summaryrefslogtreecommitdiffstats
path: root/media/sphinxbase/src/libsphinxbase/fe/fe_sigproc.c
diff options
context:
space:
mode:
Diffstat (limited to 'media/sphinxbase/src/libsphinxbase/fe/fe_sigproc.c')
-rw-r--r--media/sphinxbase/src/libsphinxbase/fe/fe_sigproc.c1377
1 files changed, 1377 insertions, 0 deletions
diff --git a/media/sphinxbase/src/libsphinxbase/fe/fe_sigproc.c b/media/sphinxbase/src/libsphinxbase/fe/fe_sigproc.c
new file mode 100644
index 000000000..577640f62
--- /dev/null
+++ b/media/sphinxbase/src/libsphinxbase/fe/fe_sigproc.c
@@ -0,0 +1,1377 @@
+/* -*- c-basic-offset: 4; indent-tabs-mode: nil -*- */
+/* ====================================================================
+ * Copyright (c) 1996-2004 Carnegie Mellon University. All rights
+ * reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ *
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ *
+ * This work was supported in part by funding from the Defense Advanced
+ * Research Projects Agency and the National Science Foundation of the
+ * United States of America, and the CMU Sphinx Speech Consortium.
+ *
+ * THIS SOFTWARE IS PROVIDED BY CARNEGIE MELLON UNIVERSITY ``AS IS'' AND
+ * ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
+ * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY
+ * NOR ITS EMPLOYEES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ * ====================================================================
+ *
+ */
+
+#include <stdio.h>
+#include <math.h>
+#include <string.h>
+#include <stdlib.h>
+#include <assert.h>
+
+#ifdef HAVE_CONFIG_H
+#include <config.h>
+#endif
+
+#ifdef _MSC_VER
+#pragma warning (disable: 4244)
+#endif
+
+/**
+ * Windows math.h does not contain M_PI
+ */
+#ifndef M_PI
+#define M_PI 3.14159265358979323846
+#endif
+
+#include "sphinxbase/prim_type.h"
+#include "sphinxbase/ckd_alloc.h"
+#include "sphinxbase/byteorder.h"
+#include "sphinxbase/fixpoint.h"
+#include "sphinxbase/fe.h"
+#include "sphinxbase/genrand.h"
+#include "sphinxbase/err.h"
+
+#include "fe_internal.h"
+#include "fe_warp.h"
+
+/* Use extra precision for cosines, Hamming window, pre-emphasis
+ * coefficient, twiddle factors. */
+#ifdef FIXED_POINT
+#define FLOAT2COS(x) FLOAT2FIX_ANY(x,30)
+#define COSMUL(x,y) FIXMUL_ANY(x,y,30)
+#else
+#define FLOAT2COS(x) (x)
+#define COSMUL(x,y) ((x)*(y))
+#endif
+
+#ifdef FIXED_POINT
+
+/* Internal log-addition table for natural log with radix point at 8
+ * bits. Each entry is 256 * log(1 + e^{-n/256}). This is used in the
+ * log-add computation:
+ *
+ * e^z = e^x + e^y
+ * e^z = e^x(1 + e^{y-x}) = e^y(1 + e^{x-y})
+ * z = x + log(1 + e^{y-x}) = y + log(1 + e^{x-y})
+ *
+ * So when y > x, z = y + logadd_table[-(x-y)]
+ * when x > y, z = x + logadd_table[-(y-x)]
+ */
+static const unsigned char fe_logadd_table[] = {
+ 177, 177, 176, 176, 175, 175, 174, 174, 173, 173,
+ 172, 172, 172, 171, 171, 170, 170, 169, 169, 168,
+ 168, 167, 167, 166, 166, 165, 165, 164, 164, 163,
+ 163, 162, 162, 161, 161, 161, 160, 160, 159, 159,
+ 158, 158, 157, 157, 156, 156, 155, 155, 155, 154,
+ 154, 153, 153, 152, 152, 151, 151, 151, 150, 150,
+ 149, 149, 148, 148, 147, 147, 147, 146, 146, 145,
+ 145, 144, 144, 144, 143, 143, 142, 142, 141, 141,
+ 141, 140, 140, 139, 139, 138, 138, 138, 137, 137,
+ 136, 136, 136, 135, 135, 134, 134, 134, 133, 133,
+ 132, 132, 131, 131, 131, 130, 130, 129, 129, 129,
+ 128, 128, 128, 127, 127, 126, 126, 126, 125, 125,
+ 124, 124, 124, 123, 123, 123, 122, 122, 121, 121,
+ 121, 120, 120, 119, 119, 119, 118, 118, 118, 117,
+ 117, 117, 116, 116, 115, 115, 115, 114, 114, 114,
+ 113, 113, 113, 112, 112, 112, 111, 111, 110, 110,
+ 110, 109, 109, 109, 108, 108, 108, 107, 107, 107,
+ 106, 106, 106, 105, 105, 105, 104, 104, 104, 103,
+ 103, 103, 102, 102, 102, 101, 101, 101, 100, 100,
+ 100, 99, 99, 99, 98, 98, 98, 97, 97, 97,
+ 96, 96, 96, 96, 95, 95, 95, 94, 94, 94,
+ 93, 93, 93, 92, 92, 92, 92, 91, 91, 91,
+ 90, 90, 90, 89, 89, 89, 89, 88, 88, 88,
+ 87, 87, 87, 87, 86, 86, 86, 85, 85, 85,
+ 85, 84, 84, 84, 83, 83, 83, 83, 82, 82,
+ 82, 82, 81, 81, 81, 80, 80, 80, 80, 79,
+ 79, 79, 79, 78, 78, 78, 78, 77, 77, 77,
+ 77, 76, 76, 76, 75, 75, 75, 75, 74, 74,
+ 74, 74, 73, 73, 73, 73, 72, 72, 72, 72,
+ 71, 71, 71, 71, 71, 70, 70, 70, 70, 69,
+ 69, 69, 69, 68, 68, 68, 68, 67, 67, 67,
+ 67, 67, 66, 66, 66, 66, 65, 65, 65, 65,
+ 64, 64, 64, 64, 64, 63, 63, 63, 63, 63,
+ 62, 62, 62, 62, 61, 61, 61, 61, 61, 60,
+ 60, 60, 60, 60, 59, 59, 59, 59, 59, 58,
+ 58, 58, 58, 58, 57, 57, 57, 57, 57, 56,
+ 56, 56, 56, 56, 55, 55, 55, 55, 55, 54,
+ 54, 54, 54, 54, 53, 53, 53, 53, 53, 52,
+ 52, 52, 52, 52, 52, 51, 51, 51, 51, 51,
+ 50, 50, 50, 50, 50, 50, 49, 49, 49, 49,
+ 49, 49, 48, 48, 48, 48, 48, 48, 47, 47,
+ 47, 47, 47, 47, 46, 46, 46, 46, 46, 46,
+ 45, 45, 45, 45, 45, 45, 44, 44, 44, 44,
+ 44, 44, 43, 43, 43, 43, 43, 43, 43, 42,
+ 42, 42, 42, 42, 42, 41, 41, 41, 41, 41,
+ 41, 41, 40, 40, 40, 40, 40, 40, 40, 39,
+ 39, 39, 39, 39, 39, 39, 38, 38, 38, 38,
+ 38, 38, 38, 37, 37, 37, 37, 37, 37, 37,
+ 37, 36, 36, 36, 36, 36, 36, 36, 35, 35,
+ 35, 35, 35, 35, 35, 35, 34, 34, 34, 34,
+ 34, 34, 34, 34, 33, 33, 33, 33, 33, 33,
+ 33, 33, 32, 32, 32, 32, 32, 32, 32, 32,
+ 32, 31, 31, 31, 31, 31, 31, 31, 31, 31,
+ 30, 30, 30, 30, 30, 30, 30, 30, 30, 29,
+ 29, 29, 29, 29, 29, 29, 29, 29, 28, 28,
+ 28, 28, 28, 28, 28, 28, 28, 28, 27, 27,
+ 27, 27, 27, 27, 27, 27, 27, 27, 26, 26,
+ 26, 26, 26, 26, 26, 26, 26, 26, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 21, 21, 21, 21, 21, 21,
+ 21, 21, 21, 21, 21, 21, 21, 20, 20, 20,
+ 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
+ 19, 19, 19, 19, 19, 19, 19, 19, 19, 19,
+ 19, 19, 19, 19, 18, 18, 18, 18, 18, 18,
+ 18, 18, 18, 18, 18, 18, 18, 18, 18, 17,
+ 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
+ 17, 17, 17, 17, 16, 16, 16, 16, 16, 16,
+ 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
+ 16, 15, 15, 15, 15, 15, 15, 15, 15, 15,
+ 15, 15, 15, 15, 15, 15, 15, 15, 14, 14,
+ 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
+ 14, 14, 14, 14, 14, 14, 14, 13, 13, 13,
+ 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
+ 13, 13, 13, 13, 13, 13, 13, 12, 12, 12,
+ 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
+ 12, 12, 12, 12, 12, 12, 12, 12, 12, 11,
+ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
+ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
+ 11, 11, 11, 10, 10, 10, 10, 10, 10, 10,
+ 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
+ 10, 10, 10, 10, 10, 10, 10, 10, 10, 9,
+ 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
+ 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
+ 9, 9, 9, 9, 9, 9, 9, 9, 8, 8,
+ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+ 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
+ 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
+ 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
+ 7, 7, 7, 7, 7, 7, 7, 7, 6, 6,
+ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
+ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
+ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
+ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
+ 6, 5, 5, 5, 5, 5, 5, 5, 5, 5,
+ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
+ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
+ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
+ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
+ 5, 5, 5, 4, 4, 4, 4, 4, 4, 4,
+ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
+ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
+ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
+ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
+ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
+ 4, 4, 4, 4, 4, 4, 4, 4, 3, 3,
+ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
+ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
+ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
+ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
+ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
+ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
+ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
+ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
+ 3, 3, 3, 3, 2, 2, 2, 2, 2, 2,
+ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
+ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
+ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
+ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
+ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
+ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
+ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
+ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
+ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
+ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
+ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
+ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
+ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 0
+};
+
+static const int fe_logadd_table_size =
+ sizeof(fe_logadd_table) / sizeof(fe_logadd_table[0]);
+
+fixed32
+fe_log_add(fixed32 x, fixed32 y)
+{
+ fixed32 d, r;
+
+ if (x > y) {
+ d = (x - y) >> (DEFAULT_RADIX - 8);
+ r = x;
+ }
+ else {
+ d = (y - x) >> (DEFAULT_RADIX - 8);
+ r = y;
+ }
+
+ if (r <= MIN_FIXLOG)
+ return MIN_FIXLOG;
+ else if (d > fe_logadd_table_size - 1)
+ return r;
+ else {
+ r += ((fixed32) fe_logadd_table[d] << (DEFAULT_RADIX - 8));
+/* printf("%d - %d = %d | %f - %f = %f | %f - %f = %f\n",
+ x, y, r, FIX2FLOAT(x), FIX2FLOAT(y), FIX2FLOAT(r),
+ exp(FIX2FLOAT(x)), exp(FIX2FLOAT(y)), exp(FIX2FLOAT(r)));
+*/
+ return r;
+ }
+}
+
+/*
+ * log_sub for spectral subtraction, similar to logadd but we had
+ * to smooth function around zero with fixlog in order to improve
+ * table interpolation properties
+ *
+ * The table is created with the file included into distribution
+ *
+ * e^z = e^x - e^y
+ * e^z = e^x (1 - e^(-(x - y)))
+ * z = x + log(1 - e^(-(x - y)))
+ * z = x + fixlog(a) + (log(1 - e^(- a)) - log(a))
+ *
+ * Input radix is 8 output radix is 10
+ */
+static const uint16 fe_logsub_table[] = {
+1, 3, 5, 7, 9, 11, 13, 15, 17, 19,
+21, 23, 25, 27, 29, 31, 33, 35, 37, 39,
+41, 43, 45, 47, 49, 51, 53, 55, 56, 58,
+60, 62, 64, 66, 68, 70, 72, 74, 76, 78,
+80, 82, 84, 86, 88, 90, 92, 94, 95, 97,
+99, 101, 103, 105, 107, 109, 111, 113, 115, 117,
+119, 121, 122, 124, 126, 128, 130, 132, 134, 136,
+138, 140, 142, 143, 145, 147, 149, 151, 153, 155,
+157, 159, 161, 162, 164, 166, 168, 170, 172, 174,
+176, 178, 179, 181, 183, 185, 187, 189, 191, 193,
+194, 196, 198, 200, 202, 204, 206, 207, 209, 211,
+213, 215, 217, 219, 220, 222, 224, 226, 228, 230,
+232, 233, 235, 237, 239, 241, 243, 244, 246, 248,
+250, 252, 254, 255, 257, 259, 261, 263, 265, 266,
+268, 270, 272, 274, 275, 277, 279, 281, 283, 284,
+286, 288, 290, 292, 294, 295, 297, 299, 301, 302,
+304, 306, 308, 310, 311, 313, 315, 317, 319, 320,
+322, 324, 326, 327, 329, 331, 333, 335, 336, 338,
+340, 342, 343, 345, 347, 349, 350, 352, 354, 356,
+357, 359, 361, 363, 364, 366, 368, 370, 371, 373,
+375, 377, 378, 380, 382, 384, 385, 387, 389, 391,
+392, 394, 396, 397, 399, 401, 403, 404, 406, 408,
+410, 411, 413, 415, 416, 418, 420, 422, 423, 425,
+427, 428, 430, 432, 433, 435, 437, 439, 440, 442,
+444, 445, 447, 449, 450, 452, 454, 455, 457, 459,
+460, 462, 464, 465, 467, 469, 471, 472, 474, 476,
+477, 479, 481, 482, 484, 486, 487, 489, 490, 492,
+494, 495, 497, 499, 500, 502, 504, 505, 507, 509,
+510, 512, 514, 515, 517, 518, 520, 522, 523, 525,
+527, 528, 530, 532, 533, 535, 536, 538, 540, 541,
+543, 544, 546, 548, 549, 551, 553, 554, 556, 557,
+559, 561, 562, 564, 565, 567, 569, 570, 572, 573,
+575, 577, 578, 580, 581, 583, 585, 586, 588, 589,
+591, 592, 594, 596, 597, 599, 600, 602, 603, 605,
+607, 608, 610, 611, 613, 614, 616, 618, 619, 621,
+622, 624, 625, 627, 628, 630, 632, 633, 635, 636,
+638, 639, 641, 642, 644, 645, 647, 649, 650, 652,
+653, 655, 656, 658, 659, 661, 662, 664, 665, 667,
+668, 670, 671, 673, 674, 676, 678, 679, 681, 682,
+684, 685, 687, 688, 690, 691, 693, 694, 696, 697,
+699, 700, 702, 703, 705, 706, 708, 709, 711, 712,
+714, 715, 717, 718, 719, 721, 722, 724, 725, 727,
+728, 730, 731, 733, 734, 736, 737, 739, 740, 742,
+743, 745, 746, 747, 749, 750, 752, 753, 755, 756,
+758, 759, 761, 762, 763, 765, 766, 768, 769, 771,
+772, 774, 775, 776, 778, 779, 781, 782, 784, 785,
+786, 788, 789, 791, 792, 794, 795, 796, 798, 799,
+801, 802, 804, 805, 806, 808, 809, 811, 812, 813,
+815, 816, 818, 819, 820, 822, 823, 825, 826, 827,
+829, 830, 832, 833, 834, 836, 837, 839, 840, 841,
+843, 844, 846, 847, 848, 850, 851, 852, 854, 855,
+857, 858, 859, 861, 862, 863, 865, 866, 868, 869,
+870, 872, 873, 874, 876, 877, 878, 880, 881, 883,
+884, 885, 887, 888, 889, 891, 892, 893, 895, 896,
+897, 899, 900, 901, 903, 904, 905, 907, 908, 909,
+911, 912, 913, 915, 916, 917, 919, 920, 921, 923,
+924, 925, 927, 928, 929, 931, 932, 933, 935, 936,
+937, 939, 940, 941, 942, 944, 945, 946, 948, 949,
+950, 952, 953, 954, 956, 957, 958, 959, 961, 962,
+963, 965, 966, 967, 968, 970, 971, 972, 974, 975,
+976, 977, 979, 980, 981, 983, 984, 985, 986, 988,
+989, 990, 991, 993, 994, 995, 997, 998, 999, 1000,
+1002, 1003, 1004, 1005, 1007, 1008, 1009, 1010, 1012, 1013,
+1014, 1015, 1017, 1018, 1019, 1020, 1022, 1023, 1024, 1025,
+1027, 1028, 1029, 1030, 1032, 1033, 1034, 1035, 1037, 1038,
+1039, 1040, 1041, 1043, 1044, 1045, 1046, 1048, 1049, 1050,
+1051, 1052, 1054, 1055, 1056, 1057, 1059, 1060, 1061, 1062,
+1063, 1065, 1066, 1067, 1068, 1069, 1071, 1072, 1073, 1074,
+1076, 1077, 1078, 1079, 1080, 1082, 1083, 1084, 1085, 1086,
+1087, 1089, 1090, 1091, 1092, 1093, 1095, 1096, 1097, 1098,
+1099, 1101, 1102, 1103, 1104, 1105, 1106, 1108, 1109, 1110,
+1111, 1112, 1114, 1115, 1116, 1117, 1118, 1119, 1121, 1122,
+1123, 1124, 1125, 1126, 1128, 1129, 1130, 1131, 1132, 1133,
+1135, 1136, 1137, 1138, 1139, 1140, 1141, 1143, 1144, 1145,
+1146, 1147, 1148, 1149, 1151, 1152, 1153, 1154, 1155, 1156,
+1157, 1159, 1160, 1161, 1162, 1163, 1164, 1165, 1167, 1168,
+1169, 1170, 1171, 1172, 1173, 1174, 1176, 1177, 1178, 1179,
+1180, 1181, 1182, 1183, 1185, 1186, 1187, 1188, 1189, 1190,
+1191, 1192, 1193, 1195, 1196, 1197, 1198, 1199, 1200, 1201,
+1202, 1203, 1205, 1206, 1207, 1208, 1209, 1210, 1211, 1212,
+1213, 1214, 1216, 1217, 1218, 1219, 1220, 1221, 1222, 1223,
+1224, 1225, 1226, 1228, 1229, 1230, 1231, 1232, 1233, 1234,
+1235, 1236, 1237, 1238, 1239, 1240, 1242, 1243, 1244, 1245,
+1246, 1247, 1248, 1249, 1250, 1251, 1252, 1253, 1254, 1255,
+1256, 1258, 1259, 1260, 1261, 1262, 1263, 1264, 1265, 1266,
+1267, 1268, 1269, 1270, 1271, 1272, 1273, 1274, 1275, 1277,
+1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1286, 1287,
+1288, 1289, 1290, 1291, 1292, 1293, 1294, 1295, 1296, 1297,
+1298, 1299, 1300, 1301, 1302, 1303, 1305, 1306, 1307, 1308,
+1309, 1310, 1311, 1312, 1313, 1314, 1315, 1316, 1317, 1318,
+1319, 1320, 1321, 1322, 1323, 1324, 1325, 1326, 1327, 1328,
+1329, 1330, 1331, 1332, 1333, 1334, 1335, 1336, 1337, 1338,
+1339, 1340, 1341, 1342, 1343, 1344, 1345, 1346, 1347, 1348,
+1349, 1350, 1351, 1352, 1353, 1354, 1355, 1356, 1357, 1358,
+1359, 1360, 1361, 1362, 1363, 1364, 1365, 1366, 1367, 1368,
+1369, 1370, 1371, 1372, 1372, 1373, 1374, 1375, 1376, 1377,
+1378, 1379, 1380, 1381, 1382, 1383, 1384, 1385, 1386, 1387,
+1388, 1389, 1390, 1391, 1392, 1393, 1394, 1395, 1396, 1397,
+1398, 1399, 1399, 1400, 1401, 1402, 1403, 1404, 1405, 1406,
+1407, 1408, 1409, 1410, 1411, 1412, 1413, 1414, 1415, 1416,
+1417, 1418, 1418, 1419, 1420, 1421, 1422, 1423, 1424, 1425,
+1426, 1427, 1428, 1429, 1430, 1431, 1432, 1432, 1433, 1434,
+1435, 1436, 1437, 1438, 1439, 1440, 1441, 1442, 1443, 1444,
+1444, 1445, 1446, 1447, 1448, 1449, 1450, 1451, 1452, 1453,
+1454, 1455, 1455, 1456, 1457, 1458, 1459, 1460, 1461, 1462,
+1463, 1464, 1465, 1466, 1466, 1467, 1468, 1469, 1470, 1471,
+1472, 1473, 1474, 1475, 1475, 1476, 1477, 1478, 1479, 1480,
+1481, 1482, 1483, 1483, 1484, 1485, 1486, 1487, 1488, 1489,
+1490, 1491, 1491, 1492, 1493, 1494, 1495, 1496, 1497, 1498,
+1499, 1499, 1500, 1501, 1502, 1503, 1504, 1505, 1506, 1506,
+1507, 1508, 1509, 1510, 1511, 1512, 1513, 1513, 1514, 1515,
+1516, 1517, 1518, 1519, 1520, 1520, 1521, 1522, 1523, 1524,
+1525, 1526, 1526, 1527, 1528, 1529, 1530, 1531, 1532, 1532,
+1533, 1534, 1535, 1536, 1537, 1538, 1538, 1539, 1540, 1541,
+1542, 1543, 1544, 1544, 1545, 1546, 1547, 1548, 1549, 1550,
+1550, 1551, 1552, 1553, 1554, 1555, 1555, 1556, 1557, 1558,
+1559, 1560, 1560, 1561, 1562, 1563, 1564, 1565, 1565, 1566,
+1567, 1568, 1569, 1570, 1570, 1571, 1572, 1573, 1574, 1575,
+1575, 1576, 1577, 1578, 1579, 1580, 1580, 1581, 1582, 1583,
+1584, 1584, 1585, 1586, 1587, 1588, 1589, 1589, 1590, 1591,
+1592, 1593, 1593, 1594, 1595, 1596, 1597, 1598, 1598, 1599,
+1600, 1601, 1602, 1602, 1603, 1604, 1605, 1606, 1606, 1607,
+1608, 1609, 1610, 1610, 1611, 1612, 1613, 1614, 1614, 1615,
+1616, 1617, 1618, 1618, 1619, 1620, 1621, 1622, 1622, 1623,
+1624, 1625, 1626, 1626, 1627, 1628, 1629, 1630, 1630, 1631,
+1632, 1633, 1634, 1634, 1635, 1636, 1637, 1637, 1638, 1639,
+1640, 1641, 1641, 1642, 1643, 1644, 1645, 1645, 1646, 1647,
+1648, 1648, 1649, 1650, 1651, 1652, 1652, 1653, 1654, 1655,
+1655, 1656, 1657, 1658, 1658, 1659, 1660, 1661, 1662, 1662,
+1663, 1664, 1665, 1665, 1666, 1667, 1668, 1668, 1669, 1670,
+1671, 1671, 1672, 1673, 1674, 1675, 1675, 1676, 1677, 1678,
+1678, 1679, 1680, 1681, 1681, 1682, 1683, 1684, 1684, 1685,
+1686, 1687, 1687, 1688, 1689, 1690, 1690, 1691, 1692, 1693,
+1693, 1694, 1695, 1696, 1696, 1697, 1698, 1699, 1699, 1700,
+1701, 1702, 1702, 1703, 1704, 1705, 1705, 1706, 1707, 1707,
+1708, 1709, 1710, 1710, 1711, 1712, 1713, 1713, 1714, 1715,
+1716, 1716, 1717, 1718, 1718, 1719, 1720, 1721, 1721, 1722,
+1723, 1724, 1724, 1725, 1726, 1727, 1727, 1728, 1729, 1729,
+1730, 1731, 1732, 1732, 1733, 1734, 1734, 1735, 1736, 1737,
+1737, 1738, 1739, 1740, 1740, 1741, 1742, 1742, 1743, 1744,
+1745, 1745, 1746, 1747, 1747, 1748, 1749, 1749, 1750, 1751,
+1752, 1752, 1753, 1754, 1754, 1755, 1756, 1757, 1757, 1758,
+1759, 1759, 1760, 1761, 1762, 1762, 1763, 1764, 1764, 1765,
+1766, 1766, 1767, 1768, 1769, 1769, 1770, 1771, 1771, 1772,
+1773, 1773, 1774, 1775, 1776, 1776, 1777, 1778, 1778, 1779,
+1780, 1780, 1781, 1782, 1782, 1783, 1784, 1784, 1785, 1786,
+1787, 1787, 1788, 1789, 1789, 1790, 1791, 1791, 1792, 1793,
+1793, 1794, 1795, 1795, 1796, 1797, 1798, 1798, 1799, 1800,
+1800, 1801, 1802, 1802, 1803, 1804, 1804, 1805, 1806, 1806,
+1807, 1808, 1808, 1809, 1810, 1810, 1811, 1812, 1812, 1813,
+1814, 1814, 1815, 1816, 1816, 1817, 1818, 1818, 1819, 1820,
+1820, 1821, 1822, 1822, 1823, 1824, 1824, 1825, 1826, 1826,
+1827, 1828, 1828, 1829, 1830, 1830, 1831, 1832, 1832, 1833,
+1834, 1834, 1835, 1836, 1836, 1837, 1838, 1838, 1839, 1840,
+1840, 1841, 1842, 1842, 1843, 1844, 1844, 1845, 1845, 1846,
+1847, 1847, 1848, 1849, 1849, 1850, 1851, 1851, 1852, 1853,
+1853, 1854, 1855, 1855, 1856, 1857, 1857, 1858, 1858, 1859,
+1860, 1860, 1861, 1862, 1862, 1863, 1864, 1864, 1865, 1866,
+1866, 1867, 1867, 1868, 1869, 1869, 1870, 1871, 1871, 1872,
+1873, 1873, 1874, 1874, 1875, 1876, 1876, 1877, 1878, 1878,
+1879, 1879, 1880, 1881, 1881, 1882, 1883, 1883, 1884, 1885,
+1885, 1886, 1886, 1887, 1888, 1888, 1889, 1890, 1890, 1891,
+1891, 1892, 1893, 1893, 1894, 1895, 1895, 1896, 1896, 1897,
+1898, 1898, 1899, 1900, 1900, 1901, 1901, 1902, 1903, 1903,
+1904, 1904, 1905, 1906, 1906, 1907, 1908, 1908, 1909, 1909,
+1910, 1911, 1911, 1912, 1912, 1913, 1914, 1914, 1915, 1916,
+1916, 1917, 1917, 1918, 1919, 1919, 1920, 1920, 1921, 1922,
+1922, 1923, 1923, 1924, 1925, 1925, 1926, 1926, 1927, 1928,
+1928, 1929, 1929, 1930, 1931, 1931, 1932, 1932, 1933, 1934,
+1934, 1935, 1935, 1936, 1937, 1937, 1938, 1938, 1939, 1940,
+1940, 1941, 1941, 1942, 1943, 1943, 1944, 1944, 1945, 1946,
+1946, 1947, 1947, 1948, 1949, 1949, 1950, 1950, 1951, 1952,
+1952, 1953, 1953, 1954, 1955, 1955, 1956, 1956, 1957, 1957,
+1958, 1959, 1959, 1960, 1960, 1961, 1962, 1962, 1963, 1963,
+1964, 1964, 1965, 1966, 1966, 1967, 1967, 1968, 1969, 1969,
+1970, 1970, 1971, 1971, 1972, 1973, 1973, 1974, 1974, 1975,
+1976, 1976, 1977, 1977, 1978, 1978, 1979, 1980, 1980, 1981,
+1981, 1982, 1982, 1983, 1984, 1984, 1985, 1985, 1986, 1986,
+1987, 1988, 1988, 1989, 1989, 1990, 1990, 1991, 1992, 1992,
+1993, 1993, 1994, 1994, 1995, 1996, 1996, 1997, 1997, 1998,
+1998, 1999, 1999, 2000, 2001, 2001, 2002, 2002, 2003, 2003,
+2004, 2005, 2005, 2006, 2006, 2007, 2007, 2008, 2008, 2009,
+2010, 2010, 2011, 2011, 2012, 2012, 2013, 2014, 2014, 2015,
+2015, 2016, 2016, 2017, 2017, 2018, 2019, 2019, 2020, 2020,
+2021, 2021, 2022, 2022, 2023, 2023, 2024, 2025, 2025, 2026,
+2026, 2027, 2027, 2028, 2028, 2029, 2030, 2030, 2031, 2031,
+2032, 2032, 2033, 2033, 2034, 2034, 2035, 2036, 2036, 2037,
+2037, 2038, 2038, 2039, 2039, 2040, 2040, 2041, 2042, 2042,
+2043, 2043, 2044, 2044, 2045, 2045, 2046, 2046, 2047, 2048,
+2048, 2049, 2049, 2050, 2050, 2051, 2051, 2052, 2052, 2053,
+2053, 2054, 2054, 2055, 2056, 2056, 2057, 2057, 2058, 2058,
+2059, 2059, 2060, 2060, 2061, 2061, 2062, 2062, 2063, 2064,
+2064, 2065, 2065, 2066, 2066, 2067, 2067, 2068, 2068, 2069,
+2069, 2070, 2070, 2071, 2072, 2072, 2073, 2073, 2074, 2074,
+2075, 2075, 2076, 2076, 2077, 2077, 2078, 2078, 2079, 2079,
+2080, 2080, 2081
+};
+
+static const int fe_logsub_table_size =
+ sizeof(fe_logsub_table) / sizeof(fe_logsub_table[0]);
+
+fixed32
+fe_log_sub(fixed32 x, fixed32 y)
+{
+ fixed32 d, r;
+
+ if (x < MIN_FIXLOG || y >= x)
+ return MIN_FIXLOG;
+
+ d = (x - y) >> (DEFAULT_RADIX - 8);
+
+ if (d > fe_logsub_table_size - 1)
+ return x;
+
+ r = fe_logsub_table[d] << (DEFAULT_RADIX - 10);
+/*
+ printf("diff=%d\n",
+ x + FIXLN(x-y) - r -
+ (x + FLOAT2FIX(logf(-expm1f(FIX2FLOAT(y - x))))));
+*/
+ return x + FIXLN(x-y) - r;
+}
+
+static fixed32
+fe_log(float32 x)
+{
+ if (x <= 0) {
+ return MIN_FIXLOG;
+ }
+ else {
+ return FLOAT2FIX(log(x));
+ }
+}
+#endif
+
+static float32
+fe_mel(melfb_t * mel, float32 x)
+{
+ float32 warped = fe_warp_unwarped_to_warped(mel, x);
+
+ return (float32) (2595.0 * log10(1.0 + warped / 700.0));
+}
+
+static float32
+fe_melinv(melfb_t * mel, float32 x)
+{
+ float32 warped = (float32) (700.0 * (pow(10.0, x / 2595.0) - 1.0));
+ return fe_warp_warped_to_unwarped(mel, warped);
+}
+
+int32
+fe_build_melfilters(melfb_t * mel_fb)
+{
+ float32 melmin, melmax, melbw, fftfreq;
+ int n_coeffs, i, j;
+
+
+ /* Filter coefficient matrix, in flattened form. */
+ mel_fb->spec_start =
+ ckd_calloc(mel_fb->num_filters, sizeof(*mel_fb->spec_start));
+ mel_fb->filt_start =
+ ckd_calloc(mel_fb->num_filters, sizeof(*mel_fb->filt_start));
+ mel_fb->filt_width =
+ ckd_calloc(mel_fb->num_filters, sizeof(*mel_fb->filt_width));
+
+ /* First calculate the widths of each filter. */
+ /* Minimum and maximum frequencies in mel scale. */
+ melmin = fe_mel(mel_fb, mel_fb->lower_filt_freq);
+ melmax = fe_mel(mel_fb, mel_fb->upper_filt_freq);
+
+ /* Width of filters in mel scale */
+ melbw = (melmax - melmin) / (mel_fb->num_filters + 1);
+ if (mel_fb->doublewide) {
+ melmin -= melbw;
+ melmax += melbw;
+ if ((fe_melinv(mel_fb, melmin) < 0) ||
+ (fe_melinv(mel_fb, melmax) > mel_fb->sampling_rate / 2)) {
+ E_WARN
+ ("Out of Range: low filter edge = %f (%f)\n",
+ fe_melinv(mel_fb, melmin), 0.0);
+ E_WARN
+ (" high filter edge = %f (%f)\n",
+ fe_melinv(mel_fb, melmax), mel_fb->sampling_rate / 2);
+ return FE_INVALID_PARAM_ERROR;
+ }
+ }
+
+ /* DFT point spacing */
+ fftfreq = mel_fb->sampling_rate / (float32) mel_fb->fft_size;
+
+ /* Count and place filter coefficients. */
+ n_coeffs = 0;
+ for (i = 0; i < mel_fb->num_filters; ++i) {
+ float32 freqs[3];
+
+ /* Left, center, right frequencies in Hertz */
+ for (j = 0; j < 3; ++j) {
+ if (mel_fb->doublewide)
+ freqs[j] = fe_melinv(mel_fb, (i + j * 2) * melbw + melmin);
+ else
+ freqs[j] = fe_melinv(mel_fb, (i + j) * melbw + melmin);
+ /* Round them to DFT points if requested */
+ if (mel_fb->round_filters)
+ freqs[j] = ((int) (freqs[j] / fftfreq + 0.5)) * fftfreq;
+ }
+
+ /* spec_start is the start of this filter in the power spectrum. */
+ mel_fb->spec_start[i] = -1;
+ /* There must be a better way... */
+ for (j = 0; j < mel_fb->fft_size / 2 + 1; ++j) {
+ float32 hz = j * fftfreq;
+ if (hz < freqs[0])
+ continue;
+ else if (hz > freqs[2] || j == mel_fb->fft_size / 2) {
+ /* filt_width is the width in DFT points of this filter. */
+ mel_fb->filt_width[i] = j - mel_fb->spec_start[i];
+ /* filt_start is the start of this filter in the filt_coeffs array. */
+ mel_fb->filt_start[i] = n_coeffs;
+ n_coeffs += mel_fb->filt_width[i];
+ break;
+ }
+ if (mel_fb->spec_start[i] == -1)
+ mel_fb->spec_start[i] = j;
+ }
+ }
+
+ /* Now go back and allocate the coefficient array. */
+ mel_fb->filt_coeffs =
+ ckd_malloc(n_coeffs * sizeof(*mel_fb->filt_coeffs));
+
+ /* And now generate the coefficients. */
+ n_coeffs = 0;
+ for (i = 0; i < mel_fb->num_filters; ++i) {
+ float32 freqs[3];
+
+ /* Left, center, right frequencies in Hertz */
+ for (j = 0; j < 3; ++j) {
+ if (mel_fb->doublewide)
+ freqs[j] = fe_melinv(mel_fb, (i + j * 2) * melbw + melmin);
+ else
+ freqs[j] = fe_melinv(mel_fb, (i + j) * melbw + melmin);
+ /* Round them to DFT points if requested */
+ if (mel_fb->round_filters)
+ freqs[j] = ((int) (freqs[j] / fftfreq + 0.5)) * fftfreq;
+ }
+
+ for (j = 0; j < mel_fb->filt_width[i]; ++j) {
+ float32 hz, loslope, hislope;
+
+ hz = (mel_fb->spec_start[i] + j) * fftfreq;
+ if (hz < freqs[0] || hz > freqs[2]) {
+ E_FATAL
+ ("Failed to create filterbank, frequency range does not match. "
+ "Sample rate %f, FFT size %d, lowerf %f < freq %f > upperf %f.\n",
+ mel_fb->sampling_rate, mel_fb->fft_size, freqs[0], hz,
+ freqs[2]);
+ }
+ loslope = (hz - freqs[0]) / (freqs[1] - freqs[0]);
+ hislope = (freqs[2] - hz) / (freqs[2] - freqs[1]);
+ if (mel_fb->unit_area) {
+ loslope *= 2 / (freqs[2] - freqs[0]);
+ hislope *= 2 / (freqs[2] - freqs[0]);
+ }
+ if (loslope < hislope) {
+#ifdef FIXED_POINT
+ mel_fb->filt_coeffs[n_coeffs] = fe_log(loslope);
+#else
+ mel_fb->filt_coeffs[n_coeffs] = loslope;
+#endif
+ }
+ else {
+#ifdef FIXED_POINT
+ mel_fb->filt_coeffs[n_coeffs] = fe_log(hislope);
+#else
+ mel_fb->filt_coeffs[n_coeffs] = hislope;
+#endif
+ }
+ ++n_coeffs;
+ }
+ }
+
+ return FE_SUCCESS;
+}
+
+int32
+fe_compute_melcosine(melfb_t * mel_fb)
+{
+
+ float64 freqstep;
+ int32 i, j;
+
+ mel_fb->mel_cosine =
+ (mfcc_t **) ckd_calloc_2d(mel_fb->num_cepstra,
+ mel_fb->num_filters, sizeof(mfcc_t));
+
+ freqstep = M_PI / mel_fb->num_filters;
+ /* NOTE: The first row vector is actually unnecessary but we leave
+ * it in to avoid confusion. */
+ for (i = 0; i < mel_fb->num_cepstra; i++) {
+ for (j = 0; j < mel_fb->num_filters; j++) {
+ float64 cosine;
+
+ cosine = cos(freqstep * i * (j + 0.5));
+ mel_fb->mel_cosine[i][j] = FLOAT2COS(cosine);
+ }
+ }
+
+ /* Also precompute normalization constants for unitary DCT. */
+ mel_fb->sqrt_inv_n = FLOAT2COS(sqrt(1.0 / mel_fb->num_filters));
+ mel_fb->sqrt_inv_2n = FLOAT2COS(sqrt(2.0 / mel_fb->num_filters));
+
+ /* And liftering weights */
+ if (mel_fb->lifter_val) {
+ mel_fb->lifter =
+ calloc(mel_fb->num_cepstra, sizeof(*mel_fb->lifter));
+ for (i = 0; i < mel_fb->num_cepstra; ++i) {
+ mel_fb->lifter[i] = FLOAT2MFCC(1 + mel_fb->lifter_val / 2
+ * sin(i * M_PI /
+ mel_fb->lifter_val));
+ }
+ }
+
+ return (0);
+}
+
+static void
+fe_pre_emphasis(int16 const *in, frame_t * out, int32 len,
+ float32 factor, int16 prior)
+{
+ int i;
+
+#if defined(FIXED16)
+ int16 fxd_alpha = (int16) (factor * 0x8000);
+ int32 tmp1, tmp2;
+
+ tmp1 = (int32) in[0] << 15;
+ tmp2 = (int32) prior *fxd_alpha;
+ out[0] = (int16) ((tmp1 - tmp2) >> 15);
+ for (i = 1; i < len; ++i) {
+ tmp1 = (int32) in[i] << 15;
+ tmp2 = (int32) in[i - 1] * fxd_alpha;
+ out[i] = (int16) ((tmp1 - tmp2) >> 15);
+ }
+#elif defined(FIXED_POINT)
+ fixed32 fxd_alpha = FLOAT2FIX(factor);
+ out[0] = ((fixed32) in[0] << DEFAULT_RADIX) - (prior * fxd_alpha);
+ for (i = 1; i < len; ++i)
+ out[i] = ((fixed32) in[i] << DEFAULT_RADIX)
+ - (fixed32) in[i - 1] * fxd_alpha;
+#else
+ out[0] = (frame_t) in[0] - (frame_t) prior *factor;
+ for (i = 1; i < len; i++)
+ out[i] = (frame_t) in[i] - (frame_t) in[i - 1] * factor;
+#endif
+}
+
+static void
+fe_short_to_frame(int16 const *in, frame_t * out, int32 len)
+{
+ int i;
+
+#if defined(FIXED16)
+ memcpy(out, in, len * sizeof(*out));
+#elif defined(FIXED_POINT)
+ for (i = 0; i < len; i++)
+ out[i] = (int32) in[i] << DEFAULT_RADIX;
+#else /* FIXED_POINT */
+ for (i = 0; i < len; i++)
+ out[i] = (frame_t) in[i];
+#endif /* FIXED_POINT */
+}
+
+void
+fe_create_hamming(window_t * in, int32 in_len)
+{
+ int i;
+
+ /* Symmetric, so we only create the first half of it. */
+ for (i = 0; i < in_len / 2; i++) {
+ float64 hamm;
+ hamm = (0.54 - 0.46 * cos(2 * M_PI * i /
+ ((float64) in_len - 1.0)));
+#ifdef FIXED16
+ in[i] = (int16) (hamm * 0x8000);
+#else
+ in[i] = FLOAT2COS(hamm);
+#endif
+ }
+}
+
+static void
+fe_hamming_window(frame_t * in, window_t * window, int32 in_len,
+ int32 remove_dc)
+{
+ int i;
+
+ if (remove_dc) {
+#ifdef FIXED16
+ int32 mean = 0; /* Use int32 to avoid possibility of overflow */
+#else
+ frame_t mean = 0;
+#endif
+
+ for (i = 0; i < in_len; i++)
+ mean += in[i];
+ mean /= in_len;
+ for (i = 0; i < in_len; i++)
+ in[i] -= (frame_t) mean;
+ }
+
+#ifdef FIXED16
+ for (i = 0; i < in_len / 2; i++) {
+ int32 tmp1, tmp2;
+
+ tmp1 = (int32) in[i] * window[i];
+ tmp2 = (int32) in[in_len - 1 - i] * window[i];
+ in[i] = (int16) (tmp1 >> 15);
+ in[in_len - 1 - i] = (int16) (tmp2 >> 15);
+ }
+#else
+ for (i = 0; i < in_len / 2; i++) {
+ in[i] = COSMUL(in[i], window[i]);
+ in[in_len - 1 - i] = COSMUL(in[in_len - 1 - i], window[i]);
+ }
+#endif
+}
+
+static int
+fe_spch_to_frame(fe_t * fe, int len)
+{
+ /* Copy to the frame buffer. */
+ if (fe->pre_emphasis_alpha != 0.0) {
+ fe_pre_emphasis(fe->spch, fe->frame, len,
+ fe->pre_emphasis_alpha, fe->prior);
+ if (len >= fe->frame_shift)
+ fe->prior = fe->spch[fe->frame_shift - 1];
+ else
+ fe->prior = fe->spch[len - 1];
+ }
+ else
+ fe_short_to_frame(fe->spch, fe->frame, len);
+
+ /* Zero pad up to FFT size. */
+ memset(fe->frame + len, 0, (fe->fft_size - len) * sizeof(*fe->frame));
+
+ /* Window. */
+ fe_hamming_window(fe->frame, fe->hamming_window, fe->frame_size,
+ fe->remove_dc);
+
+ return len;
+}
+
+int
+fe_read_frame(fe_t * fe, int16 const *in, int32 len)
+{
+ int i;
+
+ if (len > fe->frame_size)
+ len = fe->frame_size;
+
+ /* Read it into the raw speech buffer. */
+ memcpy(fe->spch, in, len * sizeof(*in));
+ /* Swap and dither if necessary. */
+ if (fe->swap)
+ for (i = 0; i < len; ++i)
+ SWAP_INT16(&fe->spch[i]);
+ if (fe->dither)
+ for (i = 0; i < len; ++i)
+ fe->spch[i] += (int16) ((!(s3_rand_int31() % 4)) ? 1 : 0);
+
+ return fe_spch_to_frame(fe, len);
+}
+
+int
+fe_shift_frame(fe_t * fe, int16 const *in, int32 len)
+{
+ int offset, i;
+
+ if (len > fe->frame_shift)
+ len = fe->frame_shift;
+ offset = fe->frame_size - fe->frame_shift;
+
+ /* Shift data into the raw speech buffer. */
+ memmove(fe->spch, fe->spch + fe->frame_shift,
+ offset * sizeof(*fe->spch));
+ memcpy(fe->spch + offset, in, len * sizeof(*fe->spch));
+ /* Swap and dither if necessary. */
+ if (fe->swap)
+ for (i = 0; i < len; ++i)
+ SWAP_INT16(&fe->spch[offset + i]);
+ if (fe->dither)
+ for (i = 0; i < len; ++i)
+ fe->spch[offset + i]
+ += (int16) ((!(s3_rand_int31() % 4)) ? 1 : 0);
+
+ return fe_spch_to_frame(fe, offset + len);
+}
+
+/**
+ * Create arrays of twiddle factors.
+ */
+void
+fe_create_twiddle(fe_t * fe)
+{
+ int i;
+
+ for (i = 0; i < fe->fft_size / 4; ++i) {
+ float64 a = 2 * M_PI * i / fe->fft_size;
+#ifdef FIXED16
+ fe->ccc[i] = (int16) (cos(a) * 0x8000);
+ fe->sss[i] = (int16) (sin(a) * 0x8000);
+#elif defined(FIXED_POINT)
+ fe->ccc[i] = FLOAT2COS(cos(a));
+ fe->sss[i] = FLOAT2COS(sin(a));
+#else
+ fe->ccc[i] = cos(a);
+ fe->sss[i] = sin(a);
+#endif
+ }
+}
+
+
+/* Translated from the FORTRAN (obviously) from "Real-Valued Fast
+ * Fourier Transform Algorithms" by Henrik V. Sorensen et al., IEEE
+ * Transactions on Acoustics, Speech, and Signal Processing, vol. 35,
+ * no.6. The 16-bit version does a version of "block floating
+ * point" in order to avoid rounding errors.
+ */
+#if defined(FIXED16)
+static int
+fe_fft_real(fe_t * fe)
+{
+ int i, j, k, m, n, lz;
+ frame_t *x, xt, max;
+
+ x = fe->frame;
+ m = fe->fft_order;
+ n = fe->fft_size;
+
+ /* Bit-reverse the input. */
+ j = 0;
+ for (i = 0; i < n - 1; ++i) {
+ if (i < j) {
+ xt = x[j];
+ x[j] = x[i];
+ x[i] = xt;
+ }
+ k = n / 2;
+ while (k <= j) {
+ j -= k;
+ k /= 2;
+ }
+ j += k;
+ }
+ /* Determine how many bits of dynamic range are in the input. */
+ max = 0;
+ for (i = 0; i < n; ++i)
+ if (abs(x[i]) > max)
+ max = abs(x[i]);
+ /* The FFT has a gain of M bits, so we need to attenuate the input
+ * by M bits minus the number of leading zeroes in the input's
+ * range in order to avoid overflows. */
+ for (lz = 0; lz < m; ++lz)
+ if (max & (1 << (15 - lz)))
+ break;
+
+ /* Basic butterflies (2-point FFT, real twiddle factors):
+ * x[i] = x[i] + 1 * x[i+1]
+ * x[i+1] = x[i] + -1 * x[i+1]
+ */
+ /* The quantization error introduced by attenuating the input at
+ * any given stage of the FFT has a cascading effect, so we hold
+ * off on it until it's absolutely necessary. */
+ for (i = 0; i < n; i += 2) {
+ int atten = (lz == 0);
+ xt = x[i] >> atten;
+ x[i] = xt + (x[i + 1] >> atten);
+ x[i + 1] = xt - (x[i + 1] >> atten);
+ }
+
+ /* The rest of the butterflies, in stages from 1..m */
+ for (k = 1; k < m; ++k) {
+ int n1, n2, n4;
+ /* Start attenuating once we hit the number of leading zeros. */
+ int atten = (k >= lz);
+
+ n4 = k - 1;
+ n2 = k;
+ n1 = k + 1;
+ /* Stride over each (1 << (k+1)) points */
+ for (i = 0; i < n; i += (1 << n1)) {
+ /* Basic butterfly with real twiddle factors:
+ * x[i] = x[i] + 1 * x[i + (1<<k)]
+ * x[i + (1<<k)] = x[i] + -1 * x[i + (1<<k)]
+ */
+ xt = x[i] >> atten;
+ x[i] = xt + (x[i + (1 << n2)] >> atten);
+ x[i + (1 << n2)] = xt - (x[i + (1 << n2)] >> atten);
+
+ /* The other ones with real twiddle factors:
+ * x[i + (1<<k) + (1<<(k-1))]
+ * = 0 * x[i + (1<<k-1)] + -1 * x[i + (1<<k) + (1<<k-1)]
+ * x[i + (1<<(k-1))]
+ * = 1 * x[i + (1<<k-1)] + 0 * x[i + (1<<k) + (1<<k-1)]
+ */
+ x[i + (1 << n2) + (1 << n4)] =
+ -x[i + (1 << n2) + (1 << n4)] >> atten;
+ x[i + (1 << n4)] = x[i + (1 << n4)] >> atten;
+
+ /* Butterflies with complex twiddle factors.
+ * There are (1<<k-1) of them.
+ */
+ for (j = 1; j < (1 << n4); ++j) {
+ frame_t cc, ss, t1, t2;
+ int i1, i2, i3, i4;
+
+ i1 = i + j;
+ i2 = i + (1 << n2) - j;
+ i3 = i + (1 << n2) + j;
+ i4 = i + (1 << n2) + (1 << n2) - j;
+
+ /*
+ * cc = real(W[j * n / (1<<(k+1))])
+ * ss = imag(W[j * n / (1<<(k+1))])
+ */
+ cc = fe->ccc[j << (m - n1)];
+ ss = fe->sss[j << (m - n1)];
+
+ /* There are some symmetry properties which allow us
+ * to get away with only four multiplications here. */
+ {
+ int32 tmp1, tmp2;
+ tmp1 = (int32) x[i3] * cc + (int32) x[i4] * ss;
+ tmp2 = (int32) x[i3] * ss - (int32) x[i4] * cc;
+ t1 = (int16) (tmp1 >> 15) >> atten;
+ t2 = (int16) (tmp2 >> 15) >> atten;
+ }
+
+ x[i4] = (x[i2] >> atten) - t2;
+ x[i3] = (-x[i2] >> atten) - t2;
+ x[i2] = (x[i1] >> atten) - t1;
+ x[i1] = (x[i1] >> atten) + t1;
+ }
+ }
+ }
+
+ /* Return the residual scaling factor. */
+ return lz;
+}
+#else /* !FIXED16 */
+static int
+fe_fft_real(fe_t * fe)
+{
+ int i, j, k, m, n;
+ frame_t *x, xt;
+
+ x = fe->frame;
+ m = fe->fft_order;
+ n = fe->fft_size;
+
+ /* Bit-reverse the input. */
+ j = 0;
+ for (i = 0; i < n - 1; ++i) {
+ if (i < j) {
+ xt = x[j];
+ x[j] = x[i];
+ x[i] = xt;
+ }
+ k = n / 2;
+ while (k <= j) {
+ j -= k;
+ k /= 2;
+ }
+ j += k;
+ }
+
+ /* Basic butterflies (2-point FFT, real twiddle factors):
+ * x[i] = x[i] + 1 * x[i+1]
+ * x[i+1] = x[i] + -1 * x[i+1]
+ */
+ for (i = 0; i < n; i += 2) {
+ xt = x[i];
+ x[i] = (xt + x[i + 1]);
+ x[i + 1] = (xt - x[i + 1]);
+ }
+
+ /* The rest of the butterflies, in stages from 1..m */
+ for (k = 1; k < m; ++k) {
+ int n1, n2, n4;
+
+ n4 = k - 1;
+ n2 = k;
+ n1 = k + 1;
+ /* Stride over each (1 << (k+1)) points */
+ for (i = 0; i < n; i += (1 << n1)) {
+ /* Basic butterfly with real twiddle factors:
+ * x[i] = x[i] + 1 * x[i + (1<<k)]
+ * x[i + (1<<k)] = x[i] + -1 * x[i + (1<<k)]
+ */
+ xt = x[i];
+ x[i] = (xt + x[i + (1 << n2)]);
+ x[i + (1 << n2)] = (xt - x[i + (1 << n2)]);
+
+ /* The other ones with real twiddle factors:
+ * x[i + (1<<k) + (1<<(k-1))]
+ * = 0 * x[i + (1<<k-1)] + -1 * x[i + (1<<k) + (1<<k-1)]
+ * x[i + (1<<(k-1))]
+ * = 1 * x[i + (1<<k-1)] + 0 * x[i + (1<<k) + (1<<k-1)]
+ */
+ x[i + (1 << n2) + (1 << n4)] = -x[i + (1 << n2) + (1 << n4)];
+ x[i + (1 << n4)] = x[i + (1 << n4)];
+
+ /* Butterflies with complex twiddle factors.
+ * There are (1<<k-1) of them.
+ */
+ for (j = 1; j < (1 << n4); ++j) {
+ frame_t cc, ss, t1, t2;
+ int i1, i2, i3, i4;
+
+ i1 = i + j;
+ i2 = i + (1 << n2) - j;
+ i3 = i + (1 << n2) + j;
+ i4 = i + (1 << n2) + (1 << n2) - j;
+
+ /*
+ * cc = real(W[j * n / (1<<(k+1))])
+ * ss = imag(W[j * n / (1<<(k+1))])
+ */
+ cc = fe->ccc[j << (m - n1)];
+ ss = fe->sss[j << (m - n1)];
+
+ /* There are some symmetry properties which allow us
+ * to get away with only four multiplications here. */
+ t1 = COSMUL(x[i3], cc) + COSMUL(x[i4], ss);
+ t2 = COSMUL(x[i3], ss) - COSMUL(x[i4], cc);
+
+ x[i4] = (x[i2] - t2);
+ x[i3] = (-x[i2] - t2);
+ x[i2] = (x[i1] - t1);
+ x[i1] = (x[i1] + t1);
+ }
+ }
+ }
+
+ /* This isn't used, but return it for completeness. */
+ return m;
+}
+#endif /* !FIXED16 */
+
+static void
+fe_spec_magnitude(fe_t * fe)
+{
+ frame_t *fft;
+ powspec_t *spec;
+ int32 j, scale, fftsize;
+
+ /* Do FFT and get the scaling factor back (only actually used in
+ * fixed-point). Note the scaling factor is expressed in bits. */
+ scale = fe_fft_real(fe);
+
+ /* Convenience pointers to make things less awkward below. */
+ fft = fe->frame;
+ spec = fe->spec;
+ fftsize = fe->fft_size;
+
+ /* We need to scale things up the rest of the way to N. */
+ scale = fe->fft_order - scale;
+
+ /* The first point (DC coefficient) has no imaginary part */
+ {
+#ifdef FIXED16
+ spec[0] = fixlog(abs(fft[0]) << scale) * 2;
+#elif defined(FIXED_POINT)
+ spec[0] = FIXLN(abs(fft[0]) << scale) * 2;
+#else
+ spec[0] = fft[0] * fft[0];
+#endif
+ }
+
+ for (j = 1; j <= fftsize / 2; j++) {
+#ifdef FIXED16
+ int32 rr = fixlog(abs(fft[j]) << scale) * 2;
+ int32 ii = fixlog(abs(fft[fftsize - j]) << scale) * 2;
+ spec[j] = fe_log_add(rr, ii);
+#elif defined(FIXED_POINT)
+ int32 rr = FIXLN(abs(fft[j]) << scale) * 2;
+ int32 ii = FIXLN(abs(fft[fftsize - j]) << scale) * 2;
+ spec[j] = fe_log_add(rr, ii);
+#else
+ spec[j] = fft[j] * fft[j] + fft[fftsize - j] * fft[fftsize - j];
+#endif
+ }
+}
+
+static void
+fe_mel_spec(fe_t * fe)
+{
+ int whichfilt;
+ powspec_t *spec, *mfspec;
+
+ /* Convenience poitners. */
+ spec = fe->spec;
+ mfspec = fe->mfspec;
+ for (whichfilt = 0; whichfilt < fe->mel_fb->num_filters; whichfilt++) {
+ int spec_start, filt_start, i;
+
+ spec_start = fe->mel_fb->spec_start[whichfilt];
+ filt_start = fe->mel_fb->filt_start[whichfilt];
+
+#ifdef FIXED_POINT
+ mfspec[whichfilt] =
+ spec[spec_start] + fe->mel_fb->filt_coeffs[filt_start];
+ for (i = 1; i < fe->mel_fb->filt_width[whichfilt]; i++) {
+ mfspec[whichfilt] = fe_log_add(mfspec[whichfilt],
+ spec[spec_start + i] +
+ fe->mel_fb->
+ filt_coeffs[filt_start + i]);
+ }
+#else /* !FIXED_POINT */
+ mfspec[whichfilt] = 0;
+ for (i = 0; i < fe->mel_fb->filt_width[whichfilt]; i++)
+ mfspec[whichfilt] +=
+ spec[spec_start + i] * fe->mel_fb->filt_coeffs[filt_start +
+ i];
+#endif /* !FIXED_POINT */
+ }
+
+}
+
+#define LOG_FLOOR 1e-4
+
+static void
+fe_mel_cep(fe_t * fe, mfcc_t * mfcep)
+{
+ int32 i;
+ powspec_t *mfspec;
+
+ /* Convenience pointer. */
+ mfspec = fe->mfspec;
+
+ for (i = 0; i < fe->mel_fb->num_filters; ++i) {
+#ifndef FIXED_POINT /* It's already in log domain for fixed point */
+ mfspec[i] = log(mfspec[i] + LOG_FLOOR);
+#endif /* !FIXED_POINT */
+ }
+
+ /* If we are doing LOG_SPEC, then do nothing. */
+ if (fe->log_spec == RAW_LOG_SPEC) {
+ for (i = 0; i < fe->feature_dimension; i++) {
+ mfcep[i] = (mfcc_t) mfspec[i];
+ }
+ }
+ /* For smoothed spectrum, do DCT-II followed by (its inverse) DCT-III */
+ else if (fe->log_spec == SMOOTH_LOG_SPEC) {
+ /* FIXME: This is probably broken for fixed-point. */
+ fe_dct2(fe, mfspec, mfcep, 0);
+ fe_dct3(fe, mfcep, mfspec);
+ for (i = 0; i < fe->feature_dimension; i++) {
+ mfcep[i] = (mfcc_t) mfspec[i];
+ }
+ }
+ else if (fe->transform == DCT_II)
+ fe_dct2(fe, mfspec, mfcep, FALSE);
+ else if (fe->transform == DCT_HTK)
+ fe_dct2(fe, mfspec, mfcep, TRUE);
+ else
+ fe_spec2cep(fe, mfspec, mfcep);
+
+ return;
+}
+
+void
+fe_spec2cep(fe_t * fe, const powspec_t * mflogspec, mfcc_t * mfcep)
+{
+ int32 i, j, beta;
+
+ /* Compute C0 separately (its basis vector is 1) to avoid
+ * costly multiplications. */
+ mfcep[0] = mflogspec[0] / 2; /* beta = 0.5 */
+ for (j = 1; j < fe->mel_fb->num_filters; j++)
+ mfcep[0] += mflogspec[j]; /* beta = 1.0 */
+ mfcep[0] /= (frame_t) fe->mel_fb->num_filters;
+
+ for (i = 1; i < fe->num_cepstra; ++i) {
+ mfcep[i] = 0;
+ for (j = 0; j < fe->mel_fb->num_filters; j++) {
+ if (j == 0)
+ beta = 1; /* 0.5 */
+ else
+ beta = 2; /* 1.0 */
+ mfcep[i] += COSMUL(mflogspec[j],
+ fe->mel_fb->mel_cosine[i][j]) * beta;
+ }
+ /* Note that this actually normalizes by num_filters, like the
+ * original Sphinx front-end, due to the doubled 'beta' factor
+ * above. */
+ mfcep[i] /= (frame_t) fe->mel_fb->num_filters * 2;
+ }
+}
+
+void
+fe_dct2(fe_t * fe, const powspec_t * mflogspec, mfcc_t * mfcep, int htk)
+{
+ int32 i, j;
+
+ /* Compute C0 separately (its basis vector is 1) to avoid
+ * costly multiplications. */
+ mfcep[0] = mflogspec[0];
+ for (j = 1; j < fe->mel_fb->num_filters; j++)
+ mfcep[0] += mflogspec[j];
+ if (htk)
+ mfcep[0] = COSMUL(mfcep[0], fe->mel_fb->sqrt_inv_2n);
+ else /* sqrt(1/N) = sqrt(2/N) * 1/sqrt(2) */
+ mfcep[0] = COSMUL(mfcep[0], fe->mel_fb->sqrt_inv_n);
+
+ for (i = 1; i < fe->num_cepstra; ++i) {
+ mfcep[i] = 0;
+ for (j = 0; j < fe->mel_fb->num_filters; j++) {
+ mfcep[i] += COSMUL(mflogspec[j], fe->mel_fb->mel_cosine[i][j]);
+ }
+ mfcep[i] = COSMUL(mfcep[i], fe->mel_fb->sqrt_inv_2n);
+ }
+}
+
+void
+fe_lifter(fe_t * fe, mfcc_t * mfcep)
+{
+ int32 i;
+
+ if (fe->mel_fb->lifter_val == 0)
+ return;
+
+ for (i = 0; i < fe->num_cepstra; ++i) {
+ mfcep[i] = MFCCMUL(mfcep[i], fe->mel_fb->lifter[i]);
+ }
+}
+
+void
+fe_dct3(fe_t * fe, const mfcc_t * mfcep, powspec_t * mflogspec)
+{
+ int32 i, j;
+
+ for (i = 0; i < fe->mel_fb->num_filters; ++i) {
+ mflogspec[i] = COSMUL(mfcep[0], SQRT_HALF);
+ for (j = 1; j < fe->num_cepstra; j++) {
+ mflogspec[i] += COSMUL(mfcep[j], fe->mel_fb->mel_cosine[j][i]);
+ }
+ mflogspec[i] = COSMUL(mflogspec[i], fe->mel_fb->sqrt_inv_2n);
+ }
+}
+
+void
+fe_write_frame(fe_t * fe, mfcc_t * fea)
+{
+ int32 is_speech;
+
+ fe_spec_magnitude(fe);
+ fe_mel_spec(fe);
+ fe_track_snr(fe, &is_speech);
+ fe_mel_cep(fe, fea);
+ fe_lifter(fe, fea);
+ fe_vad_hangover(fe, fea, is_speech);
+}
+
+
+void *
+fe_create_2d(int32 d1, int32 d2, int32 elem_size)
+{
+ return (void *) ckd_calloc_2d(d1, d2, elem_size);
+}
+
+void
+fe_free_2d(void *arr)
+{
+ ckd_free_2d((void **) arr);
+}