diff options
Diffstat (limited to 'media/libvpx/vp9/encoder/vp9_ratectrl.c')
-rw-r--r-- | media/libvpx/vp9/encoder/vp9_ratectrl.c | 1758 |
1 files changed, 1758 insertions, 0 deletions
diff --git a/media/libvpx/vp9/encoder/vp9_ratectrl.c b/media/libvpx/vp9/encoder/vp9_ratectrl.c new file mode 100644 index 000000000..32682fe74 --- /dev/null +++ b/media/libvpx/vp9/encoder/vp9_ratectrl.c @@ -0,0 +1,1758 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include <assert.h> +#include <limits.h> +#include <math.h> +#include <stdio.h> +#include <stdlib.h> +#include <string.h> + +#include "vpx_mem/vpx_mem.h" +#include "vpx_ports/mem.h" + +#include "vp9/common/vp9_alloccommon.h" +#include "vp9/encoder/vp9_aq_cyclicrefresh.h" +#include "vp9/common/vp9_common.h" +#include "vp9/common/vp9_entropymode.h" +#include "vp9/common/vp9_quant_common.h" +#include "vp9/common/vp9_seg_common.h" +#include "vp9/common/vp9_systemdependent.h" + +#include "vp9/encoder/vp9_encodemv.h" +#include "vp9/encoder/vp9_ratectrl.h" + +// Max rate target for 1080P and below encodes under normal circumstances +// (1920 * 1080 / (16 * 16)) * MAX_MB_RATE bits per MB +#define MAX_MB_RATE 250 +#define MAXRATE_1080P 2025000 + +#define DEFAULT_KF_BOOST 2000 +#define DEFAULT_GF_BOOST 2000 + +#define LIMIT_QRANGE_FOR_ALTREF_AND_KEY 1 + +#define MIN_BPB_FACTOR 0.005 +#define MAX_BPB_FACTOR 50 + +#define FRAME_OVERHEAD_BITS 200 + +#if CONFIG_VP9_HIGHBITDEPTH +#define ASSIGN_MINQ_TABLE(bit_depth, name) \ + do { \ + switch (bit_depth) { \ + case VPX_BITS_8: \ + name = name##_8; \ + break; \ + case VPX_BITS_10: \ + name = name##_10; \ + break; \ + case VPX_BITS_12: \ + name = name##_12; \ + break; \ + default: \ + assert(0 && "bit_depth should be VPX_BITS_8, VPX_BITS_10" \ + " or VPX_BITS_12"); \ + name = NULL; \ + } \ + } while (0) +#else +#define ASSIGN_MINQ_TABLE(bit_depth, name) \ + do { \ + (void) bit_depth; \ + name = name##_8; \ + } while (0) +#endif + +// Tables relating active max Q to active min Q +static int kf_low_motion_minq_8[QINDEX_RANGE]; +static int kf_high_motion_minq_8[QINDEX_RANGE]; +static int arfgf_low_motion_minq_8[QINDEX_RANGE]; +static int arfgf_high_motion_minq_8[QINDEX_RANGE]; +static int inter_minq_8[QINDEX_RANGE]; +static int rtc_minq_8[QINDEX_RANGE]; + +#if CONFIG_VP9_HIGHBITDEPTH +static int kf_low_motion_minq_10[QINDEX_RANGE]; +static int kf_high_motion_minq_10[QINDEX_RANGE]; +static int arfgf_low_motion_minq_10[QINDEX_RANGE]; +static int arfgf_high_motion_minq_10[QINDEX_RANGE]; +static int inter_minq_10[QINDEX_RANGE]; +static int rtc_minq_10[QINDEX_RANGE]; +static int kf_low_motion_minq_12[QINDEX_RANGE]; +static int kf_high_motion_minq_12[QINDEX_RANGE]; +static int arfgf_low_motion_minq_12[QINDEX_RANGE]; +static int arfgf_high_motion_minq_12[QINDEX_RANGE]; +static int inter_minq_12[QINDEX_RANGE]; +static int rtc_minq_12[QINDEX_RANGE]; +#endif + +static int gf_high = 2000; +static int gf_low = 400; +static int kf_high = 5000; +static int kf_low = 400; + +// Functions to compute the active minq lookup table entries based on a +// formulaic approach to facilitate easier adjustment of the Q tables. +// The formulae were derived from computing a 3rd order polynomial best +// fit to the original data (after plotting real maxq vs minq (not q index)) +static int get_minq_index(double maxq, double x3, double x2, double x1, + vpx_bit_depth_t bit_depth) { + int i; + const double minqtarget = MIN(((x3 * maxq + x2) * maxq + x1) * maxq, + maxq); + + // Special case handling to deal with the step from q2.0 + // down to lossless mode represented by q 1.0. + if (minqtarget <= 2.0) + return 0; + + for (i = 0; i < QINDEX_RANGE; i++) { + if (minqtarget <= vp9_convert_qindex_to_q(i, bit_depth)) + return i; + } + + return QINDEX_RANGE - 1; +} + +static void init_minq_luts(int *kf_low_m, int *kf_high_m, + int *arfgf_low, int *arfgf_high, + int *inter, int *rtc, vpx_bit_depth_t bit_depth) { + int i; + for (i = 0; i < QINDEX_RANGE; i++) { + const double maxq = vp9_convert_qindex_to_q(i, bit_depth); + kf_low_m[i] = get_minq_index(maxq, 0.000001, -0.0004, 0.150, bit_depth); + kf_high_m[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.55, bit_depth); + arfgf_low[i] = get_minq_index(maxq, 0.0000015, -0.0009, 0.30, bit_depth); + arfgf_high[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.55, bit_depth); + inter[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.90, bit_depth); + rtc[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.70, bit_depth); + } +} + +void vp9_rc_init_minq_luts(void) { + init_minq_luts(kf_low_motion_minq_8, kf_high_motion_minq_8, + arfgf_low_motion_minq_8, arfgf_high_motion_minq_8, + inter_minq_8, rtc_minq_8, VPX_BITS_8); +#if CONFIG_VP9_HIGHBITDEPTH + init_minq_luts(kf_low_motion_minq_10, kf_high_motion_minq_10, + arfgf_low_motion_minq_10, arfgf_high_motion_minq_10, + inter_minq_10, rtc_minq_10, VPX_BITS_10); + init_minq_luts(kf_low_motion_minq_12, kf_high_motion_minq_12, + arfgf_low_motion_minq_12, arfgf_high_motion_minq_12, + inter_minq_12, rtc_minq_12, VPX_BITS_12); +#endif +} + +// These functions use formulaic calculations to make playing with the +// quantizer tables easier. If necessary they can be replaced by lookup +// tables if and when things settle down in the experimental bitstream +double vp9_convert_qindex_to_q(int qindex, vpx_bit_depth_t bit_depth) { + // Convert the index to a real Q value (scaled down to match old Q values) +#if CONFIG_VP9_HIGHBITDEPTH + switch (bit_depth) { + case VPX_BITS_8: + return vp9_ac_quant(qindex, 0, bit_depth) / 4.0; + case VPX_BITS_10: + return vp9_ac_quant(qindex, 0, bit_depth) / 16.0; + case VPX_BITS_12: + return vp9_ac_quant(qindex, 0, bit_depth) / 64.0; + default: + assert(0 && "bit_depth should be VPX_BITS_8, VPX_BITS_10 or VPX_BITS_12"); + return -1.0; + } +#else + return vp9_ac_quant(qindex, 0, bit_depth) / 4.0; +#endif +} + +int vp9_rc_bits_per_mb(FRAME_TYPE frame_type, int qindex, + double correction_factor, + vpx_bit_depth_t bit_depth) { + const double q = vp9_convert_qindex_to_q(qindex, bit_depth); + int enumerator = frame_type == KEY_FRAME ? 2700000 : 1800000; + + assert(correction_factor <= MAX_BPB_FACTOR && + correction_factor >= MIN_BPB_FACTOR); + + // q based adjustment to baseline enumerator + enumerator += (int)(enumerator * q) >> 12; + return (int)(enumerator * correction_factor / q); +} + +int vp9_estimate_bits_at_q(FRAME_TYPE frame_type, int q, int mbs, + double correction_factor, + vpx_bit_depth_t bit_depth) { + const int bpm = (int)(vp9_rc_bits_per_mb(frame_type, q, correction_factor, + bit_depth)); + return MAX(FRAME_OVERHEAD_BITS, + (int)((uint64_t)bpm * mbs) >> BPER_MB_NORMBITS); +} + +int vp9_rc_clamp_pframe_target_size(const VP9_COMP *const cpi, int target) { + const RATE_CONTROL *rc = &cpi->rc; + const VP9EncoderConfig *oxcf = &cpi->oxcf; + const int min_frame_target = MAX(rc->min_frame_bandwidth, + rc->avg_frame_bandwidth >> 5); + if (target < min_frame_target) + target = min_frame_target; + if (cpi->refresh_golden_frame && rc->is_src_frame_alt_ref) { + // If there is an active ARF at this location use the minimum + // bits on this frame even if it is a constructed arf. + // The active maximum quantizer insures that an appropriate + // number of bits will be spent if needed for constructed ARFs. + target = min_frame_target; + } + // Clip the frame target to the maximum allowed value. + if (target > rc->max_frame_bandwidth) + target = rc->max_frame_bandwidth; + if (oxcf->rc_max_inter_bitrate_pct) { + const int max_rate = rc->avg_frame_bandwidth * + oxcf->rc_max_inter_bitrate_pct / 100; + target = MIN(target, max_rate); + } + return target; +} + +int vp9_rc_clamp_iframe_target_size(const VP9_COMP *const cpi, int target) { + const RATE_CONTROL *rc = &cpi->rc; + const VP9EncoderConfig *oxcf = &cpi->oxcf; + if (oxcf->rc_max_intra_bitrate_pct) { + const int max_rate = rc->avg_frame_bandwidth * + oxcf->rc_max_intra_bitrate_pct / 100; + target = MIN(target, max_rate); + } + if (target > rc->max_frame_bandwidth) + target = rc->max_frame_bandwidth; + return target; +} + +// Update the buffer level for higher temporal layers, given the encoded current +// temporal layer. +static void update_layer_buffer_level(SVC *svc, int encoded_frame_size) { + int i = 0; + int current_temporal_layer = svc->temporal_layer_id; + for (i = current_temporal_layer + 1; + i < svc->number_temporal_layers; ++i) { + const int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, i, + svc->number_temporal_layers); + LAYER_CONTEXT *lc = &svc->layer_context[layer]; + RATE_CONTROL *lrc = &lc->rc; + int bits_off_for_this_layer = (int)(lc->target_bandwidth / lc->framerate - + encoded_frame_size); + lrc->bits_off_target += bits_off_for_this_layer; + + // Clip buffer level to maximum buffer size for the layer. + lrc->bits_off_target = MIN(lrc->bits_off_target, lrc->maximum_buffer_size); + lrc->buffer_level = lrc->bits_off_target; + } +} + +// Update the buffer level: leaky bucket model. +static void update_buffer_level(VP9_COMP *cpi, int encoded_frame_size) { + const VP9_COMMON *const cm = &cpi->common; + RATE_CONTROL *const rc = &cpi->rc; + + // Non-viewable frames are a special case and are treated as pure overhead. + if (!cm->show_frame) { + rc->bits_off_target -= encoded_frame_size; + } else { + rc->bits_off_target += rc->avg_frame_bandwidth - encoded_frame_size; + } + + // Clip the buffer level to the maximum specified buffer size. + rc->bits_off_target = MIN(rc->bits_off_target, rc->maximum_buffer_size); + rc->buffer_level = rc->bits_off_target; + + if (is_one_pass_cbr_svc(cpi)) { + update_layer_buffer_level(&cpi->svc, encoded_frame_size); + } +} + +void vp9_rc_init(const VP9EncoderConfig *oxcf, int pass, RATE_CONTROL *rc) { + int i; + + if (pass == 0 && oxcf->rc_mode == VPX_CBR) { + rc->avg_frame_qindex[KEY_FRAME] = oxcf->worst_allowed_q; + rc->avg_frame_qindex[INTER_FRAME] = oxcf->worst_allowed_q; + } else { + rc->avg_frame_qindex[KEY_FRAME] = (oxcf->worst_allowed_q + + oxcf->best_allowed_q) / 2; + rc->avg_frame_qindex[INTER_FRAME] = (oxcf->worst_allowed_q + + oxcf->best_allowed_q) / 2; + } + + rc->last_q[KEY_FRAME] = oxcf->best_allowed_q; + rc->last_q[INTER_FRAME] = oxcf->worst_allowed_q; + + rc->buffer_level = rc->starting_buffer_level; + rc->bits_off_target = rc->starting_buffer_level; + + rc->rolling_target_bits = rc->avg_frame_bandwidth; + rc->rolling_actual_bits = rc->avg_frame_bandwidth; + rc->long_rolling_target_bits = rc->avg_frame_bandwidth; + rc->long_rolling_actual_bits = rc->avg_frame_bandwidth; + + rc->total_actual_bits = 0; + rc->total_target_bits = 0; + rc->total_target_vs_actual = 0; + + rc->baseline_gf_interval = DEFAULT_GF_INTERVAL; + rc->frames_since_key = 8; // Sensible default for first frame. + rc->this_key_frame_forced = 0; + rc->next_key_frame_forced = 0; + rc->source_alt_ref_pending = 0; + rc->source_alt_ref_active = 0; + + rc->frames_till_gf_update_due = 0; + rc->ni_av_qi = oxcf->worst_allowed_q; + rc->ni_tot_qi = 0; + rc->ni_frames = 0; + + rc->tot_q = 0.0; + rc->avg_q = vp9_convert_qindex_to_q(oxcf->worst_allowed_q, oxcf->bit_depth); + + for (i = 0; i < RATE_FACTOR_LEVELS; ++i) { + rc->rate_correction_factors[i] = 1.0; + } +} + +int vp9_rc_drop_frame(VP9_COMP *cpi) { + const VP9EncoderConfig *oxcf = &cpi->oxcf; + RATE_CONTROL *const rc = &cpi->rc; + + if (!oxcf->drop_frames_water_mark) { + return 0; + } else { + if (rc->buffer_level < 0) { + // Always drop if buffer is below 0. + return 1; + } else { + // If buffer is below drop_mark, for now just drop every other frame + // (starting with the next frame) until it increases back over drop_mark. + int drop_mark = (int)(oxcf->drop_frames_water_mark * + rc->optimal_buffer_level / 100); + if ((rc->buffer_level > drop_mark) && + (rc->decimation_factor > 0)) { + --rc->decimation_factor; + } else if (rc->buffer_level <= drop_mark && + rc->decimation_factor == 0) { + rc->decimation_factor = 1; + } + if (rc->decimation_factor > 0) { + if (rc->decimation_count > 0) { + --rc->decimation_count; + return 1; + } else { + rc->decimation_count = rc->decimation_factor; + return 0; + } + } else { + rc->decimation_count = 0; + return 0; + } + } + } +} + +static double get_rate_correction_factor(const VP9_COMP *cpi) { + const RATE_CONTROL *const rc = &cpi->rc; + double rcf; + + if (cpi->common.frame_type == KEY_FRAME) { + rcf = rc->rate_correction_factors[KF_STD]; + } else if (cpi->oxcf.pass == 2) { + RATE_FACTOR_LEVEL rf_lvl = + cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index]; + rcf = rc->rate_correction_factors[rf_lvl]; + } else { + if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) && + !rc->is_src_frame_alt_ref && !cpi->use_svc && + (cpi->oxcf.rc_mode != VPX_CBR || cpi->oxcf.gf_cbr_boost_pct > 20)) + rcf = rc->rate_correction_factors[GF_ARF_STD]; + else + rcf = rc->rate_correction_factors[INTER_NORMAL]; + } + rcf *= rcf_mult[rc->frame_size_selector]; + return fclamp(rcf, MIN_BPB_FACTOR, MAX_BPB_FACTOR); +} + +static void set_rate_correction_factor(VP9_COMP *cpi, double factor) { + RATE_CONTROL *const rc = &cpi->rc; + + // Normalize RCF to account for the size-dependent scaling factor. + factor /= rcf_mult[cpi->rc.frame_size_selector]; + + factor = fclamp(factor, MIN_BPB_FACTOR, MAX_BPB_FACTOR); + + if (cpi->common.frame_type == KEY_FRAME) { + rc->rate_correction_factors[KF_STD] = factor; + } else if (cpi->oxcf.pass == 2) { + RATE_FACTOR_LEVEL rf_lvl = + cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index]; + rc->rate_correction_factors[rf_lvl] = factor; + } else { + if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) && + !rc->is_src_frame_alt_ref && !cpi->use_svc && + (cpi->oxcf.rc_mode != VPX_CBR || cpi->oxcf.gf_cbr_boost_pct > 20)) + rc->rate_correction_factors[GF_ARF_STD] = factor; + else + rc->rate_correction_factors[INTER_NORMAL] = factor; + } +} + +void vp9_rc_update_rate_correction_factors(VP9_COMP *cpi) { + const VP9_COMMON *const cm = &cpi->common; + int correction_factor = 100; + double rate_correction_factor = get_rate_correction_factor(cpi); + double adjustment_limit; + + int projected_size_based_on_q = 0; + + // Do not update the rate factors for arf overlay frames. + if (cpi->rc.is_src_frame_alt_ref) + return; + + // Clear down mmx registers to allow floating point in what follows + vp9_clear_system_state(); + + // Work out how big we would have expected the frame to be at this Q given + // the current correction factor. + // Stay in double to avoid int overflow when values are large + if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cpi->common.seg.enabled) { + projected_size_based_on_q = + vp9_cyclic_refresh_estimate_bits_at_q(cpi, rate_correction_factor); + } else { + projected_size_based_on_q = vp9_estimate_bits_at_q(cpi->common.frame_type, + cm->base_qindex, + cm->MBs, + rate_correction_factor, + cm->bit_depth); + } + // Work out a size correction factor. + if (projected_size_based_on_q > FRAME_OVERHEAD_BITS) + correction_factor = (int)((100 * (int64_t)cpi->rc.projected_frame_size) / + projected_size_based_on_q); + + // More heavily damped adjustment used if we have been oscillating either side + // of target. + adjustment_limit = 0.25 + + 0.5 * MIN(1, fabs(log10(0.01 * correction_factor))); + + cpi->rc.q_2_frame = cpi->rc.q_1_frame; + cpi->rc.q_1_frame = cm->base_qindex; + cpi->rc.rc_2_frame = cpi->rc.rc_1_frame; + if (correction_factor > 110) + cpi->rc.rc_1_frame = -1; + else if (correction_factor < 90) + cpi->rc.rc_1_frame = 1; + else + cpi->rc.rc_1_frame = 0; + + if (correction_factor > 102) { + // We are not already at the worst allowable quality + correction_factor = (int)(100 + ((correction_factor - 100) * + adjustment_limit)); + rate_correction_factor = (rate_correction_factor * correction_factor) / 100; + // Keep rate_correction_factor within limits + if (rate_correction_factor > MAX_BPB_FACTOR) + rate_correction_factor = MAX_BPB_FACTOR; + } else if (correction_factor < 99) { + // We are not already at the best allowable quality + correction_factor = (int)(100 - ((100 - correction_factor) * + adjustment_limit)); + rate_correction_factor = (rate_correction_factor * correction_factor) / 100; + + // Keep rate_correction_factor within limits + if (rate_correction_factor < MIN_BPB_FACTOR) + rate_correction_factor = MIN_BPB_FACTOR; + } + + set_rate_correction_factor(cpi, rate_correction_factor); +} + + +int vp9_rc_regulate_q(const VP9_COMP *cpi, int target_bits_per_frame, + int active_best_quality, int active_worst_quality) { + const VP9_COMMON *const cm = &cpi->common; + int q = active_worst_quality; + int last_error = INT_MAX; + int i, target_bits_per_mb, bits_per_mb_at_this_q; + const double correction_factor = get_rate_correction_factor(cpi); + + // Calculate required scaling factor based on target frame size and size of + // frame produced using previous Q. + target_bits_per_mb = + ((uint64_t)target_bits_per_frame << BPER_MB_NORMBITS) / cm->MBs; + + i = active_best_quality; + + do { + if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && + cm->seg.enabled && + cpi->svc.temporal_layer_id == 0 && + cpi->svc.spatial_layer_id == 0) { + bits_per_mb_at_this_q = + (int)vp9_cyclic_refresh_rc_bits_per_mb(cpi, i, correction_factor); + } else { + bits_per_mb_at_this_q = (int)vp9_rc_bits_per_mb(cm->frame_type, i, + correction_factor, + cm->bit_depth); + } + + if (bits_per_mb_at_this_q <= target_bits_per_mb) { + if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error) + q = i; + else + q = i - 1; + + break; + } else { + last_error = bits_per_mb_at_this_q - target_bits_per_mb; + } + } while (++i <= active_worst_quality); + + // In CBR mode, this makes sure q is between oscillating Qs to prevent + // resonance. + if (cpi->oxcf.rc_mode == VPX_CBR && + (cpi->rc.rc_1_frame * cpi->rc.rc_2_frame == -1) && + cpi->rc.q_1_frame != cpi->rc.q_2_frame) { + q = clamp(q, MIN(cpi->rc.q_1_frame, cpi->rc.q_2_frame), + MAX(cpi->rc.q_1_frame, cpi->rc.q_2_frame)); + } + return q; +} + +static int get_active_quality(int q, int gfu_boost, int low, int high, + int *low_motion_minq, int *high_motion_minq) { + if (gfu_boost > high) { + return low_motion_minq[q]; + } else if (gfu_boost < low) { + return high_motion_minq[q]; + } else { + const int gap = high - low; + const int offset = high - gfu_boost; + const int qdiff = high_motion_minq[q] - low_motion_minq[q]; + const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap; + return low_motion_minq[q] + adjustment; + } +} + +static int get_kf_active_quality(const RATE_CONTROL *const rc, int q, + vpx_bit_depth_t bit_depth) { + int *kf_low_motion_minq; + int *kf_high_motion_minq; + ASSIGN_MINQ_TABLE(bit_depth, kf_low_motion_minq); + ASSIGN_MINQ_TABLE(bit_depth, kf_high_motion_minq); + return get_active_quality(q, rc->kf_boost, kf_low, kf_high, + kf_low_motion_minq, kf_high_motion_minq); +} + +static int get_gf_active_quality(const RATE_CONTROL *const rc, int q, + vpx_bit_depth_t bit_depth) { + int *arfgf_low_motion_minq; + int *arfgf_high_motion_minq; + ASSIGN_MINQ_TABLE(bit_depth, arfgf_low_motion_minq); + ASSIGN_MINQ_TABLE(bit_depth, arfgf_high_motion_minq); + return get_active_quality(q, rc->gfu_boost, gf_low, gf_high, + arfgf_low_motion_minq, arfgf_high_motion_minq); +} + +static int calc_active_worst_quality_one_pass_vbr(const VP9_COMP *cpi) { + const RATE_CONTROL *const rc = &cpi->rc; + const unsigned int curr_frame = cpi->common.current_video_frame; + int active_worst_quality; + + if (cpi->common.frame_type == KEY_FRAME) { + active_worst_quality = curr_frame == 0 ? rc->worst_quality + : rc->last_q[KEY_FRAME] * 2; + } else { + if (!rc->is_src_frame_alt_ref && + (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) { + active_worst_quality = curr_frame == 1 ? rc->last_q[KEY_FRAME] * 5 / 4 + : rc->last_q[INTER_FRAME]; + } else { + active_worst_quality = curr_frame == 1 ? rc->last_q[KEY_FRAME] * 2 + : rc->last_q[INTER_FRAME] * 2; + } + } + return MIN(active_worst_quality, rc->worst_quality); +} + +// Adjust active_worst_quality level based on buffer level. +static int calc_active_worst_quality_one_pass_cbr(const VP9_COMP *cpi) { + // Adjust active_worst_quality: If buffer is above the optimal/target level, + // bring active_worst_quality down depending on fullness of buffer. + // If buffer is below the optimal level, let the active_worst_quality go from + // ambient Q (at buffer = optimal level) to worst_quality level + // (at buffer = critical level). + const VP9_COMMON *const cm = &cpi->common; + const RATE_CONTROL *rc = &cpi->rc; + // Buffer level below which we push active_worst to worst_quality. + int64_t critical_level = rc->optimal_buffer_level >> 3; + int64_t buff_lvl_step = 0; + int adjustment = 0; + int active_worst_quality; + int ambient_qp; + if (cm->frame_type == KEY_FRAME) + return rc->worst_quality; + // For ambient_qp we use minimum of avg_frame_qindex[KEY_FRAME/INTER_FRAME] + // for the first few frames following key frame. These are both initialized + // to worst_quality and updated with (3/4, 1/4) average in postencode_update. + // So for first few frames following key, the qp of that key frame is weighted + // into the active_worst_quality setting. + ambient_qp = (cm->current_video_frame < 5) ? + MIN(rc->avg_frame_qindex[INTER_FRAME], rc->avg_frame_qindex[KEY_FRAME]) : + rc->avg_frame_qindex[INTER_FRAME]; + active_worst_quality = MIN(rc->worst_quality, + ambient_qp * 5 / 4); + if (rc->buffer_level > rc->optimal_buffer_level) { + // Adjust down. + // Maximum limit for down adjustment, ~30%. + int max_adjustment_down = active_worst_quality / 3; + if (max_adjustment_down) { + buff_lvl_step = ((rc->maximum_buffer_size - + rc->optimal_buffer_level) / max_adjustment_down); + if (buff_lvl_step) + adjustment = (int)((rc->buffer_level - rc->optimal_buffer_level) / + buff_lvl_step); + active_worst_quality -= adjustment; + } + } else if (rc->buffer_level > critical_level) { + // Adjust up from ambient Q. + if (critical_level) { + buff_lvl_step = (rc->optimal_buffer_level - critical_level); + if (buff_lvl_step) { + adjustment = (int)((rc->worst_quality - ambient_qp) * + (rc->optimal_buffer_level - rc->buffer_level) / + buff_lvl_step); + } + active_worst_quality = ambient_qp + adjustment; + } + } else { + // Set to worst_quality if buffer is below critical level. + active_worst_quality = rc->worst_quality; + } + return active_worst_quality; +} + +static int rc_pick_q_and_bounds_one_pass_cbr(const VP9_COMP *cpi, + int *bottom_index, + int *top_index) { + const VP9_COMMON *const cm = &cpi->common; + const RATE_CONTROL *const rc = &cpi->rc; + int active_best_quality; + int active_worst_quality = calc_active_worst_quality_one_pass_cbr(cpi); + int q; + int *rtc_minq; + ASSIGN_MINQ_TABLE(cm->bit_depth, rtc_minq); + + if (frame_is_intra_only(cm)) { + active_best_quality = rc->best_quality; + // Handle the special case for key frames forced when we have reached + // the maximum key frame interval. Here force the Q to a range + // based on the ambient Q to reduce the risk of popping. + if (rc->this_key_frame_forced) { + int qindex = rc->last_boosted_qindex; + double last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth); + int delta_qindex = vp9_compute_qdelta(rc, last_boosted_q, + (last_boosted_q * 0.75), + cm->bit_depth); + active_best_quality = MAX(qindex + delta_qindex, rc->best_quality); + } else if (cm->current_video_frame > 0) { + // not first frame of one pass and kf_boost is set + double q_adj_factor = 1.0; + double q_val; + + active_best_quality = + get_kf_active_quality(rc, rc->avg_frame_qindex[KEY_FRAME], + cm->bit_depth); + + // Allow somewhat lower kf minq with small image formats. + if ((cm->width * cm->height) <= (352 * 288)) { + q_adj_factor -= 0.25; + } + + // Convert the adjustment factor to a qindex delta + // on active_best_quality. + q_val = vp9_convert_qindex_to_q(active_best_quality, cm->bit_depth); + active_best_quality += vp9_compute_qdelta(rc, q_val, + q_val * q_adj_factor, + cm->bit_depth); + } + } else if (!rc->is_src_frame_alt_ref && + !cpi->use_svc && + (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) { + // Use the lower of active_worst_quality and recent + // average Q as basis for GF/ARF best Q limit unless last frame was + // a key frame. + if (rc->frames_since_key > 1 && + rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) { + q = rc->avg_frame_qindex[INTER_FRAME]; + } else { + q = active_worst_quality; + } + active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth); + } else { + // Use the lower of active_worst_quality and recent/average Q. + if (cm->current_video_frame > 1) { + if (rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) + active_best_quality = rtc_minq[rc->avg_frame_qindex[INTER_FRAME]]; + else + active_best_quality = rtc_minq[active_worst_quality]; + } else { + if (rc->avg_frame_qindex[KEY_FRAME] < active_worst_quality) + active_best_quality = rtc_minq[rc->avg_frame_qindex[KEY_FRAME]]; + else + active_best_quality = rtc_minq[active_worst_quality]; + } + } + + // Clip the active best and worst quality values to limits + active_best_quality = clamp(active_best_quality, + rc->best_quality, rc->worst_quality); + active_worst_quality = clamp(active_worst_quality, + active_best_quality, rc->worst_quality); + + *top_index = active_worst_quality; + *bottom_index = active_best_quality; + +#if LIMIT_QRANGE_FOR_ALTREF_AND_KEY + // Limit Q range for the adaptive loop. + if (cm->frame_type == KEY_FRAME && + !rc->this_key_frame_forced && + !(cm->current_video_frame == 0)) { + int qdelta = 0; + vp9_clear_system_state(); + qdelta = vp9_compute_qdelta_by_rate(&cpi->rc, cm->frame_type, + active_worst_quality, 2.0, + cm->bit_depth); + *top_index = active_worst_quality + qdelta; + *top_index = (*top_index > *bottom_index) ? *top_index : *bottom_index; + } +#endif + + // Special case code to try and match quality with forced key frames + if (cm->frame_type == KEY_FRAME && rc->this_key_frame_forced) { + q = rc->last_boosted_qindex; + } else { + q = vp9_rc_regulate_q(cpi, rc->this_frame_target, + active_best_quality, active_worst_quality); + if (q > *top_index) { + // Special case when we are targeting the max allowed rate + if (rc->this_frame_target >= rc->max_frame_bandwidth) + *top_index = q; + else + q = *top_index; + } + } + assert(*top_index <= rc->worst_quality && + *top_index >= rc->best_quality); + assert(*bottom_index <= rc->worst_quality && + *bottom_index >= rc->best_quality); + assert(q <= rc->worst_quality && q >= rc->best_quality); + return q; +} + +static int get_active_cq_level(const RATE_CONTROL *rc, + const VP9EncoderConfig *const oxcf) { + static const double cq_adjust_threshold = 0.1; + int active_cq_level = oxcf->cq_level; + if (oxcf->rc_mode == VPX_CQ && + rc->total_target_bits > 0) { + const double x = (double)rc->total_actual_bits / rc->total_target_bits; + if (x < cq_adjust_threshold) { + active_cq_level = (int)(active_cq_level * x / cq_adjust_threshold); + } + } + return active_cq_level; +} + +static int rc_pick_q_and_bounds_one_pass_vbr(const VP9_COMP *cpi, + int *bottom_index, + int *top_index) { + const VP9_COMMON *const cm = &cpi->common; + const RATE_CONTROL *const rc = &cpi->rc; + const VP9EncoderConfig *const oxcf = &cpi->oxcf; + const int cq_level = get_active_cq_level(rc, oxcf); + int active_best_quality; + int active_worst_quality = calc_active_worst_quality_one_pass_vbr(cpi); + int q; + int *inter_minq; + ASSIGN_MINQ_TABLE(cm->bit_depth, inter_minq); + + if (frame_is_intra_only(cm)) { + + // Handle the special case for key frames forced when we have reached + // the maximum key frame interval. Here force the Q to a range + // based on the ambient Q to reduce the risk of popping. + if (rc->this_key_frame_forced) { + int qindex = rc->last_boosted_qindex; + double last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth); + int delta_qindex = vp9_compute_qdelta(rc, last_boosted_q, + last_boosted_q * 0.75, + cm->bit_depth); + active_best_quality = MAX(qindex + delta_qindex, rc->best_quality); + } else { + // not first frame of one pass and kf_boost is set + double q_adj_factor = 1.0; + double q_val; + + active_best_quality = + get_kf_active_quality(rc, rc->avg_frame_qindex[KEY_FRAME], + cm->bit_depth); + + // Allow somewhat lower kf minq with small image formats. + if ((cm->width * cm->height) <= (352 * 288)) { + q_adj_factor -= 0.25; + } + + // Convert the adjustment factor to a qindex delta + // on active_best_quality. + q_val = vp9_convert_qindex_to_q(active_best_quality, cm->bit_depth); + active_best_quality += vp9_compute_qdelta(rc, q_val, + q_val * q_adj_factor, + cm->bit_depth); + } + } else if (!rc->is_src_frame_alt_ref && + (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) { + // Use the lower of active_worst_quality and recent + // average Q as basis for GF/ARF best Q limit unless last frame was + // a key frame. + if (rc->frames_since_key > 1 && + rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) { + q = rc->avg_frame_qindex[INTER_FRAME]; + } else { + q = rc->avg_frame_qindex[KEY_FRAME]; + } + // For constrained quality dont allow Q less than the cq level + if (oxcf->rc_mode == VPX_CQ) { + if (q < cq_level) + q = cq_level; + + active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth); + + // Constrained quality use slightly lower active best. + active_best_quality = active_best_quality * 15 / 16; + + } else if (oxcf->rc_mode == VPX_Q) { + if (!cpi->refresh_alt_ref_frame) { + active_best_quality = cq_level; + } else { + active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth); + } + } else { + active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth); + } + } else { + if (oxcf->rc_mode == VPX_Q) { + active_best_quality = cq_level; + } else { + // Use the lower of active_worst_quality and recent/average Q. + if (cm->current_video_frame > 1) + active_best_quality = inter_minq[rc->avg_frame_qindex[INTER_FRAME]]; + else + active_best_quality = inter_minq[rc->avg_frame_qindex[KEY_FRAME]]; + // For the constrained quality mode we don't want + // q to fall below the cq level. + if ((oxcf->rc_mode == VPX_CQ) && + (active_best_quality < cq_level)) { + active_best_quality = cq_level; + } + } + } + + // Clip the active best and worst quality values to limits + active_best_quality = clamp(active_best_quality, + rc->best_quality, rc->worst_quality); + active_worst_quality = clamp(active_worst_quality, + active_best_quality, rc->worst_quality); + + *top_index = active_worst_quality; + *bottom_index = active_best_quality; + +#if LIMIT_QRANGE_FOR_ALTREF_AND_KEY + { + int qdelta = 0; + vp9_clear_system_state(); + + // Limit Q range for the adaptive loop. + if (cm->frame_type == KEY_FRAME && + !rc->this_key_frame_forced && + !(cm->current_video_frame == 0)) { + qdelta = vp9_compute_qdelta_by_rate(&cpi->rc, cm->frame_type, + active_worst_quality, 2.0, + cm->bit_depth); + } else if (!rc->is_src_frame_alt_ref && + (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) { + qdelta = vp9_compute_qdelta_by_rate(&cpi->rc, cm->frame_type, + active_worst_quality, 1.75, + cm->bit_depth); + } + *top_index = active_worst_quality + qdelta; + *top_index = (*top_index > *bottom_index) ? *top_index : *bottom_index; + } +#endif + + if (oxcf->rc_mode == VPX_Q) { + q = active_best_quality; + // Special case code to try and match quality with forced key frames + } else if ((cm->frame_type == KEY_FRAME) && rc->this_key_frame_forced) { + q = rc->last_boosted_qindex; + } else { + q = vp9_rc_regulate_q(cpi, rc->this_frame_target, + active_best_quality, active_worst_quality); + if (q > *top_index) { + // Special case when we are targeting the max allowed rate + if (rc->this_frame_target >= rc->max_frame_bandwidth) + *top_index = q; + else + q = *top_index; + } + } + + assert(*top_index <= rc->worst_quality && + *top_index >= rc->best_quality); + assert(*bottom_index <= rc->worst_quality && + *bottom_index >= rc->best_quality); + assert(q <= rc->worst_quality && q >= rc->best_quality); + return q; +} + +int vp9_frame_type_qdelta(const VP9_COMP *cpi, int rf_level, int q) { + static const double rate_factor_deltas[RATE_FACTOR_LEVELS] = { + 1.00, // INTER_NORMAL + 1.00, // INTER_HIGH + 1.50, // GF_ARF_LOW + 1.75, // GF_ARF_STD + 2.00, // KF_STD + }; + static const FRAME_TYPE frame_type[RATE_FACTOR_LEVELS] = + {INTER_FRAME, INTER_FRAME, INTER_FRAME, INTER_FRAME, KEY_FRAME}; + const VP9_COMMON *const cm = &cpi->common; + int qdelta = vp9_compute_qdelta_by_rate(&cpi->rc, frame_type[rf_level], + q, rate_factor_deltas[rf_level], + cm->bit_depth); + return qdelta; +} + +#define STATIC_MOTION_THRESH 95 +static int rc_pick_q_and_bounds_two_pass(const VP9_COMP *cpi, + int *bottom_index, + int *top_index) { + const VP9_COMMON *const cm = &cpi->common; + const RATE_CONTROL *const rc = &cpi->rc; + const VP9EncoderConfig *const oxcf = &cpi->oxcf; + const GF_GROUP *gf_group = &cpi->twopass.gf_group; + const int cq_level = get_active_cq_level(rc, oxcf); + int active_best_quality; + int active_worst_quality = cpi->twopass.active_worst_quality; + int q; + int *inter_minq; + ASSIGN_MINQ_TABLE(cm->bit_depth, inter_minq); + + if (frame_is_intra_only(cm) || vp9_is_upper_layer_key_frame(cpi)) { + // Handle the special case for key frames forced when we have reached + // the maximum key frame interval. Here force the Q to a range + // based on the ambient Q to reduce the risk of popping. + if (rc->this_key_frame_forced) { + double last_boosted_q; + int delta_qindex; + int qindex; + + if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) { + qindex = MIN(rc->last_kf_qindex, rc->last_boosted_qindex); + active_best_quality = qindex; + last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth); + delta_qindex = vp9_compute_qdelta(rc, last_boosted_q, + last_boosted_q * 1.25, + cm->bit_depth); + active_worst_quality = MIN(qindex + delta_qindex, active_worst_quality); + + } else { + qindex = rc->last_boosted_qindex; + last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth); + delta_qindex = vp9_compute_qdelta(rc, last_boosted_q, + last_boosted_q * 0.75, + cm->bit_depth); + active_best_quality = MAX(qindex + delta_qindex, rc->best_quality); + } + } else { + // Not forced keyframe. + double q_adj_factor = 1.0; + double q_val; + // Baseline value derived from cpi->active_worst_quality and kf boost. + active_best_quality = get_kf_active_quality(rc, active_worst_quality, + cm->bit_depth); + + // Allow somewhat lower kf minq with small image formats. + if ((cm->width * cm->height) <= (352 * 288)) { + q_adj_factor -= 0.25; + } + + // Make a further adjustment based on the kf zero motion measure. + q_adj_factor += 0.05 - (0.001 * (double)cpi->twopass.kf_zeromotion_pct); + + // Convert the adjustment factor to a qindex delta + // on active_best_quality. + q_val = vp9_convert_qindex_to_q(active_best_quality, cm->bit_depth); + active_best_quality += vp9_compute_qdelta(rc, q_val, + q_val * q_adj_factor, + cm->bit_depth); + } + } else if (!rc->is_src_frame_alt_ref && + (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) { + // Use the lower of active_worst_quality and recent + // average Q as basis for GF/ARF best Q limit unless last frame was + // a key frame. + if (rc->frames_since_key > 1 && + rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) { + q = rc->avg_frame_qindex[INTER_FRAME]; + } else { + q = active_worst_quality; + } + // For constrained quality dont allow Q less than the cq level + if (oxcf->rc_mode == VPX_CQ) { + if (q < cq_level) + q = cq_level; + + active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth); + + // Constrained quality use slightly lower active best. + active_best_quality = active_best_quality * 15 / 16; + + } else if (oxcf->rc_mode == VPX_Q) { + if (!cpi->refresh_alt_ref_frame) { + active_best_quality = cq_level; + } else { + active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth); + + // Modify best quality for second level arfs. For mode VPX_Q this + // becomes the baseline frame q. + if (gf_group->rf_level[gf_group->index] == GF_ARF_LOW) + active_best_quality = (active_best_quality + cq_level + 1) / 2; + } + } else { + active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth); + } + } else { + if (oxcf->rc_mode == VPX_Q) { + active_best_quality = cq_level; + } else { + active_best_quality = inter_minq[active_worst_quality]; + + // For the constrained quality mode we don't want + // q to fall below the cq level. + if ((oxcf->rc_mode == VPX_CQ) && + (active_best_quality < cq_level)) { + active_best_quality = cq_level; + } + } + } + + // Extension to max or min Q if undershoot or overshoot is outside + // the permitted range. + if ((cpi->oxcf.rc_mode != VPX_Q) && + (cpi->twopass.gf_zeromotion_pct < VLOW_MOTION_THRESHOLD)) { + if (frame_is_intra_only(cm) || + (!rc->is_src_frame_alt_ref && + (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame))) { + active_best_quality -= + (cpi->twopass.extend_minq + cpi->twopass.extend_minq_fast); + active_worst_quality += (cpi->twopass.extend_maxq / 2); + } else { + active_best_quality -= + (cpi->twopass.extend_minq + cpi->twopass.extend_minq_fast) / 2; + active_worst_quality += cpi->twopass.extend_maxq; + } + } + +#if LIMIT_QRANGE_FOR_ALTREF_AND_KEY + vp9_clear_system_state(); + // Static forced key frames Q restrictions dealt with elsewhere. + if (!((frame_is_intra_only(cm) || vp9_is_upper_layer_key_frame(cpi))) || + !rc->this_key_frame_forced || + (cpi->twopass.last_kfgroup_zeromotion_pct < STATIC_MOTION_THRESH)) { + int qdelta = vp9_frame_type_qdelta(cpi, gf_group->rf_level[gf_group->index], + active_worst_quality); + active_worst_quality = MAX(active_worst_quality + qdelta, + active_best_quality); + } +#endif + + // Modify active_best_quality for downscaled normal frames. + if (rc->frame_size_selector != UNSCALED && !frame_is_kf_gf_arf(cpi)) { + int qdelta = vp9_compute_qdelta_by_rate(rc, cm->frame_type, + active_best_quality, 2.0, + cm->bit_depth); + active_best_quality = MAX(active_best_quality + qdelta, rc->best_quality); + } + + active_best_quality = clamp(active_best_quality, + rc->best_quality, rc->worst_quality); + active_worst_quality = clamp(active_worst_quality, + active_best_quality, rc->worst_quality); + + if (oxcf->rc_mode == VPX_Q) { + q = active_best_quality; + // Special case code to try and match quality with forced key frames. + } else if ((frame_is_intra_only(cm) || vp9_is_upper_layer_key_frame(cpi)) && + rc->this_key_frame_forced) { + // If static since last kf use better of last boosted and last kf q. + if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) { + q = MIN(rc->last_kf_qindex, rc->last_boosted_qindex); + } else { + q = rc->last_boosted_qindex; + } + } else { + q = vp9_rc_regulate_q(cpi, rc->this_frame_target, + active_best_quality, active_worst_quality); + if (q > active_worst_quality) { + // Special case when we are targeting the max allowed rate. + if (rc->this_frame_target >= rc->max_frame_bandwidth) + active_worst_quality = q; + else + q = active_worst_quality; + } + } + clamp(q, active_best_quality, active_worst_quality); + + *top_index = active_worst_quality; + *bottom_index = active_best_quality; + + assert(*top_index <= rc->worst_quality && + *top_index >= rc->best_quality); + assert(*bottom_index <= rc->worst_quality && + *bottom_index >= rc->best_quality); + assert(q <= rc->worst_quality && q >= rc->best_quality); + return q; +} + +int vp9_rc_pick_q_and_bounds(const VP9_COMP *cpi, + int *bottom_index, int *top_index) { + int q; + if (cpi->oxcf.pass == 0) { + if (cpi->oxcf.rc_mode == VPX_CBR) + q = rc_pick_q_and_bounds_one_pass_cbr(cpi, bottom_index, top_index); + else + q = rc_pick_q_and_bounds_one_pass_vbr(cpi, bottom_index, top_index); + } else { + q = rc_pick_q_and_bounds_two_pass(cpi, bottom_index, top_index); + } + if (cpi->sf.use_nonrd_pick_mode) { + if (cpi->sf.force_frame_boost == 1) + q -= cpi->sf.max_delta_qindex; + + if (q < *bottom_index) + *bottom_index = q; + else if (q > *top_index) + *top_index = q; + } + return q; +} + +void vp9_rc_compute_frame_size_bounds(const VP9_COMP *cpi, + int frame_target, + int *frame_under_shoot_limit, + int *frame_over_shoot_limit) { + if (cpi->oxcf.rc_mode == VPX_Q) { + *frame_under_shoot_limit = 0; + *frame_over_shoot_limit = INT_MAX; + } else { + // For very small rate targets where the fractional adjustment + // may be tiny make sure there is at least a minimum range. + const int tolerance = (cpi->sf.recode_tolerance * frame_target) / 100; + *frame_under_shoot_limit = MAX(frame_target - tolerance - 200, 0); + *frame_over_shoot_limit = MIN(frame_target + tolerance + 200, + cpi->rc.max_frame_bandwidth); + } +} + +void vp9_rc_set_frame_target(VP9_COMP *cpi, int target) { + const VP9_COMMON *const cm = &cpi->common; + RATE_CONTROL *const rc = &cpi->rc; + + rc->this_frame_target = target; + + // Modify frame size target when down-scaling. + if (cpi->oxcf.resize_mode == RESIZE_DYNAMIC && + rc->frame_size_selector != UNSCALED) + rc->this_frame_target = (int)(rc->this_frame_target + * rate_thresh_mult[rc->frame_size_selector]); + + // Target rate per SB64 (including partial SB64s. + rc->sb64_target_rate = ((int64_t)rc->this_frame_target * 64 * 64) / + (cm->width * cm->height); +} + +static void update_alt_ref_frame_stats(VP9_COMP *cpi) { + // this frame refreshes means next frames don't unless specified by user + RATE_CONTROL *const rc = &cpi->rc; + rc->frames_since_golden = 0; + + // Mark the alt ref as done (setting to 0 means no further alt refs pending). + rc->source_alt_ref_pending = 0; + + // Set the alternate reference frame active flag + rc->source_alt_ref_active = 1; +} + +static void update_golden_frame_stats(VP9_COMP *cpi) { + RATE_CONTROL *const rc = &cpi->rc; + + // Update the Golden frame usage counts. + if (cpi->refresh_golden_frame) { + // this frame refreshes means next frames don't unless specified by user + rc->frames_since_golden = 0; + + // If we are not using alt ref in the up and coming group clear the arf + // active flag. + if (!rc->source_alt_ref_pending) { + rc->source_alt_ref_active = 0; + } + + // Decrement count down till next gf + if (rc->frames_till_gf_update_due > 0) + rc->frames_till_gf_update_due--; + + } else if (!cpi->refresh_alt_ref_frame) { + // Decrement count down till next gf + if (rc->frames_till_gf_update_due > 0) + rc->frames_till_gf_update_due--; + + rc->frames_since_golden++; + } +} + +void vp9_rc_postencode_update(VP9_COMP *cpi, uint64_t bytes_used) { + const VP9_COMMON *const cm = &cpi->common; + const VP9EncoderConfig *const oxcf = &cpi->oxcf; + RATE_CONTROL *const rc = &cpi->rc; + const int qindex = cm->base_qindex; + + if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled) { + vp9_cyclic_refresh_postencode(cpi); + } + + // Update rate control heuristics + rc->projected_frame_size = (int)(bytes_used << 3); + + // Post encode loop adjustment of Q prediction. + vp9_rc_update_rate_correction_factors(cpi); + + // Keep a record of last Q and ambient average Q. + if (cm->frame_type == KEY_FRAME) { + rc->last_q[KEY_FRAME] = qindex; + rc->avg_frame_qindex[KEY_FRAME] = + ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[KEY_FRAME] + qindex, 2); + } else { + if (rc->is_src_frame_alt_ref || + !(cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame) || + (cpi->use_svc && oxcf->rc_mode == VPX_CBR)) { + rc->last_q[INTER_FRAME] = qindex; + rc->avg_frame_qindex[INTER_FRAME] = + ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[INTER_FRAME] + qindex, 2); + rc->ni_frames++; + rc->tot_q += vp9_convert_qindex_to_q(qindex, cm->bit_depth); + rc->avg_q = rc->tot_q / rc->ni_frames; + // Calculate the average Q for normal inter frames (not key or GFU + // frames). + rc->ni_tot_qi += qindex; + rc->ni_av_qi = rc->ni_tot_qi / rc->ni_frames; + } + } + + // Keep record of last boosted (KF/KF/ARF) Q value. + // If the current frame is coded at a lower Q then we also update it. + // If all mbs in this group are skipped only update if the Q value is + // better than that already stored. + // This is used to help set quality in forced key frames to reduce popping + if ((qindex < rc->last_boosted_qindex) || + (cm->frame_type == KEY_FRAME) || + (!rc->constrained_gf_group && + (cpi->refresh_alt_ref_frame || + (cpi->refresh_golden_frame && !rc->is_src_frame_alt_ref)))) { + rc->last_boosted_qindex = qindex; + } + if (cm->frame_type == KEY_FRAME) + rc->last_kf_qindex = qindex; + + update_buffer_level(cpi, rc->projected_frame_size); + + // Rolling monitors of whether we are over or underspending used to help + // regulate min and Max Q in two pass. + if (cm->frame_type != KEY_FRAME) { + rc->rolling_target_bits = ROUND_POWER_OF_TWO( + rc->rolling_target_bits * 3 + rc->this_frame_target, 2); + rc->rolling_actual_bits = ROUND_POWER_OF_TWO( + rc->rolling_actual_bits * 3 + rc->projected_frame_size, 2); + rc->long_rolling_target_bits = ROUND_POWER_OF_TWO( + rc->long_rolling_target_bits * 31 + rc->this_frame_target, 5); + rc->long_rolling_actual_bits = ROUND_POWER_OF_TWO( + rc->long_rolling_actual_bits * 31 + rc->projected_frame_size, 5); + } + + // Actual bits spent + rc->total_actual_bits += rc->projected_frame_size; + rc->total_target_bits += cm->show_frame ? rc->avg_frame_bandwidth : 0; + + rc->total_target_vs_actual = rc->total_actual_bits - rc->total_target_bits; + + if (is_altref_enabled(cpi) && cpi->refresh_alt_ref_frame && + (cm->frame_type != KEY_FRAME)) + // Update the alternate reference frame stats as appropriate. + update_alt_ref_frame_stats(cpi); + else + // Update the Golden frame stats as appropriate. + update_golden_frame_stats(cpi); + + if (cm->frame_type == KEY_FRAME) + rc->frames_since_key = 0; + if (cm->show_frame) { + rc->frames_since_key++; + rc->frames_to_key--; + } + + // Trigger the resizing of the next frame if it is scaled. + cpi->resize_pending = + rc->next_frame_size_selector != rc->frame_size_selector; + rc->frame_size_selector = rc->next_frame_size_selector; +} + +void vp9_rc_postencode_update_drop_frame(VP9_COMP *cpi) { + // Update buffer level with zero size, update frame counters, and return. + update_buffer_level(cpi, 0); + cpi->rc.frames_since_key++; + cpi->rc.frames_to_key--; + cpi->rc.rc_2_frame = 0; + cpi->rc.rc_1_frame = 0; +} + +// Use this macro to turn on/off use of alt-refs in one-pass mode. +#define USE_ALTREF_FOR_ONE_PASS 1 + +static int calc_pframe_target_size_one_pass_vbr(const VP9_COMP *const cpi) { + static const int af_ratio = 10; + const RATE_CONTROL *const rc = &cpi->rc; + int target; +#if USE_ALTREF_FOR_ONE_PASS + target = (!rc->is_src_frame_alt_ref && + (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) ? + (rc->avg_frame_bandwidth * rc->baseline_gf_interval * af_ratio) / + (rc->baseline_gf_interval + af_ratio - 1) : + (rc->avg_frame_bandwidth * rc->baseline_gf_interval) / + (rc->baseline_gf_interval + af_ratio - 1); +#else + target = rc->avg_frame_bandwidth; +#endif + return vp9_rc_clamp_pframe_target_size(cpi, target); +} + +static int calc_iframe_target_size_one_pass_vbr(const VP9_COMP *const cpi) { + static const int kf_ratio = 25; + const RATE_CONTROL *rc = &cpi->rc; + const int target = rc->avg_frame_bandwidth * kf_ratio; + return vp9_rc_clamp_iframe_target_size(cpi, target); +} + +void vp9_rc_get_one_pass_vbr_params(VP9_COMP *cpi) { + VP9_COMMON *const cm = &cpi->common; + RATE_CONTROL *const rc = &cpi->rc; + int target; + // TODO(yaowu): replace the "auto_key && 0" below with proper decision logic. + if (!cpi->refresh_alt_ref_frame && + (cm->current_video_frame == 0 || + (cpi->frame_flags & FRAMEFLAGS_KEY) || + rc->frames_to_key == 0 || + (cpi->oxcf.auto_key && 0))) { + cm->frame_type = KEY_FRAME; + rc->this_key_frame_forced = cm->current_video_frame != 0 && + rc->frames_to_key == 0; + rc->frames_to_key = cpi->oxcf.key_freq; + rc->kf_boost = DEFAULT_KF_BOOST; + rc->source_alt_ref_active = 0; + } else { + cm->frame_type = INTER_FRAME; + } + if (rc->frames_till_gf_update_due == 0) { + rc->baseline_gf_interval = DEFAULT_GF_INTERVAL; + rc->frames_till_gf_update_due = rc->baseline_gf_interval; + // NOTE: frames_till_gf_update_due must be <= frames_to_key. + if (rc->frames_till_gf_update_due > rc->frames_to_key) { + rc->frames_till_gf_update_due = rc->frames_to_key; + rc->constrained_gf_group = 1; + } else { + rc->constrained_gf_group = 0; + } + cpi->refresh_golden_frame = 1; + rc->source_alt_ref_pending = USE_ALTREF_FOR_ONE_PASS; + rc->gfu_boost = DEFAULT_GF_BOOST; + } + if (cm->frame_type == KEY_FRAME) + target = calc_iframe_target_size_one_pass_vbr(cpi); + else + target = calc_pframe_target_size_one_pass_vbr(cpi); + vp9_rc_set_frame_target(cpi, target); +} + +static int calc_pframe_target_size_one_pass_cbr(const VP9_COMP *cpi) { + const VP9EncoderConfig *oxcf = &cpi->oxcf; + const RATE_CONTROL *rc = &cpi->rc; + const SVC *const svc = &cpi->svc; + const int64_t diff = rc->optimal_buffer_level - rc->buffer_level; + const int64_t one_pct_bits = 1 + rc->optimal_buffer_level / 100; + int min_frame_target = MAX(rc->avg_frame_bandwidth >> 4, FRAME_OVERHEAD_BITS); + int target; + + if (oxcf->gf_cbr_boost_pct) { + const int af_ratio_pct = oxcf->gf_cbr_boost_pct + 100; + target = cpi->refresh_golden_frame ? + (rc->avg_frame_bandwidth * rc->baseline_gf_interval * af_ratio_pct) / + (rc->baseline_gf_interval * 100 + af_ratio_pct - 100) : + (rc->avg_frame_bandwidth * rc->baseline_gf_interval * 100) / + (rc->baseline_gf_interval * 100 + af_ratio_pct - 100); + } else { + target = rc->avg_frame_bandwidth; + } + if (is_one_pass_cbr_svc(cpi)) { + // Note that for layers, avg_frame_bandwidth is the cumulative + // per-frame-bandwidth. For the target size of this frame, use the + // layer average frame size (i.e., non-cumulative per-frame-bw). + int layer = + LAYER_IDS_TO_IDX(svc->spatial_layer_id, + svc->temporal_layer_id, svc->number_temporal_layers); + const LAYER_CONTEXT *lc = &svc->layer_context[layer]; + target = lc->avg_frame_size; + min_frame_target = MAX(lc->avg_frame_size >> 4, FRAME_OVERHEAD_BITS); + } + if (diff > 0) { + // Lower the target bandwidth for this frame. + const int pct_low = (int)MIN(diff / one_pct_bits, oxcf->under_shoot_pct); + target -= (target * pct_low) / 200; + } else if (diff < 0) { + // Increase the target bandwidth for this frame. + const int pct_high = (int)MIN(-diff / one_pct_bits, oxcf->over_shoot_pct); + target += (target * pct_high) / 200; + } + if (oxcf->rc_max_inter_bitrate_pct) { + const int max_rate = rc->avg_frame_bandwidth * + oxcf->rc_max_inter_bitrate_pct / 100; + target = MIN(target, max_rate); + } + return MAX(min_frame_target, target); +} + +static int calc_iframe_target_size_one_pass_cbr(const VP9_COMP *cpi) { + const RATE_CONTROL *rc = &cpi->rc; + const VP9EncoderConfig *oxcf = &cpi->oxcf; + const SVC *const svc = &cpi->svc; + int target; + if (cpi->common.current_video_frame == 0) { + target = ((rc->starting_buffer_level / 2) > INT_MAX) + ? INT_MAX : (int)(rc->starting_buffer_level / 2); + } else { + int kf_boost = 32; + double framerate = cpi->framerate; + if (svc->number_temporal_layers > 1 && + oxcf->rc_mode == VPX_CBR) { + // Use the layer framerate for temporal layers CBR mode. + const int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, + svc->temporal_layer_id, svc->number_temporal_layers); + const LAYER_CONTEXT *lc = &svc->layer_context[layer]; + framerate = lc->framerate; + } + kf_boost = MAX(kf_boost, (int)(2 * framerate - 16)); + if (rc->frames_since_key < framerate / 2) { + kf_boost = (int)(kf_boost * rc->frames_since_key / + (framerate / 2)); + } + target = ((16 + kf_boost) * rc->avg_frame_bandwidth) >> 4; + } + return vp9_rc_clamp_iframe_target_size(cpi, target); +} + +// Reset information needed to set proper reference frames and buffer updates +// for temporal layering. This is called when a key frame is encoded. +static void reset_temporal_layer_to_zero(VP9_COMP *cpi) { + int sl; + LAYER_CONTEXT *lc = NULL; + cpi->svc.temporal_layer_id = 0; + + for (sl = 0; sl < cpi->svc.number_spatial_layers; ++sl) { + lc = &cpi->svc.layer_context[sl * cpi->svc.number_temporal_layers]; + lc->current_video_frame_in_layer = 0; + lc->frames_from_key_frame = 0; + } +} + +void vp9_rc_get_svc_params(VP9_COMP *cpi) { + VP9_COMMON *const cm = &cpi->common; + RATE_CONTROL *const rc = &cpi->rc; + int target = rc->avg_frame_bandwidth; + const int layer = LAYER_IDS_TO_IDX(cpi->svc.spatial_layer_id, + cpi->svc.temporal_layer_id, cpi->svc.number_temporal_layers); + + if ((cm->current_video_frame == 0) || + (cpi->frame_flags & FRAMEFLAGS_KEY) || + (cpi->oxcf.auto_key && (rc->frames_since_key % + cpi->oxcf.key_freq == 0))) { + cm->frame_type = KEY_FRAME; + rc->source_alt_ref_active = 0; + + if (is_two_pass_svc(cpi)) { + cpi->svc.layer_context[layer].is_key_frame = 1; + cpi->ref_frame_flags &= + (~VP9_LAST_FLAG & ~VP9_GOLD_FLAG & ~VP9_ALT_FLAG); + } else if (is_one_pass_cbr_svc(cpi)) { + cpi->svc.layer_context[layer].is_key_frame = 1; + reset_temporal_layer_to_zero(cpi); + cpi->ref_frame_flags &= + (~VP9_LAST_FLAG & ~VP9_GOLD_FLAG & ~VP9_ALT_FLAG); + // Assumption here is that LAST_FRAME is being updated for a keyframe. + // Thus no change in update flags. + target = calc_iframe_target_size_one_pass_cbr(cpi); + } + } else { + cm->frame_type = INTER_FRAME; + if (is_two_pass_svc(cpi)) { + LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer]; + if (cpi->svc.spatial_layer_id == 0) { + lc->is_key_frame = 0; + } else { + lc->is_key_frame = + cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame; + if (lc->is_key_frame) + cpi->ref_frame_flags &= (~VP9_LAST_FLAG); + } + cpi->ref_frame_flags &= (~VP9_ALT_FLAG); + } else if (is_one_pass_cbr_svc(cpi)) { + LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer]; + if (cpi->svc.spatial_layer_id == 0) { + lc->is_key_frame = 0; + } else { + lc->is_key_frame = + cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame; + } + target = calc_pframe_target_size_one_pass_cbr(cpi); + } + } + + // Any update/change of global cyclic refresh parameters (amount/delta-qp) + // should be done here, before the frame qp is selected. + if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) + vp9_cyclic_refresh_update_parameters(cpi); + + vp9_rc_set_frame_target(cpi, target); + rc->frames_till_gf_update_due = INT_MAX; + rc->baseline_gf_interval = INT_MAX; +} + +void vp9_rc_get_one_pass_cbr_params(VP9_COMP *cpi) { + VP9_COMMON *const cm = &cpi->common; + RATE_CONTROL *const rc = &cpi->rc; + int target; + // TODO(yaowu): replace the "auto_key && 0" below with proper decision logic. + if ((cm->current_video_frame == 0 || + (cpi->frame_flags & FRAMEFLAGS_KEY) || + rc->frames_to_key == 0 || + (cpi->oxcf.auto_key && 0))) { + cm->frame_type = KEY_FRAME; + rc->this_key_frame_forced = cm->current_video_frame != 0 && + rc->frames_to_key == 0; + rc->frames_to_key = cpi->oxcf.key_freq; + rc->kf_boost = DEFAULT_KF_BOOST; + rc->source_alt_ref_active = 0; + } else { + cm->frame_type = INTER_FRAME; + } + if (rc->frames_till_gf_update_due == 0) { + if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) + vp9_cyclic_refresh_set_golden_update(cpi); + else + rc->baseline_gf_interval = DEFAULT_GF_INTERVAL; + rc->frames_till_gf_update_due = rc->baseline_gf_interval; + // NOTE: frames_till_gf_update_due must be <= frames_to_key. + if (rc->frames_till_gf_update_due > rc->frames_to_key) + rc->frames_till_gf_update_due = rc->frames_to_key; + cpi->refresh_golden_frame = 1; + rc->gfu_boost = DEFAULT_GF_BOOST; + } + + // Any update/change of global cyclic refresh parameters (amount/delta-qp) + // should be done here, before the frame qp is selected. + if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) + vp9_cyclic_refresh_update_parameters(cpi); + + if (cm->frame_type == KEY_FRAME) + target = calc_iframe_target_size_one_pass_cbr(cpi); + else + target = calc_pframe_target_size_one_pass_cbr(cpi); + + vp9_rc_set_frame_target(cpi, target); +} + +int vp9_compute_qdelta(const RATE_CONTROL *rc, double qstart, double qtarget, + vpx_bit_depth_t bit_depth) { + int start_index = rc->worst_quality; + int target_index = rc->worst_quality; + int i; + + // Convert the average q value to an index. + for (i = rc->best_quality; i < rc->worst_quality; ++i) { + start_index = i; + if (vp9_convert_qindex_to_q(i, bit_depth) >= qstart) + break; + } + + // Convert the q target to an index + for (i = rc->best_quality; i < rc->worst_quality; ++i) { + target_index = i; + if (vp9_convert_qindex_to_q(i, bit_depth) >= qtarget) + break; + } + + return target_index - start_index; +} + +int vp9_compute_qdelta_by_rate(const RATE_CONTROL *rc, FRAME_TYPE frame_type, + int qindex, double rate_target_ratio, + vpx_bit_depth_t bit_depth) { + int target_index = rc->worst_quality; + int i; + + // Look up the current projected bits per block for the base index + const int base_bits_per_mb = vp9_rc_bits_per_mb(frame_type, qindex, 1.0, + bit_depth); + + // Find the target bits per mb based on the base value and given ratio. + const int target_bits_per_mb = (int)(rate_target_ratio * base_bits_per_mb); + + // Convert the q target to an index + for (i = rc->best_quality; i < rc->worst_quality; ++i) { + if (vp9_rc_bits_per_mb(frame_type, i, 1.0, bit_depth) <= + target_bits_per_mb) { + target_index = i; + break; + } + } + return target_index - qindex; +} + +#define MIN_GF_INTERVAL 4 +#define MAX_GF_INTERVAL 16 +void vp9_rc_set_gf_interval_range(const VP9_COMP *const cpi, + RATE_CONTROL *const rc) { + const VP9EncoderConfig *const oxcf = &cpi->oxcf; + + // Set a minimum interval. + rc->min_gf_interval = + MIN(MAX_GF_INTERVAL, MAX(MIN_GF_INTERVAL, (int)(cpi->framerate * 0.125))); + + // Set Maximum gf/arf interval. + rc->max_gf_interval = + MIN(MAX_GF_INTERVAL, (int)(cpi->framerate * 0.75)); + // Round up to next even number if odd. + rc->max_gf_interval += (rc->max_gf_interval & 0x01); + + // Extended interval for genuinely static scenes + rc->static_scene_max_gf_interval = MAX_LAG_BUFFERS * 2; + + if (is_altref_enabled(cpi)) { + if (rc->static_scene_max_gf_interval > oxcf->lag_in_frames - 1) + rc->static_scene_max_gf_interval = oxcf->lag_in_frames - 1; + } + + if (rc->max_gf_interval > rc->static_scene_max_gf_interval) + rc->max_gf_interval = rc->static_scene_max_gf_interval; + + // Clamp min to max + rc->min_gf_interval = MIN(rc->min_gf_interval, rc->max_gf_interval); +} + +void vp9_rc_update_framerate(VP9_COMP *cpi) { + const VP9_COMMON *const cm = &cpi->common; + const VP9EncoderConfig *const oxcf = &cpi->oxcf; + RATE_CONTROL *const rc = &cpi->rc; + int vbr_max_bits; + + rc->avg_frame_bandwidth = (int)(oxcf->target_bandwidth / cpi->framerate); + rc->min_frame_bandwidth = (int)(rc->avg_frame_bandwidth * + oxcf->two_pass_vbrmin_section / 100); + + rc->min_frame_bandwidth = MAX(rc->min_frame_bandwidth, FRAME_OVERHEAD_BITS); + + // A maximum bitrate for a frame is defined. + // The baseline for this aligns with HW implementations that + // can support decode of 1080P content up to a bitrate of MAX_MB_RATE bits + // per 16x16 MB (averaged over a frame). However this limit is extended if + // a very high rate is given on the command line or the the rate cannnot + // be acheived because of a user specificed max q (e.g. when the user + // specifies lossless encode. + vbr_max_bits = (int)(((int64_t)rc->avg_frame_bandwidth * + oxcf->two_pass_vbrmax_section) / 100); + rc->max_frame_bandwidth = MAX(MAX((cm->MBs * MAX_MB_RATE), MAXRATE_1080P), + vbr_max_bits); + + vp9_rc_set_gf_interval_range(cpi, rc); +} + +#define VBR_PCT_ADJUSTMENT_LIMIT 50 +// For VBR...adjustment to the frame target based on error from previous frames +static void vbr_rate_correction(VP9_COMP *cpi, int *this_frame_target) { + RATE_CONTROL *const rc = &cpi->rc; + int64_t vbr_bits_off_target = rc->vbr_bits_off_target; + int max_delta; + double position_factor = 1.0; + + // How far through the clip are we. + // This number is used to damp the per frame rate correction. + // Range 0 - 1.0 + if (cpi->twopass.total_stats.count) { + position_factor = sqrt((double)cpi->common.current_video_frame / + cpi->twopass.total_stats.count); + } + max_delta = (int)(position_factor * + ((*this_frame_target * VBR_PCT_ADJUSTMENT_LIMIT) / 100)); + + // vbr_bits_off_target > 0 means we have extra bits to spend + if (vbr_bits_off_target > 0) { + *this_frame_target += + (vbr_bits_off_target > max_delta) ? max_delta + : (int)vbr_bits_off_target; + } else { + *this_frame_target -= + (vbr_bits_off_target < -max_delta) ? max_delta + : (int)-vbr_bits_off_target; + } + + // Fast redistribution of bits arising from massive local undershoot. + // Dont do it for kf,arf,gf or overlay frames. + if (!frame_is_kf_gf_arf(cpi) && !rc->is_src_frame_alt_ref && + rc->vbr_bits_off_target_fast) { + int one_frame_bits = MAX(rc->avg_frame_bandwidth, *this_frame_target); + int fast_extra_bits; + fast_extra_bits = + (int)MIN(rc->vbr_bits_off_target_fast, one_frame_bits); + fast_extra_bits = (int)MIN(fast_extra_bits, + MAX(one_frame_bits / 8, rc->vbr_bits_off_target_fast / 8)); + *this_frame_target += (int)fast_extra_bits; + rc->vbr_bits_off_target_fast -= fast_extra_bits; + } +} + +void vp9_set_target_rate(VP9_COMP *cpi) { + RATE_CONTROL *const rc = &cpi->rc; + int target_rate = rc->base_frame_target; + + // Correction to rate target based on prior over or under shoot. + if (cpi->oxcf.rc_mode == VPX_VBR || cpi->oxcf.rc_mode == VPX_CQ) + vbr_rate_correction(cpi, &target_rate); + vp9_rc_set_frame_target(cpi, target_rate); +} |