summaryrefslogtreecommitdiffstats
path: root/media/sphinxbase/src/libsphinxbase/fe/fe_sigproc.c
diff options
context:
space:
mode:
Diffstat (limited to 'media/sphinxbase/src/libsphinxbase/fe/fe_sigproc.c')
-rw-r--r--media/sphinxbase/src/libsphinxbase/fe/fe_sigproc.c1377
1 files changed, 0 insertions, 1377 deletions
diff --git a/media/sphinxbase/src/libsphinxbase/fe/fe_sigproc.c b/media/sphinxbase/src/libsphinxbase/fe/fe_sigproc.c
deleted file mode 100644
index 577640f62..000000000
--- a/media/sphinxbase/src/libsphinxbase/fe/fe_sigproc.c
+++ /dev/null
@@ -1,1377 +0,0 @@
-/* -*- c-basic-offset: 4; indent-tabs-mode: nil -*- */
-/* ====================================================================
- * Copyright (c) 1996-2004 Carnegie Mellon University. All rights
- * reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- *
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in
- * the documentation and/or other materials provided with the
- * distribution.
- *
- * This work was supported in part by funding from the Defense Advanced
- * Research Projects Agency and the National Science Foundation of the
- * United States of America, and the CMU Sphinx Speech Consortium.
- *
- * THIS SOFTWARE IS PROVIDED BY CARNEGIE MELLON UNIVERSITY ``AS IS'' AND
- * ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
- * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
- * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY
- * NOR ITS EMPLOYEES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- * ====================================================================
- *
- */
-
-#include <stdio.h>
-#include <math.h>
-#include <string.h>
-#include <stdlib.h>
-#include <assert.h>
-
-#ifdef HAVE_CONFIG_H
-#include <config.h>
-#endif
-
-#ifdef _MSC_VER
-#pragma warning (disable: 4244)
-#endif
-
-/**
- * Windows math.h does not contain M_PI
- */
-#ifndef M_PI
-#define M_PI 3.14159265358979323846
-#endif
-
-#include "sphinxbase/prim_type.h"
-#include "sphinxbase/ckd_alloc.h"
-#include "sphinxbase/byteorder.h"
-#include "sphinxbase/fixpoint.h"
-#include "sphinxbase/fe.h"
-#include "sphinxbase/genrand.h"
-#include "sphinxbase/err.h"
-
-#include "fe_internal.h"
-#include "fe_warp.h"
-
-/* Use extra precision for cosines, Hamming window, pre-emphasis
- * coefficient, twiddle factors. */
-#ifdef FIXED_POINT
-#define FLOAT2COS(x) FLOAT2FIX_ANY(x,30)
-#define COSMUL(x,y) FIXMUL_ANY(x,y,30)
-#else
-#define FLOAT2COS(x) (x)
-#define COSMUL(x,y) ((x)*(y))
-#endif
-
-#ifdef FIXED_POINT
-
-/* Internal log-addition table for natural log with radix point at 8
- * bits. Each entry is 256 * log(1 + e^{-n/256}). This is used in the
- * log-add computation:
- *
- * e^z = e^x + e^y
- * e^z = e^x(1 + e^{y-x}) = e^y(1 + e^{x-y})
- * z = x + log(1 + e^{y-x}) = y + log(1 + e^{x-y})
- *
- * So when y > x, z = y + logadd_table[-(x-y)]
- * when x > y, z = x + logadd_table[-(y-x)]
- */
-static const unsigned char fe_logadd_table[] = {
- 177, 177, 176, 176, 175, 175, 174, 174, 173, 173,
- 172, 172, 172, 171, 171, 170, 170, 169, 169, 168,
- 168, 167, 167, 166, 166, 165, 165, 164, 164, 163,
- 163, 162, 162, 161, 161, 161, 160, 160, 159, 159,
- 158, 158, 157, 157, 156, 156, 155, 155, 155, 154,
- 154, 153, 153, 152, 152, 151, 151, 151, 150, 150,
- 149, 149, 148, 148, 147, 147, 147, 146, 146, 145,
- 145, 144, 144, 144, 143, 143, 142, 142, 141, 141,
- 141, 140, 140, 139, 139, 138, 138, 138, 137, 137,
- 136, 136, 136, 135, 135, 134, 134, 134, 133, 133,
- 132, 132, 131, 131, 131, 130, 130, 129, 129, 129,
- 128, 128, 128, 127, 127, 126, 126, 126, 125, 125,
- 124, 124, 124, 123, 123, 123, 122, 122, 121, 121,
- 121, 120, 120, 119, 119, 119, 118, 118, 118, 117,
- 117, 117, 116, 116, 115, 115, 115, 114, 114, 114,
- 113, 113, 113, 112, 112, 112, 111, 111, 110, 110,
- 110, 109, 109, 109, 108, 108, 108, 107, 107, 107,
- 106, 106, 106, 105, 105, 105, 104, 104, 104, 103,
- 103, 103, 102, 102, 102, 101, 101, 101, 100, 100,
- 100, 99, 99, 99, 98, 98, 98, 97, 97, 97,
- 96, 96, 96, 96, 95, 95, 95, 94, 94, 94,
- 93, 93, 93, 92, 92, 92, 92, 91, 91, 91,
- 90, 90, 90, 89, 89, 89, 89, 88, 88, 88,
- 87, 87, 87, 87, 86, 86, 86, 85, 85, 85,
- 85, 84, 84, 84, 83, 83, 83, 83, 82, 82,
- 82, 82, 81, 81, 81, 80, 80, 80, 80, 79,
- 79, 79, 79, 78, 78, 78, 78, 77, 77, 77,
- 77, 76, 76, 76, 75, 75, 75, 75, 74, 74,
- 74, 74, 73, 73, 73, 73, 72, 72, 72, 72,
- 71, 71, 71, 71, 71, 70, 70, 70, 70, 69,
- 69, 69, 69, 68, 68, 68, 68, 67, 67, 67,
- 67, 67, 66, 66, 66, 66, 65, 65, 65, 65,
- 64, 64, 64, 64, 64, 63, 63, 63, 63, 63,
- 62, 62, 62, 62, 61, 61, 61, 61, 61, 60,
- 60, 60, 60, 60, 59, 59, 59, 59, 59, 58,
- 58, 58, 58, 58, 57, 57, 57, 57, 57, 56,
- 56, 56, 56, 56, 55, 55, 55, 55, 55, 54,
- 54, 54, 54, 54, 53, 53, 53, 53, 53, 52,
- 52, 52, 52, 52, 52, 51, 51, 51, 51, 51,
- 50, 50, 50, 50, 50, 50, 49, 49, 49, 49,
- 49, 49, 48, 48, 48, 48, 48, 48, 47, 47,
- 47, 47, 47, 47, 46, 46, 46, 46, 46, 46,
- 45, 45, 45, 45, 45, 45, 44, 44, 44, 44,
- 44, 44, 43, 43, 43, 43, 43, 43, 43, 42,
- 42, 42, 42, 42, 42, 41, 41, 41, 41, 41,
- 41, 41, 40, 40, 40, 40, 40, 40, 40, 39,
- 39, 39, 39, 39, 39, 39, 38, 38, 38, 38,
- 38, 38, 38, 37, 37, 37, 37, 37, 37, 37,
- 37, 36, 36, 36, 36, 36, 36, 36, 35, 35,
- 35, 35, 35, 35, 35, 35, 34, 34, 34, 34,
- 34, 34, 34, 34, 33, 33, 33, 33, 33, 33,
- 33, 33, 32, 32, 32, 32, 32, 32, 32, 32,
- 32, 31, 31, 31, 31, 31, 31, 31, 31, 31,
- 30, 30, 30, 30, 30, 30, 30, 30, 30, 29,
- 29, 29, 29, 29, 29, 29, 29, 29, 28, 28,
- 28, 28, 28, 28, 28, 28, 28, 28, 27, 27,
- 27, 27, 27, 27, 27, 27, 27, 27, 26, 26,
- 26, 26, 26, 26, 26, 26, 26, 26, 25, 25,
- 25, 25, 25, 25, 25, 25, 25, 25, 25, 24,
- 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
- 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
- 23, 23, 22, 22, 22, 22, 22, 22, 22, 22,
- 22, 22, 22, 22, 21, 21, 21, 21, 21, 21,
- 21, 21, 21, 21, 21, 21, 21, 20, 20, 20,
- 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
- 19, 19, 19, 19, 19, 19, 19, 19, 19, 19,
- 19, 19, 19, 19, 18, 18, 18, 18, 18, 18,
- 18, 18, 18, 18, 18, 18, 18, 18, 18, 17,
- 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
- 17, 17, 17, 17, 16, 16, 16, 16, 16, 16,
- 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
- 16, 15, 15, 15, 15, 15, 15, 15, 15, 15,
- 15, 15, 15, 15, 15, 15, 15, 15, 14, 14,
- 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
- 14, 14, 14, 14, 14, 14, 14, 13, 13, 13,
- 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
- 13, 13, 13, 13, 13, 13, 13, 12, 12, 12,
- 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
- 12, 12, 12, 12, 12, 12, 12, 12, 12, 11,
- 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
- 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
- 11, 11, 11, 10, 10, 10, 10, 10, 10, 10,
- 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
- 10, 10, 10, 10, 10, 10, 10, 10, 10, 9,
- 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
- 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
- 9, 9, 9, 9, 9, 9, 9, 9, 8, 8,
- 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
- 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
- 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
- 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
- 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
- 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
- 7, 7, 7, 7, 7, 7, 7, 7, 6, 6,
- 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
- 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
- 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
- 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
- 6, 5, 5, 5, 5, 5, 5, 5, 5, 5,
- 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
- 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
- 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
- 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
- 5, 5, 5, 4, 4, 4, 4, 4, 4, 4,
- 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
- 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
- 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
- 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
- 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
- 4, 4, 4, 4, 4, 4, 4, 4, 3, 3,
- 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
- 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
- 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
- 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
- 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
- 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
- 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
- 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
- 3, 3, 3, 3, 2, 2, 2, 2, 2, 2,
- 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
- 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
- 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
- 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
- 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
- 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
- 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
- 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
- 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
- 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
- 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
- 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
- 2, 2, 2, 2, 2, 2, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 0
-};
-
-static const int fe_logadd_table_size =
- sizeof(fe_logadd_table) / sizeof(fe_logadd_table[0]);
-
-fixed32
-fe_log_add(fixed32 x, fixed32 y)
-{
- fixed32 d, r;
-
- if (x > y) {
- d = (x - y) >> (DEFAULT_RADIX - 8);
- r = x;
- }
- else {
- d = (y - x) >> (DEFAULT_RADIX - 8);
- r = y;
- }
-
- if (r <= MIN_FIXLOG)
- return MIN_FIXLOG;
- else if (d > fe_logadd_table_size - 1)
- return r;
- else {
- r += ((fixed32) fe_logadd_table[d] << (DEFAULT_RADIX - 8));
-/* printf("%d - %d = %d | %f - %f = %f | %f - %f = %f\n",
- x, y, r, FIX2FLOAT(x), FIX2FLOAT(y), FIX2FLOAT(r),
- exp(FIX2FLOAT(x)), exp(FIX2FLOAT(y)), exp(FIX2FLOAT(r)));
-*/
- return r;
- }
-}
-
-/*
- * log_sub for spectral subtraction, similar to logadd but we had
- * to smooth function around zero with fixlog in order to improve
- * table interpolation properties
- *
- * The table is created with the file included into distribution
- *
- * e^z = e^x - e^y
- * e^z = e^x (1 - e^(-(x - y)))
- * z = x + log(1 - e^(-(x - y)))
- * z = x + fixlog(a) + (log(1 - e^(- a)) - log(a))
- *
- * Input radix is 8 output radix is 10
- */
-static const uint16 fe_logsub_table[] = {
-1, 3, 5, 7, 9, 11, 13, 15, 17, 19,
-21, 23, 25, 27, 29, 31, 33, 35, 37, 39,
-41, 43, 45, 47, 49, 51, 53, 55, 56, 58,
-60, 62, 64, 66, 68, 70, 72, 74, 76, 78,
-80, 82, 84, 86, 88, 90, 92, 94, 95, 97,
-99, 101, 103, 105, 107, 109, 111, 113, 115, 117,
-119, 121, 122, 124, 126, 128, 130, 132, 134, 136,
-138, 140, 142, 143, 145, 147, 149, 151, 153, 155,
-157, 159, 161, 162, 164, 166, 168, 170, 172, 174,
-176, 178, 179, 181, 183, 185, 187, 189, 191, 193,
-194, 196, 198, 200, 202, 204, 206, 207, 209, 211,
-213, 215, 217, 219, 220, 222, 224, 226, 228, 230,
-232, 233, 235, 237, 239, 241, 243, 244, 246, 248,
-250, 252, 254, 255, 257, 259, 261, 263, 265, 266,
-268, 270, 272, 274, 275, 277, 279, 281, 283, 284,
-286, 288, 290, 292, 294, 295, 297, 299, 301, 302,
-304, 306, 308, 310, 311, 313, 315, 317, 319, 320,
-322, 324, 326, 327, 329, 331, 333, 335, 336, 338,
-340, 342, 343, 345, 347, 349, 350, 352, 354, 356,
-357, 359, 361, 363, 364, 366, 368, 370, 371, 373,
-375, 377, 378, 380, 382, 384, 385, 387, 389, 391,
-392, 394, 396, 397, 399, 401, 403, 404, 406, 408,
-410, 411, 413, 415, 416, 418, 420, 422, 423, 425,
-427, 428, 430, 432, 433, 435, 437, 439, 440, 442,
-444, 445, 447, 449, 450, 452, 454, 455, 457, 459,
-460, 462, 464, 465, 467, 469, 471, 472, 474, 476,
-477, 479, 481, 482, 484, 486, 487, 489, 490, 492,
-494, 495, 497, 499, 500, 502, 504, 505, 507, 509,
-510, 512, 514, 515, 517, 518, 520, 522, 523, 525,
-527, 528, 530, 532, 533, 535, 536, 538, 540, 541,
-543, 544, 546, 548, 549, 551, 553, 554, 556, 557,
-559, 561, 562, 564, 565, 567, 569, 570, 572, 573,
-575, 577, 578, 580, 581, 583, 585, 586, 588, 589,
-591, 592, 594, 596, 597, 599, 600, 602, 603, 605,
-607, 608, 610, 611, 613, 614, 616, 618, 619, 621,
-622, 624, 625, 627, 628, 630, 632, 633, 635, 636,
-638, 639, 641, 642, 644, 645, 647, 649, 650, 652,
-653, 655, 656, 658, 659, 661, 662, 664, 665, 667,
-668, 670, 671, 673, 674, 676, 678, 679, 681, 682,
-684, 685, 687, 688, 690, 691, 693, 694, 696, 697,
-699, 700, 702, 703, 705, 706, 708, 709, 711, 712,
-714, 715, 717, 718, 719, 721, 722, 724, 725, 727,
-728, 730, 731, 733, 734, 736, 737, 739, 740, 742,
-743, 745, 746, 747, 749, 750, 752, 753, 755, 756,
-758, 759, 761, 762, 763, 765, 766, 768, 769, 771,
-772, 774, 775, 776, 778, 779, 781, 782, 784, 785,
-786, 788, 789, 791, 792, 794, 795, 796, 798, 799,
-801, 802, 804, 805, 806, 808, 809, 811, 812, 813,
-815, 816, 818, 819, 820, 822, 823, 825, 826, 827,
-829, 830, 832, 833, 834, 836, 837, 839, 840, 841,
-843, 844, 846, 847, 848, 850, 851, 852, 854, 855,
-857, 858, 859, 861, 862, 863, 865, 866, 868, 869,
-870, 872, 873, 874, 876, 877, 878, 880, 881, 883,
-884, 885, 887, 888, 889, 891, 892, 893, 895, 896,
-897, 899, 900, 901, 903, 904, 905, 907, 908, 909,
-911, 912, 913, 915, 916, 917, 919, 920, 921, 923,
-924, 925, 927, 928, 929, 931, 932, 933, 935, 936,
-937, 939, 940, 941, 942, 944, 945, 946, 948, 949,
-950, 952, 953, 954, 956, 957, 958, 959, 961, 962,
-963, 965, 966, 967, 968, 970, 971, 972, 974, 975,
-976, 977, 979, 980, 981, 983, 984, 985, 986, 988,
-989, 990, 991, 993, 994, 995, 997, 998, 999, 1000,
-1002, 1003, 1004, 1005, 1007, 1008, 1009, 1010, 1012, 1013,
-1014, 1015, 1017, 1018, 1019, 1020, 1022, 1023, 1024, 1025,
-1027, 1028, 1029, 1030, 1032, 1033, 1034, 1035, 1037, 1038,
-1039, 1040, 1041, 1043, 1044, 1045, 1046, 1048, 1049, 1050,
-1051, 1052, 1054, 1055, 1056, 1057, 1059, 1060, 1061, 1062,
-1063, 1065, 1066, 1067, 1068, 1069, 1071, 1072, 1073, 1074,
-1076, 1077, 1078, 1079, 1080, 1082, 1083, 1084, 1085, 1086,
-1087, 1089, 1090, 1091, 1092, 1093, 1095, 1096, 1097, 1098,
-1099, 1101, 1102, 1103, 1104, 1105, 1106, 1108, 1109, 1110,
-1111, 1112, 1114, 1115, 1116, 1117, 1118, 1119, 1121, 1122,
-1123, 1124, 1125, 1126, 1128, 1129, 1130, 1131, 1132, 1133,
-1135, 1136, 1137, 1138, 1139, 1140, 1141, 1143, 1144, 1145,
-1146, 1147, 1148, 1149, 1151, 1152, 1153, 1154, 1155, 1156,
-1157, 1159, 1160, 1161, 1162, 1163, 1164, 1165, 1167, 1168,
-1169, 1170, 1171, 1172, 1173, 1174, 1176, 1177, 1178, 1179,
-1180, 1181, 1182, 1183, 1185, 1186, 1187, 1188, 1189, 1190,
-1191, 1192, 1193, 1195, 1196, 1197, 1198, 1199, 1200, 1201,
-1202, 1203, 1205, 1206, 1207, 1208, 1209, 1210, 1211, 1212,
-1213, 1214, 1216, 1217, 1218, 1219, 1220, 1221, 1222, 1223,
-1224, 1225, 1226, 1228, 1229, 1230, 1231, 1232, 1233, 1234,
-1235, 1236, 1237, 1238, 1239, 1240, 1242, 1243, 1244, 1245,
-1246, 1247, 1248, 1249, 1250, 1251, 1252, 1253, 1254, 1255,
-1256, 1258, 1259, 1260, 1261, 1262, 1263, 1264, 1265, 1266,
-1267, 1268, 1269, 1270, 1271, 1272, 1273, 1274, 1275, 1277,
-1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1286, 1287,
-1288, 1289, 1290, 1291, 1292, 1293, 1294, 1295, 1296, 1297,
-1298, 1299, 1300, 1301, 1302, 1303, 1305, 1306, 1307, 1308,
-1309, 1310, 1311, 1312, 1313, 1314, 1315, 1316, 1317, 1318,
-1319, 1320, 1321, 1322, 1323, 1324, 1325, 1326, 1327, 1328,
-1329, 1330, 1331, 1332, 1333, 1334, 1335, 1336, 1337, 1338,
-1339, 1340, 1341, 1342, 1343, 1344, 1345, 1346, 1347, 1348,
-1349, 1350, 1351, 1352, 1353, 1354, 1355, 1356, 1357, 1358,
-1359, 1360, 1361, 1362, 1363, 1364, 1365, 1366, 1367, 1368,
-1369, 1370, 1371, 1372, 1372, 1373, 1374, 1375, 1376, 1377,
-1378, 1379, 1380, 1381, 1382, 1383, 1384, 1385, 1386, 1387,
-1388, 1389, 1390, 1391, 1392, 1393, 1394, 1395, 1396, 1397,
-1398, 1399, 1399, 1400, 1401, 1402, 1403, 1404, 1405, 1406,
-1407, 1408, 1409, 1410, 1411, 1412, 1413, 1414, 1415, 1416,
-1417, 1418, 1418, 1419, 1420, 1421, 1422, 1423, 1424, 1425,
-1426, 1427, 1428, 1429, 1430, 1431, 1432, 1432, 1433, 1434,
-1435, 1436, 1437, 1438, 1439, 1440, 1441, 1442, 1443, 1444,
-1444, 1445, 1446, 1447, 1448, 1449, 1450, 1451, 1452, 1453,
-1454, 1455, 1455, 1456, 1457, 1458, 1459, 1460, 1461, 1462,
-1463, 1464, 1465, 1466, 1466, 1467, 1468, 1469, 1470, 1471,
-1472, 1473, 1474, 1475, 1475, 1476, 1477, 1478, 1479, 1480,
-1481, 1482, 1483, 1483, 1484, 1485, 1486, 1487, 1488, 1489,
-1490, 1491, 1491, 1492, 1493, 1494, 1495, 1496, 1497, 1498,
-1499, 1499, 1500, 1501, 1502, 1503, 1504, 1505, 1506, 1506,
-1507, 1508, 1509, 1510, 1511, 1512, 1513, 1513, 1514, 1515,
-1516, 1517, 1518, 1519, 1520, 1520, 1521, 1522, 1523, 1524,
-1525, 1526, 1526, 1527, 1528, 1529, 1530, 1531, 1532, 1532,
-1533, 1534, 1535, 1536, 1537, 1538, 1538, 1539, 1540, 1541,
-1542, 1543, 1544, 1544, 1545, 1546, 1547, 1548, 1549, 1550,
-1550, 1551, 1552, 1553, 1554, 1555, 1555, 1556, 1557, 1558,
-1559, 1560, 1560, 1561, 1562, 1563, 1564, 1565, 1565, 1566,
-1567, 1568, 1569, 1570, 1570, 1571, 1572, 1573, 1574, 1575,
-1575, 1576, 1577, 1578, 1579, 1580, 1580, 1581, 1582, 1583,
-1584, 1584, 1585, 1586, 1587, 1588, 1589, 1589, 1590, 1591,
-1592, 1593, 1593, 1594, 1595, 1596, 1597, 1598, 1598, 1599,
-1600, 1601, 1602, 1602, 1603, 1604, 1605, 1606, 1606, 1607,
-1608, 1609, 1610, 1610, 1611, 1612, 1613, 1614, 1614, 1615,
-1616, 1617, 1618, 1618, 1619, 1620, 1621, 1622, 1622, 1623,
-1624, 1625, 1626, 1626, 1627, 1628, 1629, 1630, 1630, 1631,
-1632, 1633, 1634, 1634, 1635, 1636, 1637, 1637, 1638, 1639,
-1640, 1641, 1641, 1642, 1643, 1644, 1645, 1645, 1646, 1647,
-1648, 1648, 1649, 1650, 1651, 1652, 1652, 1653, 1654, 1655,
-1655, 1656, 1657, 1658, 1658, 1659, 1660, 1661, 1662, 1662,
-1663, 1664, 1665, 1665, 1666, 1667, 1668, 1668, 1669, 1670,
-1671, 1671, 1672, 1673, 1674, 1675, 1675, 1676, 1677, 1678,
-1678, 1679, 1680, 1681, 1681, 1682, 1683, 1684, 1684, 1685,
-1686, 1687, 1687, 1688, 1689, 1690, 1690, 1691, 1692, 1693,
-1693, 1694, 1695, 1696, 1696, 1697, 1698, 1699, 1699, 1700,
-1701, 1702, 1702, 1703, 1704, 1705, 1705, 1706, 1707, 1707,
-1708, 1709, 1710, 1710, 1711, 1712, 1713, 1713, 1714, 1715,
-1716, 1716, 1717, 1718, 1718, 1719, 1720, 1721, 1721, 1722,
-1723, 1724, 1724, 1725, 1726, 1727, 1727, 1728, 1729, 1729,
-1730, 1731, 1732, 1732, 1733, 1734, 1734, 1735, 1736, 1737,
-1737, 1738, 1739, 1740, 1740, 1741, 1742, 1742, 1743, 1744,
-1745, 1745, 1746, 1747, 1747, 1748, 1749, 1749, 1750, 1751,
-1752, 1752, 1753, 1754, 1754, 1755, 1756, 1757, 1757, 1758,
-1759, 1759, 1760, 1761, 1762, 1762, 1763, 1764, 1764, 1765,
-1766, 1766, 1767, 1768, 1769, 1769, 1770, 1771, 1771, 1772,
-1773, 1773, 1774, 1775, 1776, 1776, 1777, 1778, 1778, 1779,
-1780, 1780, 1781, 1782, 1782, 1783, 1784, 1784, 1785, 1786,
-1787, 1787, 1788, 1789, 1789, 1790, 1791, 1791, 1792, 1793,
-1793, 1794, 1795, 1795, 1796, 1797, 1798, 1798, 1799, 1800,
-1800, 1801, 1802, 1802, 1803, 1804, 1804, 1805, 1806, 1806,
-1807, 1808, 1808, 1809, 1810, 1810, 1811, 1812, 1812, 1813,
-1814, 1814, 1815, 1816, 1816, 1817, 1818, 1818, 1819, 1820,
-1820, 1821, 1822, 1822, 1823, 1824, 1824, 1825, 1826, 1826,
-1827, 1828, 1828, 1829, 1830, 1830, 1831, 1832, 1832, 1833,
-1834, 1834, 1835, 1836, 1836, 1837, 1838, 1838, 1839, 1840,
-1840, 1841, 1842, 1842, 1843, 1844, 1844, 1845, 1845, 1846,
-1847, 1847, 1848, 1849, 1849, 1850, 1851, 1851, 1852, 1853,
-1853, 1854, 1855, 1855, 1856, 1857, 1857, 1858, 1858, 1859,
-1860, 1860, 1861, 1862, 1862, 1863, 1864, 1864, 1865, 1866,
-1866, 1867, 1867, 1868, 1869, 1869, 1870, 1871, 1871, 1872,
-1873, 1873, 1874, 1874, 1875, 1876, 1876, 1877, 1878, 1878,
-1879, 1879, 1880, 1881, 1881, 1882, 1883, 1883, 1884, 1885,
-1885, 1886, 1886, 1887, 1888, 1888, 1889, 1890, 1890, 1891,
-1891, 1892, 1893, 1893, 1894, 1895, 1895, 1896, 1896, 1897,
-1898, 1898, 1899, 1900, 1900, 1901, 1901, 1902, 1903, 1903,
-1904, 1904, 1905, 1906, 1906, 1907, 1908, 1908, 1909, 1909,
-1910, 1911, 1911, 1912, 1912, 1913, 1914, 1914, 1915, 1916,
-1916, 1917, 1917, 1918, 1919, 1919, 1920, 1920, 1921, 1922,
-1922, 1923, 1923, 1924, 1925, 1925, 1926, 1926, 1927, 1928,
-1928, 1929, 1929, 1930, 1931, 1931, 1932, 1932, 1933, 1934,
-1934, 1935, 1935, 1936, 1937, 1937, 1938, 1938, 1939, 1940,
-1940, 1941, 1941, 1942, 1943, 1943, 1944, 1944, 1945, 1946,
-1946, 1947, 1947, 1948, 1949, 1949, 1950, 1950, 1951, 1952,
-1952, 1953, 1953, 1954, 1955, 1955, 1956, 1956, 1957, 1957,
-1958, 1959, 1959, 1960, 1960, 1961, 1962, 1962, 1963, 1963,
-1964, 1964, 1965, 1966, 1966, 1967, 1967, 1968, 1969, 1969,
-1970, 1970, 1971, 1971, 1972, 1973, 1973, 1974, 1974, 1975,
-1976, 1976, 1977, 1977, 1978, 1978, 1979, 1980, 1980, 1981,
-1981, 1982, 1982, 1983, 1984, 1984, 1985, 1985, 1986, 1986,
-1987, 1988, 1988, 1989, 1989, 1990, 1990, 1991, 1992, 1992,
-1993, 1993, 1994, 1994, 1995, 1996, 1996, 1997, 1997, 1998,
-1998, 1999, 1999, 2000, 2001, 2001, 2002, 2002, 2003, 2003,
-2004, 2005, 2005, 2006, 2006, 2007, 2007, 2008, 2008, 2009,
-2010, 2010, 2011, 2011, 2012, 2012, 2013, 2014, 2014, 2015,
-2015, 2016, 2016, 2017, 2017, 2018, 2019, 2019, 2020, 2020,
-2021, 2021, 2022, 2022, 2023, 2023, 2024, 2025, 2025, 2026,
-2026, 2027, 2027, 2028, 2028, 2029, 2030, 2030, 2031, 2031,
-2032, 2032, 2033, 2033, 2034, 2034, 2035, 2036, 2036, 2037,
-2037, 2038, 2038, 2039, 2039, 2040, 2040, 2041, 2042, 2042,
-2043, 2043, 2044, 2044, 2045, 2045, 2046, 2046, 2047, 2048,
-2048, 2049, 2049, 2050, 2050, 2051, 2051, 2052, 2052, 2053,
-2053, 2054, 2054, 2055, 2056, 2056, 2057, 2057, 2058, 2058,
-2059, 2059, 2060, 2060, 2061, 2061, 2062, 2062, 2063, 2064,
-2064, 2065, 2065, 2066, 2066, 2067, 2067, 2068, 2068, 2069,
-2069, 2070, 2070, 2071, 2072, 2072, 2073, 2073, 2074, 2074,
-2075, 2075, 2076, 2076, 2077, 2077, 2078, 2078, 2079, 2079,
-2080, 2080, 2081
-};
-
-static const int fe_logsub_table_size =
- sizeof(fe_logsub_table) / sizeof(fe_logsub_table[0]);
-
-fixed32
-fe_log_sub(fixed32 x, fixed32 y)
-{
- fixed32 d, r;
-
- if (x < MIN_FIXLOG || y >= x)
- return MIN_FIXLOG;
-
- d = (x - y) >> (DEFAULT_RADIX - 8);
-
- if (d > fe_logsub_table_size - 1)
- return x;
-
- r = fe_logsub_table[d] << (DEFAULT_RADIX - 10);
-/*
- printf("diff=%d\n",
- x + FIXLN(x-y) - r -
- (x + FLOAT2FIX(logf(-expm1f(FIX2FLOAT(y - x))))));
-*/
- return x + FIXLN(x-y) - r;
-}
-
-static fixed32
-fe_log(float32 x)
-{
- if (x <= 0) {
- return MIN_FIXLOG;
- }
- else {
- return FLOAT2FIX(log(x));
- }
-}
-#endif
-
-static float32
-fe_mel(melfb_t * mel, float32 x)
-{
- float32 warped = fe_warp_unwarped_to_warped(mel, x);
-
- return (float32) (2595.0 * log10(1.0 + warped / 700.0));
-}
-
-static float32
-fe_melinv(melfb_t * mel, float32 x)
-{
- float32 warped = (float32) (700.0 * (pow(10.0, x / 2595.0) - 1.0));
- return fe_warp_warped_to_unwarped(mel, warped);
-}
-
-int32
-fe_build_melfilters(melfb_t * mel_fb)
-{
- float32 melmin, melmax, melbw, fftfreq;
- int n_coeffs, i, j;
-
-
- /* Filter coefficient matrix, in flattened form. */
- mel_fb->spec_start =
- ckd_calloc(mel_fb->num_filters, sizeof(*mel_fb->spec_start));
- mel_fb->filt_start =
- ckd_calloc(mel_fb->num_filters, sizeof(*mel_fb->filt_start));
- mel_fb->filt_width =
- ckd_calloc(mel_fb->num_filters, sizeof(*mel_fb->filt_width));
-
- /* First calculate the widths of each filter. */
- /* Minimum and maximum frequencies in mel scale. */
- melmin = fe_mel(mel_fb, mel_fb->lower_filt_freq);
- melmax = fe_mel(mel_fb, mel_fb->upper_filt_freq);
-
- /* Width of filters in mel scale */
- melbw = (melmax - melmin) / (mel_fb->num_filters + 1);
- if (mel_fb->doublewide) {
- melmin -= melbw;
- melmax += melbw;
- if ((fe_melinv(mel_fb, melmin) < 0) ||
- (fe_melinv(mel_fb, melmax) > mel_fb->sampling_rate / 2)) {
- E_WARN
- ("Out of Range: low filter edge = %f (%f)\n",
- fe_melinv(mel_fb, melmin), 0.0);
- E_WARN
- (" high filter edge = %f (%f)\n",
- fe_melinv(mel_fb, melmax), mel_fb->sampling_rate / 2);
- return FE_INVALID_PARAM_ERROR;
- }
- }
-
- /* DFT point spacing */
- fftfreq = mel_fb->sampling_rate / (float32) mel_fb->fft_size;
-
- /* Count and place filter coefficients. */
- n_coeffs = 0;
- for (i = 0; i < mel_fb->num_filters; ++i) {
- float32 freqs[3];
-
- /* Left, center, right frequencies in Hertz */
- for (j = 0; j < 3; ++j) {
- if (mel_fb->doublewide)
- freqs[j] = fe_melinv(mel_fb, (i + j * 2) * melbw + melmin);
- else
- freqs[j] = fe_melinv(mel_fb, (i + j) * melbw + melmin);
- /* Round them to DFT points if requested */
- if (mel_fb->round_filters)
- freqs[j] = ((int) (freqs[j] / fftfreq + 0.5)) * fftfreq;
- }
-
- /* spec_start is the start of this filter in the power spectrum. */
- mel_fb->spec_start[i] = -1;
- /* There must be a better way... */
- for (j = 0; j < mel_fb->fft_size / 2 + 1; ++j) {
- float32 hz = j * fftfreq;
- if (hz < freqs[0])
- continue;
- else if (hz > freqs[2] || j == mel_fb->fft_size / 2) {
- /* filt_width is the width in DFT points of this filter. */
- mel_fb->filt_width[i] = j - mel_fb->spec_start[i];
- /* filt_start is the start of this filter in the filt_coeffs array. */
- mel_fb->filt_start[i] = n_coeffs;
- n_coeffs += mel_fb->filt_width[i];
- break;
- }
- if (mel_fb->spec_start[i] == -1)
- mel_fb->spec_start[i] = j;
- }
- }
-
- /* Now go back and allocate the coefficient array. */
- mel_fb->filt_coeffs =
- ckd_malloc(n_coeffs * sizeof(*mel_fb->filt_coeffs));
-
- /* And now generate the coefficients. */
- n_coeffs = 0;
- for (i = 0; i < mel_fb->num_filters; ++i) {
- float32 freqs[3];
-
- /* Left, center, right frequencies in Hertz */
- for (j = 0; j < 3; ++j) {
- if (mel_fb->doublewide)
- freqs[j] = fe_melinv(mel_fb, (i + j * 2) * melbw + melmin);
- else
- freqs[j] = fe_melinv(mel_fb, (i + j) * melbw + melmin);
- /* Round them to DFT points if requested */
- if (mel_fb->round_filters)
- freqs[j] = ((int) (freqs[j] / fftfreq + 0.5)) * fftfreq;
- }
-
- for (j = 0; j < mel_fb->filt_width[i]; ++j) {
- float32 hz, loslope, hislope;
-
- hz = (mel_fb->spec_start[i] + j) * fftfreq;
- if (hz < freqs[0] || hz > freqs[2]) {
- E_FATAL
- ("Failed to create filterbank, frequency range does not match. "
- "Sample rate %f, FFT size %d, lowerf %f < freq %f > upperf %f.\n",
- mel_fb->sampling_rate, mel_fb->fft_size, freqs[0], hz,
- freqs[2]);
- }
- loslope = (hz - freqs[0]) / (freqs[1] - freqs[0]);
- hislope = (freqs[2] - hz) / (freqs[2] - freqs[1]);
- if (mel_fb->unit_area) {
- loslope *= 2 / (freqs[2] - freqs[0]);
- hislope *= 2 / (freqs[2] - freqs[0]);
- }
- if (loslope < hislope) {
-#ifdef FIXED_POINT
- mel_fb->filt_coeffs[n_coeffs] = fe_log(loslope);
-#else
- mel_fb->filt_coeffs[n_coeffs] = loslope;
-#endif
- }
- else {
-#ifdef FIXED_POINT
- mel_fb->filt_coeffs[n_coeffs] = fe_log(hislope);
-#else
- mel_fb->filt_coeffs[n_coeffs] = hislope;
-#endif
- }
- ++n_coeffs;
- }
- }
-
- return FE_SUCCESS;
-}
-
-int32
-fe_compute_melcosine(melfb_t * mel_fb)
-{
-
- float64 freqstep;
- int32 i, j;
-
- mel_fb->mel_cosine =
- (mfcc_t **) ckd_calloc_2d(mel_fb->num_cepstra,
- mel_fb->num_filters, sizeof(mfcc_t));
-
- freqstep = M_PI / mel_fb->num_filters;
- /* NOTE: The first row vector is actually unnecessary but we leave
- * it in to avoid confusion. */
- for (i = 0; i < mel_fb->num_cepstra; i++) {
- for (j = 0; j < mel_fb->num_filters; j++) {
- float64 cosine;
-
- cosine = cos(freqstep * i * (j + 0.5));
- mel_fb->mel_cosine[i][j] = FLOAT2COS(cosine);
- }
- }
-
- /* Also precompute normalization constants for unitary DCT. */
- mel_fb->sqrt_inv_n = FLOAT2COS(sqrt(1.0 / mel_fb->num_filters));
- mel_fb->sqrt_inv_2n = FLOAT2COS(sqrt(2.0 / mel_fb->num_filters));
-
- /* And liftering weights */
- if (mel_fb->lifter_val) {
- mel_fb->lifter =
- calloc(mel_fb->num_cepstra, sizeof(*mel_fb->lifter));
- for (i = 0; i < mel_fb->num_cepstra; ++i) {
- mel_fb->lifter[i] = FLOAT2MFCC(1 + mel_fb->lifter_val / 2
- * sin(i * M_PI /
- mel_fb->lifter_val));
- }
- }
-
- return (0);
-}
-
-static void
-fe_pre_emphasis(int16 const *in, frame_t * out, int32 len,
- float32 factor, int16 prior)
-{
- int i;
-
-#if defined(FIXED16)
- int16 fxd_alpha = (int16) (factor * 0x8000);
- int32 tmp1, tmp2;
-
- tmp1 = (int32) in[0] << 15;
- tmp2 = (int32) prior *fxd_alpha;
- out[0] = (int16) ((tmp1 - tmp2) >> 15);
- for (i = 1; i < len; ++i) {
- tmp1 = (int32) in[i] << 15;
- tmp2 = (int32) in[i - 1] * fxd_alpha;
- out[i] = (int16) ((tmp1 - tmp2) >> 15);
- }
-#elif defined(FIXED_POINT)
- fixed32 fxd_alpha = FLOAT2FIX(factor);
- out[0] = ((fixed32) in[0] << DEFAULT_RADIX) - (prior * fxd_alpha);
- for (i = 1; i < len; ++i)
- out[i] = ((fixed32) in[i] << DEFAULT_RADIX)
- - (fixed32) in[i - 1] * fxd_alpha;
-#else
- out[0] = (frame_t) in[0] - (frame_t) prior *factor;
- for (i = 1; i < len; i++)
- out[i] = (frame_t) in[i] - (frame_t) in[i - 1] * factor;
-#endif
-}
-
-static void
-fe_short_to_frame(int16 const *in, frame_t * out, int32 len)
-{
- int i;
-
-#if defined(FIXED16)
- memcpy(out, in, len * sizeof(*out));
-#elif defined(FIXED_POINT)
- for (i = 0; i < len; i++)
- out[i] = (int32) in[i] << DEFAULT_RADIX;
-#else /* FIXED_POINT */
- for (i = 0; i < len; i++)
- out[i] = (frame_t) in[i];
-#endif /* FIXED_POINT */
-}
-
-void
-fe_create_hamming(window_t * in, int32 in_len)
-{
- int i;
-
- /* Symmetric, so we only create the first half of it. */
- for (i = 0; i < in_len / 2; i++) {
- float64 hamm;
- hamm = (0.54 - 0.46 * cos(2 * M_PI * i /
- ((float64) in_len - 1.0)));
-#ifdef FIXED16
- in[i] = (int16) (hamm * 0x8000);
-#else
- in[i] = FLOAT2COS(hamm);
-#endif
- }
-}
-
-static void
-fe_hamming_window(frame_t * in, window_t * window, int32 in_len,
- int32 remove_dc)
-{
- int i;
-
- if (remove_dc) {
-#ifdef FIXED16
- int32 mean = 0; /* Use int32 to avoid possibility of overflow */
-#else
- frame_t mean = 0;
-#endif
-
- for (i = 0; i < in_len; i++)
- mean += in[i];
- mean /= in_len;
- for (i = 0; i < in_len; i++)
- in[i] -= (frame_t) mean;
- }
-
-#ifdef FIXED16
- for (i = 0; i < in_len / 2; i++) {
- int32 tmp1, tmp2;
-
- tmp1 = (int32) in[i] * window[i];
- tmp2 = (int32) in[in_len - 1 - i] * window[i];
- in[i] = (int16) (tmp1 >> 15);
- in[in_len - 1 - i] = (int16) (tmp2 >> 15);
- }
-#else
- for (i = 0; i < in_len / 2; i++) {
- in[i] = COSMUL(in[i], window[i]);
- in[in_len - 1 - i] = COSMUL(in[in_len - 1 - i], window[i]);
- }
-#endif
-}
-
-static int
-fe_spch_to_frame(fe_t * fe, int len)
-{
- /* Copy to the frame buffer. */
- if (fe->pre_emphasis_alpha != 0.0) {
- fe_pre_emphasis(fe->spch, fe->frame, len,
- fe->pre_emphasis_alpha, fe->prior);
- if (len >= fe->frame_shift)
- fe->prior = fe->spch[fe->frame_shift - 1];
- else
- fe->prior = fe->spch[len - 1];
- }
- else
- fe_short_to_frame(fe->spch, fe->frame, len);
-
- /* Zero pad up to FFT size. */
- memset(fe->frame + len, 0, (fe->fft_size - len) * sizeof(*fe->frame));
-
- /* Window. */
- fe_hamming_window(fe->frame, fe->hamming_window, fe->frame_size,
- fe->remove_dc);
-
- return len;
-}
-
-int
-fe_read_frame(fe_t * fe, int16 const *in, int32 len)
-{
- int i;
-
- if (len > fe->frame_size)
- len = fe->frame_size;
-
- /* Read it into the raw speech buffer. */
- memcpy(fe->spch, in, len * sizeof(*in));
- /* Swap and dither if necessary. */
- if (fe->swap)
- for (i = 0; i < len; ++i)
- SWAP_INT16(&fe->spch[i]);
- if (fe->dither)
- for (i = 0; i < len; ++i)
- fe->spch[i] += (int16) ((!(s3_rand_int31() % 4)) ? 1 : 0);
-
- return fe_spch_to_frame(fe, len);
-}
-
-int
-fe_shift_frame(fe_t * fe, int16 const *in, int32 len)
-{
- int offset, i;
-
- if (len > fe->frame_shift)
- len = fe->frame_shift;
- offset = fe->frame_size - fe->frame_shift;
-
- /* Shift data into the raw speech buffer. */
- memmove(fe->spch, fe->spch + fe->frame_shift,
- offset * sizeof(*fe->spch));
- memcpy(fe->spch + offset, in, len * sizeof(*fe->spch));
- /* Swap and dither if necessary. */
- if (fe->swap)
- for (i = 0; i < len; ++i)
- SWAP_INT16(&fe->spch[offset + i]);
- if (fe->dither)
- for (i = 0; i < len; ++i)
- fe->spch[offset + i]
- += (int16) ((!(s3_rand_int31() % 4)) ? 1 : 0);
-
- return fe_spch_to_frame(fe, offset + len);
-}
-
-/**
- * Create arrays of twiddle factors.
- */
-void
-fe_create_twiddle(fe_t * fe)
-{
- int i;
-
- for (i = 0; i < fe->fft_size / 4; ++i) {
- float64 a = 2 * M_PI * i / fe->fft_size;
-#ifdef FIXED16
- fe->ccc[i] = (int16) (cos(a) * 0x8000);
- fe->sss[i] = (int16) (sin(a) * 0x8000);
-#elif defined(FIXED_POINT)
- fe->ccc[i] = FLOAT2COS(cos(a));
- fe->sss[i] = FLOAT2COS(sin(a));
-#else
- fe->ccc[i] = cos(a);
- fe->sss[i] = sin(a);
-#endif
- }
-}
-
-
-/* Translated from the FORTRAN (obviously) from "Real-Valued Fast
- * Fourier Transform Algorithms" by Henrik V. Sorensen et al., IEEE
- * Transactions on Acoustics, Speech, and Signal Processing, vol. 35,
- * no.6. The 16-bit version does a version of "block floating
- * point" in order to avoid rounding errors.
- */
-#if defined(FIXED16)
-static int
-fe_fft_real(fe_t * fe)
-{
- int i, j, k, m, n, lz;
- frame_t *x, xt, max;
-
- x = fe->frame;
- m = fe->fft_order;
- n = fe->fft_size;
-
- /* Bit-reverse the input. */
- j = 0;
- for (i = 0; i < n - 1; ++i) {
- if (i < j) {
- xt = x[j];
- x[j] = x[i];
- x[i] = xt;
- }
- k = n / 2;
- while (k <= j) {
- j -= k;
- k /= 2;
- }
- j += k;
- }
- /* Determine how many bits of dynamic range are in the input. */
- max = 0;
- for (i = 0; i < n; ++i)
- if (abs(x[i]) > max)
- max = abs(x[i]);
- /* The FFT has a gain of M bits, so we need to attenuate the input
- * by M bits minus the number of leading zeroes in the input's
- * range in order to avoid overflows. */
- for (lz = 0; lz < m; ++lz)
- if (max & (1 << (15 - lz)))
- break;
-
- /* Basic butterflies (2-point FFT, real twiddle factors):
- * x[i] = x[i] + 1 * x[i+1]
- * x[i+1] = x[i] + -1 * x[i+1]
- */
- /* The quantization error introduced by attenuating the input at
- * any given stage of the FFT has a cascading effect, so we hold
- * off on it until it's absolutely necessary. */
- for (i = 0; i < n; i += 2) {
- int atten = (lz == 0);
- xt = x[i] >> atten;
- x[i] = xt + (x[i + 1] >> atten);
- x[i + 1] = xt - (x[i + 1] >> atten);
- }
-
- /* The rest of the butterflies, in stages from 1..m */
- for (k = 1; k < m; ++k) {
- int n1, n2, n4;
- /* Start attenuating once we hit the number of leading zeros. */
- int atten = (k >= lz);
-
- n4 = k - 1;
- n2 = k;
- n1 = k + 1;
- /* Stride over each (1 << (k+1)) points */
- for (i = 0; i < n; i += (1 << n1)) {
- /* Basic butterfly with real twiddle factors:
- * x[i] = x[i] + 1 * x[i + (1<<k)]
- * x[i + (1<<k)] = x[i] + -1 * x[i + (1<<k)]
- */
- xt = x[i] >> atten;
- x[i] = xt + (x[i + (1 << n2)] >> atten);
- x[i + (1 << n2)] = xt - (x[i + (1 << n2)] >> atten);
-
- /* The other ones with real twiddle factors:
- * x[i + (1<<k) + (1<<(k-1))]
- * = 0 * x[i + (1<<k-1)] + -1 * x[i + (1<<k) + (1<<k-1)]
- * x[i + (1<<(k-1))]
- * = 1 * x[i + (1<<k-1)] + 0 * x[i + (1<<k) + (1<<k-1)]
- */
- x[i + (1 << n2) + (1 << n4)] =
- -x[i + (1 << n2) + (1 << n4)] >> atten;
- x[i + (1 << n4)] = x[i + (1 << n4)] >> atten;
-
- /* Butterflies with complex twiddle factors.
- * There are (1<<k-1) of them.
- */
- for (j = 1; j < (1 << n4); ++j) {
- frame_t cc, ss, t1, t2;
- int i1, i2, i3, i4;
-
- i1 = i + j;
- i2 = i + (1 << n2) - j;
- i3 = i + (1 << n2) + j;
- i4 = i + (1 << n2) + (1 << n2) - j;
-
- /*
- * cc = real(W[j * n / (1<<(k+1))])
- * ss = imag(W[j * n / (1<<(k+1))])
- */
- cc = fe->ccc[j << (m - n1)];
- ss = fe->sss[j << (m - n1)];
-
- /* There are some symmetry properties which allow us
- * to get away with only four multiplications here. */
- {
- int32 tmp1, tmp2;
- tmp1 = (int32) x[i3] * cc + (int32) x[i4] * ss;
- tmp2 = (int32) x[i3] * ss - (int32) x[i4] * cc;
- t1 = (int16) (tmp1 >> 15) >> atten;
- t2 = (int16) (tmp2 >> 15) >> atten;
- }
-
- x[i4] = (x[i2] >> atten) - t2;
- x[i3] = (-x[i2] >> atten) - t2;
- x[i2] = (x[i1] >> atten) - t1;
- x[i1] = (x[i1] >> atten) + t1;
- }
- }
- }
-
- /* Return the residual scaling factor. */
- return lz;
-}
-#else /* !FIXED16 */
-static int
-fe_fft_real(fe_t * fe)
-{
- int i, j, k, m, n;
- frame_t *x, xt;
-
- x = fe->frame;
- m = fe->fft_order;
- n = fe->fft_size;
-
- /* Bit-reverse the input. */
- j = 0;
- for (i = 0; i < n - 1; ++i) {
- if (i < j) {
- xt = x[j];
- x[j] = x[i];
- x[i] = xt;
- }
- k = n / 2;
- while (k <= j) {
- j -= k;
- k /= 2;
- }
- j += k;
- }
-
- /* Basic butterflies (2-point FFT, real twiddle factors):
- * x[i] = x[i] + 1 * x[i+1]
- * x[i+1] = x[i] + -1 * x[i+1]
- */
- for (i = 0; i < n; i += 2) {
- xt = x[i];
- x[i] = (xt + x[i + 1]);
- x[i + 1] = (xt - x[i + 1]);
- }
-
- /* The rest of the butterflies, in stages from 1..m */
- for (k = 1; k < m; ++k) {
- int n1, n2, n4;
-
- n4 = k - 1;
- n2 = k;
- n1 = k + 1;
- /* Stride over each (1 << (k+1)) points */
- for (i = 0; i < n; i += (1 << n1)) {
- /* Basic butterfly with real twiddle factors:
- * x[i] = x[i] + 1 * x[i + (1<<k)]
- * x[i + (1<<k)] = x[i] + -1 * x[i + (1<<k)]
- */
- xt = x[i];
- x[i] = (xt + x[i + (1 << n2)]);
- x[i + (1 << n2)] = (xt - x[i + (1 << n2)]);
-
- /* The other ones with real twiddle factors:
- * x[i + (1<<k) + (1<<(k-1))]
- * = 0 * x[i + (1<<k-1)] + -1 * x[i + (1<<k) + (1<<k-1)]
- * x[i + (1<<(k-1))]
- * = 1 * x[i + (1<<k-1)] + 0 * x[i + (1<<k) + (1<<k-1)]
- */
- x[i + (1 << n2) + (1 << n4)] = -x[i + (1 << n2) + (1 << n4)];
- x[i + (1 << n4)] = x[i + (1 << n4)];
-
- /* Butterflies with complex twiddle factors.
- * There are (1<<k-1) of them.
- */
- for (j = 1; j < (1 << n4); ++j) {
- frame_t cc, ss, t1, t2;
- int i1, i2, i3, i4;
-
- i1 = i + j;
- i2 = i + (1 << n2) - j;
- i3 = i + (1 << n2) + j;
- i4 = i + (1 << n2) + (1 << n2) - j;
-
- /*
- * cc = real(W[j * n / (1<<(k+1))])
- * ss = imag(W[j * n / (1<<(k+1))])
- */
- cc = fe->ccc[j << (m - n1)];
- ss = fe->sss[j << (m - n1)];
-
- /* There are some symmetry properties which allow us
- * to get away with only four multiplications here. */
- t1 = COSMUL(x[i3], cc) + COSMUL(x[i4], ss);
- t2 = COSMUL(x[i3], ss) - COSMUL(x[i4], cc);
-
- x[i4] = (x[i2] - t2);
- x[i3] = (-x[i2] - t2);
- x[i2] = (x[i1] - t1);
- x[i1] = (x[i1] + t1);
- }
- }
- }
-
- /* This isn't used, but return it for completeness. */
- return m;
-}
-#endif /* !FIXED16 */
-
-static void
-fe_spec_magnitude(fe_t * fe)
-{
- frame_t *fft;
- powspec_t *spec;
- int32 j, scale, fftsize;
-
- /* Do FFT and get the scaling factor back (only actually used in
- * fixed-point). Note the scaling factor is expressed in bits. */
- scale = fe_fft_real(fe);
-
- /* Convenience pointers to make things less awkward below. */
- fft = fe->frame;
- spec = fe->spec;
- fftsize = fe->fft_size;
-
- /* We need to scale things up the rest of the way to N. */
- scale = fe->fft_order - scale;
-
- /* The first point (DC coefficient) has no imaginary part */
- {
-#ifdef FIXED16
- spec[0] = fixlog(abs(fft[0]) << scale) * 2;
-#elif defined(FIXED_POINT)
- spec[0] = FIXLN(abs(fft[0]) << scale) * 2;
-#else
- spec[0] = fft[0] * fft[0];
-#endif
- }
-
- for (j = 1; j <= fftsize / 2; j++) {
-#ifdef FIXED16
- int32 rr = fixlog(abs(fft[j]) << scale) * 2;
- int32 ii = fixlog(abs(fft[fftsize - j]) << scale) * 2;
- spec[j] = fe_log_add(rr, ii);
-#elif defined(FIXED_POINT)
- int32 rr = FIXLN(abs(fft[j]) << scale) * 2;
- int32 ii = FIXLN(abs(fft[fftsize - j]) << scale) * 2;
- spec[j] = fe_log_add(rr, ii);
-#else
- spec[j] = fft[j] * fft[j] + fft[fftsize - j] * fft[fftsize - j];
-#endif
- }
-}
-
-static void
-fe_mel_spec(fe_t * fe)
-{
- int whichfilt;
- powspec_t *spec, *mfspec;
-
- /* Convenience poitners. */
- spec = fe->spec;
- mfspec = fe->mfspec;
- for (whichfilt = 0; whichfilt < fe->mel_fb->num_filters; whichfilt++) {
- int spec_start, filt_start, i;
-
- spec_start = fe->mel_fb->spec_start[whichfilt];
- filt_start = fe->mel_fb->filt_start[whichfilt];
-
-#ifdef FIXED_POINT
- mfspec[whichfilt] =
- spec[spec_start] + fe->mel_fb->filt_coeffs[filt_start];
- for (i = 1; i < fe->mel_fb->filt_width[whichfilt]; i++) {
- mfspec[whichfilt] = fe_log_add(mfspec[whichfilt],
- spec[spec_start + i] +
- fe->mel_fb->
- filt_coeffs[filt_start + i]);
- }
-#else /* !FIXED_POINT */
- mfspec[whichfilt] = 0;
- for (i = 0; i < fe->mel_fb->filt_width[whichfilt]; i++)
- mfspec[whichfilt] +=
- spec[spec_start + i] * fe->mel_fb->filt_coeffs[filt_start +
- i];
-#endif /* !FIXED_POINT */
- }
-
-}
-
-#define LOG_FLOOR 1e-4
-
-static void
-fe_mel_cep(fe_t * fe, mfcc_t * mfcep)
-{
- int32 i;
- powspec_t *mfspec;
-
- /* Convenience pointer. */
- mfspec = fe->mfspec;
-
- for (i = 0; i < fe->mel_fb->num_filters; ++i) {
-#ifndef FIXED_POINT /* It's already in log domain for fixed point */
- mfspec[i] = log(mfspec[i] + LOG_FLOOR);
-#endif /* !FIXED_POINT */
- }
-
- /* If we are doing LOG_SPEC, then do nothing. */
- if (fe->log_spec == RAW_LOG_SPEC) {
- for (i = 0; i < fe->feature_dimension; i++) {
- mfcep[i] = (mfcc_t) mfspec[i];
- }
- }
- /* For smoothed spectrum, do DCT-II followed by (its inverse) DCT-III */
- else if (fe->log_spec == SMOOTH_LOG_SPEC) {
- /* FIXME: This is probably broken for fixed-point. */
- fe_dct2(fe, mfspec, mfcep, 0);
- fe_dct3(fe, mfcep, mfspec);
- for (i = 0; i < fe->feature_dimension; i++) {
- mfcep[i] = (mfcc_t) mfspec[i];
- }
- }
- else if (fe->transform == DCT_II)
- fe_dct2(fe, mfspec, mfcep, FALSE);
- else if (fe->transform == DCT_HTK)
- fe_dct2(fe, mfspec, mfcep, TRUE);
- else
- fe_spec2cep(fe, mfspec, mfcep);
-
- return;
-}
-
-void
-fe_spec2cep(fe_t * fe, const powspec_t * mflogspec, mfcc_t * mfcep)
-{
- int32 i, j, beta;
-
- /* Compute C0 separately (its basis vector is 1) to avoid
- * costly multiplications. */
- mfcep[0] = mflogspec[0] / 2; /* beta = 0.5 */
- for (j = 1; j < fe->mel_fb->num_filters; j++)
- mfcep[0] += mflogspec[j]; /* beta = 1.0 */
- mfcep[0] /= (frame_t) fe->mel_fb->num_filters;
-
- for (i = 1; i < fe->num_cepstra; ++i) {
- mfcep[i] = 0;
- for (j = 0; j < fe->mel_fb->num_filters; j++) {
- if (j == 0)
- beta = 1; /* 0.5 */
- else
- beta = 2; /* 1.0 */
- mfcep[i] += COSMUL(mflogspec[j],
- fe->mel_fb->mel_cosine[i][j]) * beta;
- }
- /* Note that this actually normalizes by num_filters, like the
- * original Sphinx front-end, due to the doubled 'beta' factor
- * above. */
- mfcep[i] /= (frame_t) fe->mel_fb->num_filters * 2;
- }
-}
-
-void
-fe_dct2(fe_t * fe, const powspec_t * mflogspec, mfcc_t * mfcep, int htk)
-{
- int32 i, j;
-
- /* Compute C0 separately (its basis vector is 1) to avoid
- * costly multiplications. */
- mfcep[0] = mflogspec[0];
- for (j = 1; j < fe->mel_fb->num_filters; j++)
- mfcep[0] += mflogspec[j];
- if (htk)
- mfcep[0] = COSMUL(mfcep[0], fe->mel_fb->sqrt_inv_2n);
- else /* sqrt(1/N) = sqrt(2/N) * 1/sqrt(2) */
- mfcep[0] = COSMUL(mfcep[0], fe->mel_fb->sqrt_inv_n);
-
- for (i = 1; i < fe->num_cepstra; ++i) {
- mfcep[i] = 0;
- for (j = 0; j < fe->mel_fb->num_filters; j++) {
- mfcep[i] += COSMUL(mflogspec[j], fe->mel_fb->mel_cosine[i][j]);
- }
- mfcep[i] = COSMUL(mfcep[i], fe->mel_fb->sqrt_inv_2n);
- }
-}
-
-void
-fe_lifter(fe_t * fe, mfcc_t * mfcep)
-{
- int32 i;
-
- if (fe->mel_fb->lifter_val == 0)
- return;
-
- for (i = 0; i < fe->num_cepstra; ++i) {
- mfcep[i] = MFCCMUL(mfcep[i], fe->mel_fb->lifter[i]);
- }
-}
-
-void
-fe_dct3(fe_t * fe, const mfcc_t * mfcep, powspec_t * mflogspec)
-{
- int32 i, j;
-
- for (i = 0; i < fe->mel_fb->num_filters; ++i) {
- mflogspec[i] = COSMUL(mfcep[0], SQRT_HALF);
- for (j = 1; j < fe->num_cepstra; j++) {
- mflogspec[i] += COSMUL(mfcep[j], fe->mel_fb->mel_cosine[j][i]);
- }
- mflogspec[i] = COSMUL(mflogspec[i], fe->mel_fb->sqrt_inv_2n);
- }
-}
-
-void
-fe_write_frame(fe_t * fe, mfcc_t * fea)
-{
- int32 is_speech;
-
- fe_spec_magnitude(fe);
- fe_mel_spec(fe);
- fe_track_snr(fe, &is_speech);
- fe_mel_cep(fe, fea);
- fe_lifter(fe, fea);
- fe_vad_hangover(fe, fea, is_speech);
-}
-
-
-void *
-fe_create_2d(int32 d1, int32 d2, int32 elem_size)
-{
- return (void *) ckd_calloc_2d(d1, d2, elem_size);
-}
-
-void
-fe_free_2d(void *arr)
-{
- ckd_free_2d((void **) arr);
-}