return 0;
-}
-
-int
-ngram_model_apply_weights(ngram_model_t *model,
- float32 lw, float32 wip, float32 uw)
-{
- return (*model->funcs->apply_weights)(model, lw, wip, uw);
-}
-
-float32
-ngram_model_get_weights(ngram_model_t *model, int32 *out_log_wip,
- int32 *out_log_uw)
-{
- if (out_log_wip) *out_log_wip = model->log_wip;
- if (out_log_uw) *out_log_uw = model->log_uw;
- return model->lw;
-}
-
-
-int32
-ngram_ng_score(ngram_model_t *model, int32 wid, int32 *history,
- int32 n_hist, int32 *n_used)
-{
- int32 score, class_weight = 0;
- int i;
-
- /* Closed vocabulary, OOV word probability is zero */
- if (wid == NGRAM_INVALID_WID)
- return model->log_zero;
-
- /* "Declassify" wid and history */
- if (NGRAM_IS_CLASSWID(wid)) {
- ngram_class_t *lmclass = model->classes[NGRAM_CLASSID(wid)];
-
- class_weight = ngram_class_prob(lmclass, wid);
- if (class_weight == 1) /* Meaning, not found in class. */
- return model->log_zero;
- wid = lmclass->tag_wid;
- }
- for (i = 0; i < n_hist; ++i) {
- if (history[i] != NGRAM_INVALID_WID && NGRAM_IS_CLASSWID(history[i]))
- history[i] = model->classes[NGRAM_CLASSID(history[i])]->tag_wid;
- }
- score = (*model->funcs->score)(model, wid, history, n_hist, n_used);
-
- /* Multiply by unigram in-class weight. */
- return score + class_weight;
-}
-
-int32
-ngram_score(ngram_model_t *model, const char *word, ...)
-{
- va_list history;
- const char *hword;
- int32 *histid;
- int32 n_hist;
- int32 n_used;
- int32 prob;
-
- va_start(history, word);
- n_hist = 0;
- while ((hword = va_arg(history, const char *)) != NULL)
- ++n_hist;
- va_end(history);
-
- histid = ckd_calloc(n_hist, sizeof(*histid));
- va_start(history, word);
- n_hist = 0;
- while ((hword = va_arg(history, const char *)) != NULL) {
- histid[n_hist] = ngram_wid(model, hword);
- ++n_hist;
- }
- va_end(history);
-
- prob = ngram_ng_score(model, ngram_wid(model, word),
- histid, n_hist, &n_used);
- ckd_free(histid);
- return prob;
-}
-
-int32
-ngram_tg_score(ngram_model_t *model, int32 w3, int32 w2, int32 w1, int32 *n_used)
-{
- int32 hist[2];
- hist[0] = w2;
- hist[1] = w1;
- return ngram_ng_score(model, w3, hist, 2, n_used);
-}
-
-int32
-ngram_bg_score(ngram_model_t *model, int32 w2, int32 w1, int32 *n_used)
-{
- return ngram_ng_score(model, w2, &w1, 1, n_used);
-}
-
-int32
-ngram_ng_prob(ngram_model_t *model, int32 wid, int32 *history,
- int32 n_hist, int32 *n_used)
-{
- int32 prob, class_weight = 0;
- int i;
-
- /* Closed vocabulary, OOV word probability is zero */
- if (wid == NGRAM_INVALID_WID)
- return model->log_zero;
-
- /* "Declassify" wid and history */
- if (NGRAM_IS_CLASSWID(wid)) {
- ngram_class_t *lmclass = model->classes[NGRAM_CLASSID(wid)];
-
- class_weight = ngram_class_prob(lmclass, wid);
- if (class_weight == 1) /* Meaning, not found in class. */
- return class_weight;
- wid = lmclass->tag_wid;
- }
- for (i = 0; i < n_hist; ++i) {
- if (history[i] != NGRAM_INVALID_WID && NGRAM_IS_CLASSWID(history[i]))
- history[i] = model->classes[NGRAM_CLASSID(history[i])]->tag_wid;
- }
- prob = (*model->funcs->raw_score)(model, wid, history,
- n_hist, n_used);
- /* Multiply by unigram in-class weight. */
- return prob + class_weight;
-}
-
-int32
-ngram_probv(ngram_model_t *model, const char *word, ...)
-{
- va_list history;
- const char *hword;
- int32 *histid;
- int32 n_hist;
- int32 n_used;
- int32 prob;
-
- va_start(history, word);
- n_hist = 0;
- while ((hword = va_arg(history, const char *)) != NULL)
- ++n_hist;
- va_end(history);
-
- histid = ckd_calloc(n_hist, sizeof(*histid));
- va_start(history, word);
- n_hist = 0;
- while ((hword = va_arg(history, const char *)) != NULL) {
- histid[n_hist] = ngram_wid(model, hword);
- ++n_hist;
- }
- va_end(history);
-
- prob = ngram_ng_prob(model, ngram_wid(model, word),
- histid, n_hist, &n_used);
- ckd_free(histid);
- return prob;
-}
-
-int32
-ngram_prob(ngram_model_t *model, const char *const *words, int32 n)
-{
- int32 *ctx_id;
- int32 nused;
- int32 prob;
- int32 wid;
- uint32 i;
-
- ctx_id = (int32 *)ckd_calloc(n - 1, sizeof(*ctx_id));
- for (i = 1; i < n; ++i)
- ctx_id[i - 1] = ngram_wid(model, words[i]);
-
- wid = ngram_wid(model, *words);
- prob = ngram_ng_prob(model, wid, ctx_id, n - 1, &nused);
- ckd_free(ctx_id);
-
- return prob;
-}
-
-int32
-ngram_score_to_prob(ngram_model_t *base, int32 score)
-{
- int32 prob;
-
- /* Undo insertion penalty. */
- prob = score - base->log_wip;
- /* Undo language weight. */
- prob = (int32)(prob / base->lw);
-
- return prob;
-}
-
-int32
-ngram_unknown_wid(ngram_model_t *model)
-{
- int32 val;
-
- /* FIXME: This could be memoized for speed if necessary. */
- /* Look up <UNK>, if not found return NGRAM_INVALID_WID. */
- if (hash_table_lookup_int32(model->wid, "<UNK>", &val) == -1)
- return NGRAM_INVALID_WID;
- else
- return val;
-}
-
-int32
-ngram_zero(ngram_model_t *model)
-{
- return model->log_zero;
-}
-
-int32
-ngram_model_get_size(ngram_model_t *model)
-{
- if (model != NULL)
- return model->n;
- return 0;
-}
-
-int32 const *
-ngram_model_get_counts(ngram_model_t *model)
-{
- if (model != NULL)
- return model->n_counts;
- return NULL;
-}
-
-void
-ngram_iter_init(ngram_iter_t *itor, ngram_model_t *model,
- int m, int successor)
-{
- itor->model = model;
- itor->wids = ckd_calloc(model->n, sizeof(*itor->wids));
- itor->m = m;
- itor->successor = successor;
-}
-
-ngram_iter_t *
-ngram_model_mgrams(ngram_model_t *model, int m)
-{
- ngram_iter_t *itor;
- /* The fact that m=n-1 is not exactly obvious. Prevent accidents. */
- if (m >= model->n)
- return NULL;
- if (model->funcs->mgrams == NULL)
- return NULL;
- itor = (*model->funcs->mgrams)(model, m);
- return itor;
-}
-
-ngram_iter_t *
-ngram_iter(ngram_model_t *model, const char *word, ...)
-{
- va_list history;
- const char *hword;
- int32 *histid;
- int32 n_hist;
- ngram_iter_t *itor;
-
- va_start(history, word);
- n_hist = 0;
- while ((hword = va_arg(history, const char *)) != NULL)
- ++n_hist;
- va_end(history);
-
- histid = ckd_calloc(n_hist, sizeof(*histid));
- va_start(history, word);
- n_hist = 0;
- while ((hword = va_arg(history, const char *)) != NULL) {
- histid[n_hist] = ngram_wid(model, hword);
- ++n_hist;
- }
- va_end(history);
-
- itor = ngram_ng_iter(model, ngram_wid(model, word), histid, n_hist);
- ckd_free(histid);
- return itor;
-}
-
-ngram_iter_t *
-ngram_ng_iter(ngram_model_t *model, int32 wid, int32 *history, int32 n_hist)
-{
- if (n_hist >= model->n)
- return NULL;
- if (model->funcs->iter == NULL)
- return NULL;
- return (*model->funcs->iter)(model, wid, history, n_hist);
-}
-
-ngram_iter_t *
-ngram_iter_successors(ngram_iter_t *itor)
-{
- /* Stop when we are at the highest order N-Gram. */
- if (itor->m == itor->model->n - 1)
- return NULL;
- return (*itor->model->funcs->successors)(itor);
-}
-
-int32 const *
-ngram_iter_get(ngram_iter_t *itor,
- int32 *out_score,
- int32 *out_bowt)
-{
- return (*itor->model->funcs->iter_get)(itor, out_score, out_bowt);
-}
-
-ngram_iter_t *
-ngram_iter_next(ngram_iter_t *itor)
-{
- return (*itor->model->funcs->iter_next)(itor);
-}
-
-void
-ngram_iter_free(ngram_iter_t *itor)
-{
- ckd_free(itor->wids);
- (*itor->model->funcs->iter_free)(itor);
-}
-
-int32
-ngram_wid(ngram_model_t *model, const char *word)
-{
- int32 val;
-
- if (hash_table_lookup_int32(model->wid, word, &val) == -1)
- return ngram_unknown_wid(model);
- else
- return val;
-}
-
-const char *
-ngram_word(ngram_model_t *model, int32 wid)
-{
- /* Remove any class tag */
- wid = NGRAM_BASEWID(wid);
- if (wid >= model->n_words)
- return NULL;
- return model->word_str[wid];
-}
-
-/**
- * Add a word to the word string and ID mapping.
- */
-int32
-ngram_add_word_internal(ngram_model_t *model,
- const char *word,
- int32 classid)
-{
-
- /* Check for hash collisions. */
- int32 wid;
- if (hash_table_lookup_int32(model->wid, word, &wid) == 0) {
- E_WARN("Omit duplicate word '%s'\n", word);
- return wid;
- }
-
- /* Take the next available word ID */
- wid = model->n_words;
- if (classid >= 0) {
- wid = NGRAM_CLASSWID(wid, classid);
- }
-
- /* Reallocate word_str if necessary. */
- if (model->n_words >= model->n_1g_alloc) {
- model->n_1g_alloc += UG_ALLOC_STEP;
- model->word_str = ckd_realloc(model->word_str,
- sizeof(*model->word_str) * model->n_1g_alloc);
- }
- /* Add the word string in the appropriate manner. */
- /* Class words are always dynamically allocated. */
- model->word_str[model->n_words] = ckd_salloc(word);
- /* Now enter it into the hash table. */
- if (hash_table_enter_int32(model->wid, model->word_str[model->n_words], wid) != wid) {
- E_ERROR("Hash insertion failed for word %s => %p (should not happen)\n",
- model->word_str[model->n_words], (void *)(long)(wid));
- }
- /* Increment number of words. */
- ++model->n_words;
- return wid;
-}
-
-int32
-ngram_model_add_word(ngram_model_t *model,
- const char *word, float32 weight)
-{
- int32 wid, prob = model->log_zero;
-
- /* If we add word to unwritable model, we need to make it writable */
- if (!model->writable) {
- E_WARN("Can't add word '%s' to read-only language model. "
- "Disable mmap with '-mmap no' to make it writable\n", word);
- return -1;
- }
-
- wid = ngram_add_word_internal(model, word, -1);
- if (wid == NGRAM_INVALID_WID)
- return wid;
-
- /* Do what needs to be done to add the word to the unigram. */
- if (model->funcs && model->funcs->add_ug)
- prob = (*model->funcs->add_ug)(model, wid, logmath_log(model->lmath, weight));
- if (prob == 0)
- return -1;
-
- return wid;
-}
-
-ngram_class_t *
-ngram_class_new(ngram_model_t *model, int32 tag_wid, int32 start_wid, glist_t classwords)
-{
- ngram_class_t *lmclass;
- gnode_t *gn;
- float32 tprob;
- int i;
-
- lmclass = ckd_calloc(1, sizeof(*lmclass));
- lmclass->tag_wid = tag_wid;
- /* wid_base is the wid (minus class tag) of the first word in the list. */
- lmclass->start_wid = start_wid;
- lmclass->n_words = glist_count(classwords);
- lmclass->prob1 = ckd_calloc(lmclass->n_words, sizeof(*lmclass->prob1));
- lmclass->nword_hash = NULL;
- lmclass->n_hash = 0;
- tprob = 0.0;
- for (gn = classwords; gn; gn = gnode_next(gn)) {
- tprob += gnode_float32(gn);
- }
- if (tprob > 1.1 || tprob < 0.9) {
- E_INFO("Total class probability is %f, will normalize\n", tprob);
- for (gn = classwords; gn; gn = gnode_next(gn)) {
- gn->data.fl /= tprob;
- }
- }
- for (i = 0, gn = classwords; gn; ++i, gn = gnode_next(gn)) {
- lmclass->prob1[i] = logmath_log(model->lmath, gnode_float32(gn));
- }
-
- return lmclass;
-}
-
-int32
-ngram_class_add_word(ngram_class_t *lmclass, int32 wid, int32 lweight)
-{
- int32 hash;
-
- if (lmclass->nword_hash == NULL) {
- /* Initialize everything in it to -1 */
- lmclass->nword_hash = ckd_malloc(NGRAM_HASH_SIZE * sizeof(*lmclass->nword_hash));
- memset(lmclass->nword_hash, 0xff, NGRAM_HASH_SIZE * sizeof(*lmclass->nword_hash));
- lmclass->n_hash = NGRAM_HASH_SIZE;
- lmclass->n_hash_inuse = 0;
- }
- /* Stupidest possible hash function. This will work pretty well
- * when this function is called repeatedly with contiguous word
- * IDs, though... */
- hash = wid & (lmclass->n_hash - 1);
- if (lmclass->nword_hash[hash].wid == -1) {
- /* Good, no collision. */
- lmclass->nword_hash[hash].wid = wid;
- lmclass->nword_hash[hash].prob1 = lweight;
- ++lmclass->n_hash_inuse;
- return hash;
- }
- else {
- int32 next; /**< Next available bucket. */
- /* Collision... Find the end of the hash chain. */
- while (lmclass->nword_hash[hash].next != -1)
- hash = lmclass->nword_hash[hash].next;
- assert(hash != -1);
- /* Does we has any more bukkit? */
- if (lmclass->n_hash_inuse == lmclass->n_hash) {
- /* Oh noes! Ok, we makes more. */
- lmclass->nword_hash = ckd_realloc(lmclass->nword_hash,
- lmclass->n_hash * 2 * sizeof(*lmclass->nword_hash));
- memset(lmclass->nword_hash + lmclass->n_hash,
- 0xff, lmclass->n_hash * sizeof(*lmclass->nword_hash));
- /* Just use the next allocated one (easy) */
- next = lmclass->n_hash;
- lmclass->n_hash *= 2;
- }
- else {
- /* Look for any available bucket. We hope this doesn't happen. */
- for (next = 0; next < lmclass->n_hash; ++next)
- if (lmclass->nword_hash[next].wid == -1)
- break;
- /* This should absolutely not happen. */
- assert(next != lmclass->n_hash);
- }
- lmclass->nword_hash[next].wid = wid;
- lmclass->nword_hash[next].prob1 = lweight;
- lmclass->nword_hash[hash].next = next;
- ++lmclass->n_hash_inuse;
- return next;
- }
-}
-
-void
-ngram_class_free(ngram_class_t *lmclass)
-{
- ckd_free(lmclass->nword_hash);
- ckd_free(lmclass->prob1);
- ckd_free(lmclass);
-}
-
-int32
-ngram_model_add_class_word(ngram_model_t *model,
- const char *classname,
- const char *word,
- float32 weight)
-{
- ngram_class_t *lmclass;
- int32 classid, tag_wid, wid, i, scale;
- float32 fprob;
-
- /* Find the class corresponding to classname. Linear search
- * probably okay here since there won't be very many classes, and
- * this doesn't have to be fast. */
- tag_wid = ngram_wid(model, classname);
- if (tag_wid == NGRAM_INVALID_WID) {
- E_ERROR("No such word or class tag: %s\n", classname);
- return tag_wid;
- }
- for (classid = 0; classid < model->n_classes; ++classid) {
- if (model->classes[classid]->tag_wid == tag_wid)
- break;
- }
- /* Hmm, no such class. It's probably not a good idea to create one. */
- if (classid == model->n_classes) {
- E_ERROR("Word %s is not a class tag (call ngram_model_add_class() first)\n", classname);
- return NGRAM_INVALID_WID;
- }
- lmclass = model->classes[classid];
-
- /* Add this word to the model's set of words. */
- wid = ngram_add_word_internal(model, word, classid);
- if (wid == NGRAM_INVALID_WID)
- return wid;
-
- /* This is the fixed probability of the new word. */
- fprob = weight * 1.0f / (lmclass->n_words + lmclass->n_hash_inuse + 1);
- /* Now normalize everything else to fit it in. This is
- * accomplished by simply scaling all the other probabilities
- * by (1-fprob). */
- scale = logmath_log(model->lmath, 1.0 - fprob);
- for (i = 0; i < lmclass->n_words; ++i)
- lmclass->prob1[i] += scale;
- for (i = 0; i < lmclass->n_hash; ++i)
- if (lmclass->nword_hash[i].wid != -1)
- lmclass->nword_hash[i].prob1 += scale;
-
- /* Now add it to the class hash table. */
- return ngram_class_add_word(lmclass, wid, logmath_log(model->lmath, fprob));
-}
-
-int32
-ngram_model_add_class(ngram_model_t *model,
- const char *classname,
- float32 classweight,
- char **words,
- const float32 *weights,
- int32 n_words)
-{
- ngram_class_t *lmclass;
- glist_t classwords = NULL;
- int32 i, start_wid = -1;
- int32 classid, tag_wid;
-
- /* Check if classname already exists in model. If not, add it.*/
- if ((tag_wid = ngram_wid(model, classname)) == ngram_unknown_wid(model)) {
- tag_wid = ngram_model_add_word(model, classname, classweight);
- if (tag_wid == NGRAM_INVALID_WID)
- return -1;
- }
-
- if (model->n_classes == 128) {
- E_ERROR("Number of classes cannot exceed 128 (sorry)\n");
- return -1;
- }
- classid = model->n_classes;
- for (i = 0; i < n_words; ++i) {
- int32 wid;
-
- wid = ngram_add_word_internal(model, words[i], classid);
- if (wid == NGRAM_INVALID_WID)
- return -1;
- if (start_wid == -1)
- start_wid = NGRAM_BASEWID(wid);
- classwords = glist_add_float32(classwords, weights[i]);
- }
- classwords = glist_reverse(classwords);
- lmclass = ngram_class_new(model, tag_wid, start_wid, classwords);
- glist_free(classwords);
- if (lmclass == NULL)
- return -1;
-
- ++model->n_classes;
- if (model->classes == NULL)
- model->classes = ckd_calloc(1, sizeof(*model->classes));
- else
- model->classes = ckd_realloc(model->classes,
- model->n_classes * sizeof(*model->classes));
- model->classes[classid] = lmclass;
- return classid;
-}
-
-int32
-ngram_class_prob(ngram_class_t *lmclass, int32 wid)
-{
- int32 base_wid = NGRAM_BASEWID(wid);
-
- if (base_wid < lmclass->start_wid
- || base_wid > lmclass->start_wid + lmclass->n_words) {
- int32 hash;
-
- /* Look it up in the hash table. */
- hash = wid & (lmclass->n_hash - 1);
- while (hash != -1 && lmclass->nword_hash[hash].wid != wid)
- hash = lmclass->nword_hash[hash].next;
- if (hash == -1)
- return 1;
- return lmclass->nword_hash[hash].prob1;
- }
- else {
- return lmclass->prob1[base_wid - lmclass->start_wid];
- }
-}
-
-int32
-read_classdef_file(hash_table_t *classes, const char *file_name)
-{
- FILE *fp;
- int32 is_pipe;
- int inclass; /**< Are we currently reading a list of class words? */
- int32 rv = -1;
- gnode_t *gn;
- glist_t classwords = NULL;
- glist_t classprobs = NULL;
- char *classname = NULL;
-
- if ((fp = fopen_comp(file_name, "r", &is_pipe)) == NULL) {
- E_ERROR("File %s not found\n", file_name);
- return -1;
- }
-
- inclass = FALSE;
- while (!feof(fp)) {
- char line[512];
- char *wptr[2];
- int n_words;
-
- if (fgets(line, sizeof(line), fp) == NULL)
- break;
-
- n_words = str2words(line, wptr, 2);
- if (n_words <= 0)
- continue;
-
- if (inclass) {
- /* Look for an end of class marker. */
- if (n_words == 2 && 0 == strcmp(wptr[0], "END")) {
- classdef_t *classdef;
- gnode_t *word, *weight;
- int32 i;
-
- if (classname == NULL || 0 != strcmp(wptr[1], classname))
- goto error_out;
- inclass = FALSE;
-
- /* Construct a class from the list of words collected. */
- classdef = ckd_calloc(1, sizeof(*classdef));
- classwords = glist_reverse(classwords);
- classprobs = glist_reverse(classprobs);
- classdef->n_words = glist_count(classwords);
- classdef->words = ckd_calloc(classdef->n_words,
- sizeof(*classdef->words));
- classdef->weights = ckd_calloc(classdef->n_words,
- sizeof(*classdef->weights));
- word = classwords;
- weight = classprobs;
- for (i = 0; i < classdef->n_words; ++i) {
- classdef->words[i] = gnode_ptr(word);
- classdef->weights[i] = gnode_float32(weight);
- word = gnode_next(word);
- weight = gnode_next(weight);
- }
-
- /* Add this class to the hash table. */
- if (hash_table_enter(classes, classname, classdef) != classdef) {
- classdef_free(classdef);
- goto error_out;
- }
-
- /* Reset everything. */
- glist_free(classwords);
- glist_free(classprobs);
- classwords = NULL;
- classprobs = NULL;
- classname = NULL;
- }
- else {
- float32 fprob;
-
- if (n_words == 2)
- fprob = (float32)atof_c(wptr[1]);
- else
- fprob = 1.0f;
- /* Add it to the list of words for this class. */
- classwords = glist_add_ptr(classwords, ckd_salloc(wptr[0]));
- classprobs = glist_add_float32(classprobs, fprob);
- }
- }
- else {
- /* Start a new LM class if the LMCLASS marker is seen */
- if (n_words == 2 && 0 == strcmp(wptr[0], "LMCLASS")) {
- if (inclass)
- goto error_out;
- inclass = TRUE;
- classname = ckd_salloc(wptr[1]);
- }
- /* Otherwise, just ignore whatever junk we got */
- }
- }
- rv = 0; /* Success. */
-
-error_out:
- /* Free all the stuff we might have allocated. */
- fclose_comp(fp, is_pipe);
- for (gn = classwords; gn; gn = gnode_next(gn))
- ckd_free(gnode_ptr(gn));
- glist_free(classwords);
- glist_free(classprobs);
- ckd_free(classname);
-
- return rv;
-}
-
-void
-classdef_free(classdef_t *classdef)
-{
- int32 i;
- for (i = 0; i < classdef->n_words; ++i)
- ckd_free(classdef->words[i]);
- ckd_free(classdef->words);
- ckd_free(classdef->weights);
- ckd_free(classdef);
-}
-
-
-int32
-ngram_model_read_classdef(ngram_model_t *model,
- const char *file_name)
-{
- hash_table_t *classes;
- glist_t hl = NULL;
- gnode_t *gn;
- int32 rv = -1;
-
- classes = hash_table_new(0, FALSE);
- if (read_classdef_file(classes, file_name) < 0) {
- hash_table_free(classes);
- return -1;
- }
-
- /* Create a new class in the language model for each classdef. */
- hl = hash_table_tolist(classes, NULL);
- for (gn = hl; gn; gn = gnode_next(gn)) {
- hash_entry_t *he = gnode_ptr(gn);
- classdef_t *classdef = he->val;
-
- if (ngram_model_add_class(model, he->key, 1.0,
- classdef->words,
- classdef->weights,
- classdef->n_words) < 0)
- goto error_out;
- }
- rv = 0;
-
-error_out:
- for (gn = hl; gn; gn = gnode_next(gn)) {
- hash_entry_t *he = gnode_ptr(gn);
- ckd_free((char *)he->key);
- classdef_free(he->val);
- }
- glist_free(hl);
- hash_table_free(classes);
- return rv;
-}