summaryrefslogtreecommitdiffstats
path: root/js/src/vm/EnvironmentObject.h
diff options
context:
space:
mode:
Diffstat (limited to 'js/src/vm/EnvironmentObject.h')
-rw-r--r--js/src/vm/EnvironmentObject.h1126
1 files changed, 1126 insertions, 0 deletions
diff --git a/js/src/vm/EnvironmentObject.h b/js/src/vm/EnvironmentObject.h
new file mode 100644
index 000000000..6bdaac89e
--- /dev/null
+++ b/js/src/vm/EnvironmentObject.h
@@ -0,0 +1,1126 @@
+/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
+ * vim: set ts=8 sts=4 et sw=4 tw=99:
+ * This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#ifndef vm_EnvironmentObject_h
+#define vm_EnvironmentObject_h
+
+#include "jscntxt.h"
+#include "jsobj.h"
+#include "jsweakmap.h"
+
+#include "builtin/ModuleObject.h"
+#include "frontend/NameAnalysisTypes.h"
+#include "gc/Barrier.h"
+#include "js/GCHashTable.h"
+#include "vm/ArgumentsObject.h"
+#include "vm/ProxyObject.h"
+#include "vm/Scope.h"
+
+namespace js {
+
+class ModuleObject;
+typedef Handle<ModuleObject*> HandleModuleObject;
+
+/*
+ * Return a shape representing the static scope containing the variable
+ * accessed by the ALIASEDVAR op at 'pc'.
+ */
+extern Shape*
+EnvironmentCoordinateToEnvironmentShape(JSScript* script, jsbytecode* pc);
+
+/* Return the name being accessed by the given ALIASEDVAR op. */
+extern PropertyName*
+EnvironmentCoordinateName(EnvironmentCoordinateNameCache& cache, JSScript* script, jsbytecode* pc);
+
+/* Return the function script accessed by the given ALIASEDVAR op, or nullptr. */
+extern JSScript*
+EnvironmentCoordinateFunctionScript(JSScript* script, jsbytecode* pc);
+
+
+/*** Environment objects *****************************************************/
+
+
+/*** Environment objects *****************************************************/
+
+/*
+ * About environments
+ * ------------------
+ *
+ * (See also: ecma262 rev c7952de (19 Aug 2016) 8.1 "Lexical Environments".)
+ *
+ * Scoping in ES is specified in terms of "Environment Records". There's a
+ * global Environment Record per realm, and a new Environment Record is created
+ * whenever control enters a function, block, or other scope.
+ *
+ * A "Lexical Environment" is a list of nested Environment Records, innermost
+ * first: everything that's in scope. Throughout SpiderMonkey, "environment"
+ * means a Lexical Environment.
+ *
+ * N.B.: "Scope" means something different: a static scope, the compile-time
+ * analogue of an environment. See Scope.h.
+ *
+ * How SpiderMonkey represents environments
+ * ----------------------------------------
+ *
+ * Some environments are stored as JSObjects. Several kinds of objects
+ * represent environments:
+ *
+ * JSObject
+ * |
+ * +--NativeObject
+ * | |
+ * | +--EnvironmentObject Engine-internal environment
+ * | | |
+ * | | +--CallObject Environment of entire function
+ * | | |
+ * | | +--ModuleEnvironmentObject Module top-level environment
+ * | | |
+ * | | +--LexicalEnvironmentObject Lexical (block) environment
+ * | | | |
+ * | | | +--NamedLambdaObject Environment for `(function f(){...})`
+ * | | | containing only a binding for `f`
+ * | | +--VarEnvironmentObject See VarScope in Scope.h.
+ * | | |
+ * | | +--WithEnvironmentObject Presents object properties as bindings
+ * | | |
+ * | | +--NonSyntacticVariablesObject See "Non-syntactic environments" below
+ * | |
+ * | +--GlobalObject The global environment
+ * |
+ * +--ProxyObject
+ * |
+ * +--DebugEnvironmentProxy Environment for debugger eval-in-frame
+ *
+ * EnvironmentObjects are technically real JSObjects but only belong on the
+ * environment chain (that is, fp->environmentChain() or fun->environment()).
+ * They are never exposed to scripts.
+ *
+ * Note that reserved slots in any base classes shown above are fixed for all
+ * derived classes. So e.g. EnvironmentObject::enclosingEnvironment() can
+ * simply access a fixed slot without further dynamic type information.
+ *
+ * When the current environment is represented by an object, the stack frame
+ * has a pointer to that object (see AbstractFramePtr::environmentChain()).
+ * However, that isn't always the case. Where possible, we store binding values
+ * in JS stack slots. For block and function scopes where all bindings can be
+ * stored in stack slots, nothing is allocated in the heap; there is no
+ * environment object.
+ *
+ * Full information about the environment chain is always recoverable:
+ * EnvironmentIter can do it, and we construct a fake environment for debugger
+ * eval-in-frame (see "Debug environment objects" below).
+ *
+ * Syntactic Environments
+ * ----------------------
+ *
+ * Environments may be syntactic, i.e., corresponding to source text, or
+ * non-syntactic, i.e., specially created by embedding. The distinction is
+ * necessary to maintain invariants about the environment chain: non-syntactic
+ * environments may not occur in arbitrary positions in the chain.
+ *
+ * CallObject, ModuleEnvironmentObject, and LexicalEnvironmentObject always
+ * represent syntactic environments. (CallObject is considered syntactic even
+ * when it's used as the scope of strict eval code.) WithEnvironmentObject is
+ * syntactic when it's used to represent the scope of a `with` block.
+ *
+ *
+ * Non-syntactic Environments
+ * --------------------------
+ *
+ * A non-syntactic environment is one that was not created due to JS source
+ * code. On the scope chain, a single NonSyntactic GlobalScope maps to 0+
+ * non-syntactic environment objects. This is contrasted with syntactic
+ * environments, where each scope corresponds to 0 or 1 environment object.
+ *
+ * There are 3 kinds of dynamic environment objects:
+ *
+ * 1. WithEnvironmentObject
+ *
+ * When the embedding compiles or executes a script, it has the option to
+ * pass in a vector of objects to be used as the initial env chain, ordered
+ * from outermost env to innermost env. Each of those objects is wrapped by
+ * a WithEnvironmentObject.
+ *
+ * The innermost object passed in by the embedding becomes a qualified
+ * variables object that captures 'var' bindings. That is, it wraps the
+ * holder object of 'var' bindings.
+ *
+ * Does not hold 'let' or 'const' bindings.
+ *
+ * 2. NonSyntacticVariablesObject
+ *
+ * When the embedding wants qualified 'var' bindings and unqualified
+ * bareword assignments to go on a different object than the global
+ * object. While any object can be made into a qualified variables object,
+ * only the GlobalObject and NonSyntacticVariablesObject are considered
+ * unqualified variables objects.
+ *
+ * Unlike WithEnvironmentObjects that delegate to the object they wrap,
+ * this object is itself the holder of 'var' bindings.
+ *
+ * Does not hold 'let' or 'const' bindings.
+ *
+ * 3. LexicalEnvironmentObject
+ *
+ * Each non-syntactic object used as a qualified variables object needs to
+ * enclose a non-syntactic LexicalEnvironmentObject to hold 'let' and
+ * 'const' bindings. There is a bijection per compartment between the
+ * non-syntactic variables objects and their non-syntactic
+ * LexicalEnvironmentObjects.
+ *
+ * Does not hold 'var' bindings.
+ *
+ * The embedding (Gecko) uses non-syntactic envs for various things, some of
+ * which are detailed below. All env chain listings below are, from top to
+ * bottom, outermost to innermost.
+ *
+ * A. Component loading
+ *
+ * Components may be loaded in "reuse loader global" mode, where to save on
+ * memory, all JSMs and JS-implemented XPCOM modules are loaded into a single
+ * global. Each individual JSMs are compiled as functions with their own
+ * FakeBackstagePass. They have the following env chain:
+ *
+ * BackstagePass global
+ * |
+ * Global lexical scope
+ * |
+ * WithEnvironmentObject wrapping FakeBackstagePass
+ * |
+ * LexicalEnvironmentObject
+ *
+ * B. Subscript loading
+ *
+ * Subscripts may be loaded into a target object. They have the following
+ * env chain:
+ *
+ * Loader global
+ * |
+ * Global lexical scope
+ * |
+ * WithEnvironmentObject wrapping target
+ * |
+ * LexicalEnvironmentObject
+ *
+ * C. Frame scripts
+ *
+ * XUL frame scripts are always loaded with a NonSyntacticVariablesObject as a
+ * "polluting global". This is done exclusively in
+ * js::ExecuteInGlobalAndReturnScope.
+ *
+ * Loader global
+ * |
+ * Global lexical scope
+ * |
+ * NonSyntacticVariablesObject
+ * |
+ * LexicalEnvironmentObject
+ *
+ * D. XBL and DOM event handlers
+ *
+ * XBL methods are compiled as functions with XUL elements on the env chain,
+ * and DOM event handlers are compiled as functions with HTML elements on the
+ * env chain. For a chain of elements e0,...,eN:
+ *
+ * ...
+ * |
+ * WithEnvironmentObject wrapping eN
+ * |
+ * ...
+ * |
+ * WithEnvironmentObject wrapping e0
+ * |
+ * LexicalEnvironmentObject
+ *
+ */
+
+class EnvironmentObject : public NativeObject
+{
+ protected:
+ // The enclosing environment. Either another EnvironmentObject, a
+ // GlobalObject, or a non-syntactic environment object.
+ static const uint32_t ENCLOSING_ENV_SLOT = 0;
+
+ inline void setAliasedBinding(JSContext* cx, uint32_t slot, PropertyName* name,
+ const Value& v);
+
+ void setEnclosingEnvironment(JSObject* enclosing) {
+ setReservedSlot(ENCLOSING_ENV_SLOT, ObjectOrNullValue(enclosing));
+ }
+
+ public:
+ // Since every env chain terminates with a global object, whether
+ // GlobalObject or a non-syntactic one, and since those objects do not
+ // derive EnvironmentObject (they have completely different layouts), the
+ // enclosing environment of an EnvironmentObject is necessarily non-null.
+ JSObject& enclosingEnvironment() const {
+ return getReservedSlot(ENCLOSING_ENV_SLOT).toObject();
+ }
+
+ void initEnclosingEnvironment(JSObject* enclosing) {
+ initReservedSlot(ENCLOSING_ENV_SLOT, ObjectOrNullValue(enclosing));
+ }
+
+ // Get or set a name contained in this environment.
+ const Value& aliasedBinding(EnvironmentCoordinate ec) {
+ return getSlot(ec.slot());
+ }
+
+ const Value& aliasedBinding(const BindingIter& bi) {
+ MOZ_ASSERT(bi.location().kind() == BindingLocation::Kind::Environment);
+ return getSlot(bi.location().slot());
+ }
+
+ inline void setAliasedBinding(JSContext* cx, EnvironmentCoordinate ec, PropertyName* name,
+ const Value& v);
+
+ inline void setAliasedBinding(JSContext* cx, const BindingIter& bi, const Value& v);
+
+ // For JITs.
+ static size_t offsetOfEnclosingEnvironment() {
+ return getFixedSlotOffset(ENCLOSING_ENV_SLOT);
+ }
+
+ static uint32_t enclosingEnvironmentSlot() {
+ return ENCLOSING_ENV_SLOT;
+ }
+};
+
+class CallObject : public EnvironmentObject
+{
+ protected:
+ static const uint32_t CALLEE_SLOT = 1;
+
+ static CallObject* create(JSContext* cx, HandleScript script, HandleFunction callee,
+ HandleObject enclosing);
+
+ public:
+ static const uint32_t RESERVED_SLOTS = 2;
+ static const Class class_;
+
+ /* These functions are internal and are exposed only for JITs. */
+
+ /*
+ * Construct a bare-bones call object given a shape and a non-singleton
+ * group. The call object must be further initialized to be usable.
+ */
+ static CallObject* create(JSContext* cx, HandleShape shape, HandleObjectGroup group);
+
+ /*
+ * Construct a bare-bones call object given a shape and make it into
+ * a singleton. The call object must be initialized to be usable.
+ */
+ static CallObject* createSingleton(JSContext* cx, HandleShape shape);
+
+ static CallObject* createTemplateObject(JSContext* cx, HandleScript script,
+ HandleObject enclosing, gc::InitialHeap heap);
+
+ static CallObject* create(JSContext* cx, HandleFunction callee, HandleObject enclosing);
+ static CallObject* create(JSContext* cx, AbstractFramePtr frame);
+
+ static CallObject* createHollowForDebug(JSContext* cx, HandleFunction callee);
+
+ /*
+ * When an aliased formal (var accessed by nested closures) is also
+ * aliased by the arguments object, it must of course exist in one
+ * canonical location and that location is always the CallObject. For this
+ * to work, the ArgumentsObject stores special MagicValue in its array for
+ * forwarded-to-CallObject variables. This MagicValue's payload is the
+ * slot of the CallObject to access.
+ */
+ const Value& aliasedFormalFromArguments(const Value& argsValue) {
+ return getSlot(ArgumentsObject::SlotFromMagicScopeSlotValue(argsValue));
+ }
+ inline void setAliasedFormalFromArguments(JSContext* cx, const Value& argsValue, jsid id,
+ const Value& v);
+
+ JSFunction& callee() const {
+ return getReservedSlot(CALLEE_SLOT).toObject().as<JSFunction>();
+ }
+
+ /* For jit access. */
+ static size_t offsetOfCallee() {
+ return getFixedSlotOffset(CALLEE_SLOT);
+ }
+
+ static size_t calleeSlot() {
+ return CALLEE_SLOT;
+ }
+};
+
+class VarEnvironmentObject : public EnvironmentObject
+{
+ static const uint32_t SCOPE_SLOT = 1;
+
+ static VarEnvironmentObject* create(JSContext* cx, HandleShape shape, HandleObject enclosing,
+ gc::InitialHeap heap);
+
+ void initScope(Scope* scope) {
+ initReservedSlot(SCOPE_SLOT, PrivateGCThingValue(scope));
+ }
+
+ public:
+ static const uint32_t RESERVED_SLOTS = 2;
+ static const Class class_;
+
+ static VarEnvironmentObject* create(JSContext* cx, HandleScope scope, AbstractFramePtr frame);
+ static VarEnvironmentObject* createHollowForDebug(JSContext* cx, Handle<VarScope*> scope);
+
+ Scope& scope() const {
+ Value v = getReservedSlot(SCOPE_SLOT);
+ MOZ_ASSERT(v.isPrivateGCThing());
+ Scope& s = *static_cast<Scope*>(v.toGCThing());
+ MOZ_ASSERT(s.is<VarScope>() || s.is<EvalScope>());
+ return s;
+ }
+
+ bool isForEval() const {
+ return scope().is<EvalScope>();
+ }
+};
+
+class ModuleEnvironmentObject : public EnvironmentObject
+{
+ static const uint32_t MODULE_SLOT = 1;
+
+ static const ObjectOps objectOps_;
+
+ public:
+ static const Class class_;
+
+ static const uint32_t RESERVED_SLOTS = 2;
+
+ static ModuleEnvironmentObject* create(ExclusiveContext* cx, HandleModuleObject module);
+ ModuleObject& module();
+ IndirectBindingMap& importBindings();
+
+ bool createImportBinding(JSContext* cx, HandleAtom importName, HandleModuleObject module,
+ HandleAtom exportName);
+
+ bool hasImportBinding(HandlePropertyName name);
+
+ bool lookupImport(jsid name, ModuleEnvironmentObject** envOut, Shape** shapeOut);
+
+ void fixEnclosingEnvironmentAfterCompartmentMerge(GlobalObject& global);
+
+ private:
+ static bool lookupProperty(JSContext* cx, HandleObject obj, HandleId id,
+ MutableHandleObject objp, MutableHandleShape propp);
+ static bool hasProperty(JSContext* cx, HandleObject obj, HandleId id, bool* foundp);
+ static bool getProperty(JSContext* cx, HandleObject obj, HandleValue receiver, HandleId id,
+ MutableHandleValue vp);
+ static bool setProperty(JSContext* cx, HandleObject obj, HandleId id, HandleValue v,
+ HandleValue receiver, JS::ObjectOpResult& result);
+ static bool getOwnPropertyDescriptor(JSContext* cx, HandleObject obj, HandleId id,
+ MutableHandle<PropertyDescriptor> desc);
+ static bool deleteProperty(JSContext* cx, HandleObject obj, HandleId id,
+ ObjectOpResult& result);
+ static bool enumerate(JSContext* cx, HandleObject obj, AutoIdVector& properties,
+ bool enumerableOnly);
+};
+
+typedef Rooted<ModuleEnvironmentObject*> RootedModuleEnvironmentObject;
+typedef Handle<ModuleEnvironmentObject*> HandleModuleEnvironmentObject;
+typedef MutableHandle<ModuleEnvironmentObject*> MutableHandleModuleEnvironmentObject;
+
+class LexicalEnvironmentObject : public EnvironmentObject
+{
+ // Global and non-syntactic lexical environments need to store a 'this'
+ // value and all other lexical environments have a fixed shape and store a
+ // backpointer to the LexicalScope.
+ //
+ // Since the two sets are disjoint, we only use one slot to save space.
+ static const unsigned THIS_VALUE_OR_SCOPE_SLOT = 1;
+
+ public:
+ static const unsigned RESERVED_SLOTS = 2;
+ static const Class class_;
+
+ private:
+ static LexicalEnvironmentObject* createTemplateObject(JSContext* cx, HandleShape shape,
+ HandleObject enclosing,
+ gc::InitialHeap heap);
+
+ void initThisValue(JSObject* obj) {
+ MOZ_ASSERT(isGlobal() || !isSyntactic());
+ initReservedSlot(THIS_VALUE_OR_SCOPE_SLOT, GetThisValue(obj));
+ }
+
+ void initScopeUnchecked(LexicalScope* scope) {
+ initReservedSlot(THIS_VALUE_OR_SCOPE_SLOT, PrivateGCThingValue(scope));
+ }
+
+ void initScope(LexicalScope* scope) {
+ MOZ_ASSERT(!isGlobal());
+ MOZ_ASSERT(isSyntactic());
+ initScopeUnchecked(scope);
+ }
+
+ public:
+ static LexicalEnvironmentObject* createTemplateObject(JSContext* cx,
+ Handle<LexicalScope*> scope,
+ HandleObject enclosing,
+ gc::InitialHeap heap);
+
+ static LexicalEnvironmentObject* create(JSContext* cx, Handle<LexicalScope*> scope,
+ AbstractFramePtr frame);
+ static LexicalEnvironmentObject* createGlobal(JSContext* cx, Handle<GlobalObject*> global);
+ static LexicalEnvironmentObject* createNonSyntactic(JSContext* cx, HandleObject enclosing);
+ static LexicalEnvironmentObject* createHollowForDebug(JSContext* cx,
+ Handle<LexicalScope*> scope);
+
+ // Create a new LexicalEnvironmentObject with the same enclosing env and
+ // variable values as this.
+ static LexicalEnvironmentObject* clone(JSContext* cx, Handle<LexicalEnvironmentObject*> env);
+
+ // Create a new LexicalEnvironmentObject with the same enclosing env as
+ // this, with all variables uninitialized.
+ static LexicalEnvironmentObject* recreate(JSContext* cx, Handle<LexicalEnvironmentObject*> env);
+
+ // For non-extensible lexical environments, the LexicalScope that created
+ // this environment. Otherwise asserts.
+ LexicalScope& scope() const {
+ Value v = getReservedSlot(THIS_VALUE_OR_SCOPE_SLOT);
+ MOZ_ASSERT(!isExtensible() && v.isPrivateGCThing());
+ return *static_cast<LexicalScope*>(v.toGCThing());
+ }
+
+ // Is this the global lexical scope?
+ bool isGlobal() const {
+ return enclosingEnvironment().is<GlobalObject>();
+ }
+
+ GlobalObject& global() const {
+ return enclosingEnvironment().as<GlobalObject>();
+ }
+
+ // Global and non-syntactic lexical scopes are extensible. All other
+ // lexical scopes are not.
+ bool isExtensible() const;
+
+ // Is this a syntactic (i.e. corresponds to a source text) lexical
+ // environment?
+ bool isSyntactic() const {
+ return !isExtensible() || isGlobal();
+ }
+
+ // For extensible lexical environments, the 'this' value for its
+ // scope. Otherwise asserts.
+ Value thisValue() const;
+};
+
+class NamedLambdaObject : public LexicalEnvironmentObject
+{
+ static NamedLambdaObject* create(JSContext* cx, HandleFunction callee,
+ HandleFunction replacement,
+ HandleObject enclosing, gc::InitialHeap heap);
+
+ public:
+ static NamedLambdaObject* createTemplateObject(JSContext* cx, HandleFunction callee,
+ gc::InitialHeap heap);
+
+ static NamedLambdaObject* create(JSContext* cx, AbstractFramePtr frame);
+ static NamedLambdaObject* create(JSContext* cx, AbstractFramePtr frame,
+ HandleFunction replacement);
+
+ // For JITs.
+ static size_t lambdaSlot();
+};
+
+// A non-syntactic dynamic scope object that captures non-lexical
+// bindings. That is, a scope object that captures both qualified var
+// assignments and unqualified bareword assignments. Its parent is always the
+// global lexical environment.
+//
+// This is used in ExecuteInGlobalAndReturnScope and sits in front of the
+// global scope to store 'var' bindings, and to store fresh properties created
+// by assignments to undeclared variables that otherwise would have gone on
+// the global object.
+class NonSyntacticVariablesObject : public EnvironmentObject
+{
+ public:
+ static const unsigned RESERVED_SLOTS = 1;
+ static const Class class_;
+
+ static NonSyntacticVariablesObject* create(JSContext* cx);
+};
+
+// With environment objects on the run-time environment chain.
+class WithEnvironmentObject : public EnvironmentObject
+{
+ static const unsigned OBJECT_SLOT = 1;
+ static const unsigned THIS_SLOT = 2;
+ static const unsigned SCOPE_SLOT = 3;
+
+ public:
+ static const unsigned RESERVED_SLOTS = 4;
+ static const Class class_;
+
+ static WithEnvironmentObject* create(JSContext* cx, HandleObject object, HandleObject enclosing,
+ Handle<WithScope*> scope);
+ static WithEnvironmentObject* createNonSyntactic(JSContext* cx, HandleObject object,
+ HandleObject enclosing);
+
+ /* Return the 'o' in 'with (o)'. */
+ JSObject& object() const;
+
+ /* Return object for GetThisValue. */
+ JSObject* withThis() const;
+
+ /*
+ * Return whether this object is a syntactic with object. If not, this is
+ * a With object we inserted between the outermost syntactic scope and the
+ * global object to wrap the environment chain someone explicitly passed
+ * via JSAPI to CompileFunction or script evaluation.
+ */
+ bool isSyntactic() const;
+
+ // For syntactic with environment objects, the with scope.
+ WithScope& scope() const;
+
+ static inline size_t objectSlot() {
+ return OBJECT_SLOT;
+ }
+
+ static inline size_t thisSlot() {
+ return THIS_SLOT;
+ }
+};
+
+// Internal scope object used by JSOP_BINDNAME upon encountering an
+// uninitialized lexical slot or an assignment to a 'const' binding.
+//
+// ES6 lexical bindings cannot be accessed in any way (throwing
+// ReferenceErrors) until initialized. Normally, NAME operations
+// unconditionally check for uninitialized lexical slots. When getting or
+// looking up names, this can be done without slowing down normal operations
+// on the return value. When setting names, however, we do not want to pollute
+// all set-property paths with uninitialized lexical checks. For setting names
+// (i.e. JSOP_SETNAME), we emit an accompanying, preceding JSOP_BINDNAME which
+// finds the right scope on which to set the name. Moreover, when the name on
+// the scope is an uninitialized lexical, we cannot throw eagerly, as the spec
+// demands that the error be thrown after evaluating the RHS of
+// assignments. Instead, this sentinel scope object is pushed on the stack.
+// Attempting to access anything on this scope throws the appropriate
+// ReferenceError.
+//
+// ES6 'const' bindings induce a runtime error when assigned to outside
+// of initialization, regardless of strictness.
+class RuntimeLexicalErrorObject : public EnvironmentObject
+{
+ static const unsigned ERROR_SLOT = 1;
+
+ public:
+ static const unsigned RESERVED_SLOTS = 2;
+ static const Class class_;
+
+ static RuntimeLexicalErrorObject* create(JSContext* cx, HandleObject enclosing,
+ unsigned errorNumber);
+
+ unsigned errorNumber() {
+ return getReservedSlot(ERROR_SLOT).toInt32();
+ }
+};
+
+
+/*****************************************************************************/
+
+// A environment iterator describes the active environments starting from an
+// environment, scope pair. This pair may be derived from the current point of
+// execution in a frame. If derived in such a fashion, the EnvironmentIter
+// tracks whether the current scope is within the extent of this initial
+// frame. Here, "frame" means a single activation of: a function, eval, or
+// global code.
+class MOZ_RAII EnvironmentIter
+{
+ Rooted<ScopeIter> si_;
+ RootedObject env_;
+ AbstractFramePtr frame_;
+
+ void incrementScopeIter();
+ void settle();
+
+ // No value semantics.
+ EnvironmentIter(const EnvironmentIter& ei) = delete;
+
+ public:
+ // Constructing from a copy of an existing EnvironmentIter.
+ EnvironmentIter(JSContext* cx, const EnvironmentIter& ei
+ MOZ_GUARD_OBJECT_NOTIFIER_PARAM);
+
+ // Constructing from an environment, scope pair. All environments
+ // considered not to be withinInitialFrame, since no frame is given.
+ EnvironmentIter(JSContext* cx, JSObject* env, Scope* scope
+ MOZ_GUARD_OBJECT_NOTIFIER_PARAM);
+
+ // Constructing from a frame. Places the EnvironmentIter on the innermost
+ // environment at pc.
+ EnvironmentIter(JSContext* cx, AbstractFramePtr frame, jsbytecode* pc
+ MOZ_GUARD_OBJECT_NOTIFIER_PARAM);
+
+ bool done() const {
+ return si_.done();
+ }
+
+ explicit operator bool() const {
+ return !done();
+ }
+
+ void operator++(int) {
+ if (hasAnyEnvironmentObject())
+ env_ = &env_->as<EnvironmentObject>().enclosingEnvironment();
+ incrementScopeIter();
+ settle();
+ }
+
+ EnvironmentIter& operator++() {
+ operator++(1);
+ return *this;
+ }
+
+ // If done():
+ JSObject& enclosingEnvironment() const;
+
+ // If !done():
+ bool hasNonSyntacticEnvironmentObject() const;
+
+ bool hasSyntacticEnvironment() const {
+ return si_.hasSyntacticEnvironment();
+ }
+
+ bool hasAnyEnvironmentObject() const {
+ return hasNonSyntacticEnvironmentObject() || hasSyntacticEnvironment();
+ }
+
+ EnvironmentObject& environment() const {
+ MOZ_ASSERT(hasAnyEnvironmentObject());
+ return env_->as<EnvironmentObject>();
+ }
+
+ Scope& scope() const {
+ return *si_.scope();
+ }
+
+ Scope* maybeScope() const {
+ if (si_)
+ return si_.scope();
+ return nullptr;
+ }
+
+ JSFunction& callee() const {
+ return env_->as<CallObject>().callee();
+ }
+
+ bool withinInitialFrame() const {
+ return !!frame_;
+ }
+
+ AbstractFramePtr initialFrame() const {
+ MOZ_ASSERT(withinInitialFrame());
+ return frame_;
+ }
+
+ AbstractFramePtr maybeInitialFrame() const {
+ return frame_;
+ }
+
+ MOZ_DECL_USE_GUARD_OBJECT_NOTIFIER
+};
+
+// The key in MissingEnvironmentMap. For live frames, maps live frames to
+// their synthesized environments. For completely optimized-out environments,
+// maps the Scope to their synthesized environments. The env we synthesize for
+// Scopes are read-only, and we never use their parent links, so they don't
+// need to be distinct.
+//
+// That is, completely optimized out environments can't be distinguished by
+// frame. Note that even if the frame corresponding to the Scope is live on
+// the stack, it is unsound to synthesize an environment from that live
+// frame. In other words, the provenance of the environment chain is from
+// allocated closures (i.e., allocation sites) and is irrecoverable from
+// simple stack inspection (i.e., call sites).
+class MissingEnvironmentKey
+{
+ friend class LiveEnvironmentVal;
+
+ AbstractFramePtr frame_;
+ Scope* scope_;
+
+ public:
+ explicit MissingEnvironmentKey(const EnvironmentIter& ei)
+ : frame_(ei.maybeInitialFrame()),
+ scope_(ei.maybeScope())
+ { }
+
+ MissingEnvironmentKey(AbstractFramePtr frame, Scope* scope)
+ : frame_(frame),
+ scope_(scope)
+ { }
+
+ AbstractFramePtr frame() const { return frame_; }
+ Scope* scope() const { return scope_; }
+
+ void updateScope(Scope* scope) { scope_ = scope; }
+ void updateFrame(AbstractFramePtr frame) { frame_ = frame; }
+
+ // For use as hash policy.
+ typedef MissingEnvironmentKey Lookup;
+ static HashNumber hash(MissingEnvironmentKey sk);
+ static bool match(MissingEnvironmentKey sk1, MissingEnvironmentKey sk2);
+ bool operator!=(const MissingEnvironmentKey& other) const {
+ return frame_ != other.frame_ || scope_ != other.scope_;
+ }
+ static void rekey(MissingEnvironmentKey& k, const MissingEnvironmentKey& newKey) {
+ k = newKey;
+ }
+};
+
+// The value in LiveEnvironmentMap, mapped from by live environment objects.
+class LiveEnvironmentVal
+{
+ friend class DebugEnvironments;
+ friend class MissingEnvironmentKey;
+
+ AbstractFramePtr frame_;
+ HeapPtr<Scope*> scope_;
+
+ static void staticAsserts();
+
+ public:
+ explicit LiveEnvironmentVal(const EnvironmentIter& ei)
+ : frame_(ei.initialFrame()),
+ scope_(ei.maybeScope())
+ { }
+
+ AbstractFramePtr frame() const { return frame_; }
+ Scope* scope() const { return scope_; }
+
+ void updateFrame(AbstractFramePtr frame) { frame_ = frame; }
+
+ bool needsSweep();
+};
+
+
+/*****************************************************************************/
+
+/*
+ * Debug environment objects
+ *
+ * The debugger effectively turns every opcode into a potential direct eval.
+ * Naively, this would require creating a EnvironmentObject for every
+ * call/block scope and using JSOP_GETALIASEDVAR for every access. To optimize
+ * this, the engine assumes there is no debugger and optimizes scope access
+ * and creation accordingly. When the debugger wants to perform an unexpected
+ * eval-in-frame (or other, similar environment-requiring operations),
+ * fp->environmentChain is now incomplete.
+ *
+ * To resolve this, the debugger first calls GetDebugEnvironmentFor* to
+ * synthesize a "debug env chain". A debug env chain is just a chain of
+ * objects that fill in missing environments and protect the engine from
+ * unexpected access. (The latter means that some debugger operations, like
+ * redefining a lexical binding, can fail when a true eval would succeed.) To
+ * do both of these things, GetDebugEnvironmentFor* creates a new proxy
+ * DebugEnvironmentProxy to sit in front of every existing EnvironmentObject.
+ *
+ * GetDebugEnvironmentFor* ensures the invariant that the same
+ * DebugEnvironmentProxy is always produced for the same underlying
+ * environment (optimized or not!). This is maintained by some bookkeeping
+ * information stored in DebugEnvironments.
+ */
+
+extern JSObject*
+GetDebugEnvironmentForFunction(JSContext* cx, HandleFunction fun);
+
+extern JSObject*
+GetDebugEnvironmentForFrame(JSContext* cx, AbstractFramePtr frame, jsbytecode* pc);
+
+extern JSObject*
+GetDebugEnvironmentForGlobalLexicalEnvironment(JSContext* cx);
+
+/* Provides debugger access to a environment. */
+class DebugEnvironmentProxy : public ProxyObject
+{
+ /*
+ * The enclosing environment on the dynamic environment chain. This slot is analogous
+ * to the ENCLOSING_ENV_SLOT of a EnvironmentObject.
+ */
+ static const unsigned ENCLOSING_EXTRA = 0;
+
+ /*
+ * NullValue or a dense array holding the unaliased variables of a function
+ * frame that has been popped.
+ */
+ static const unsigned SNAPSHOT_EXTRA = 1;
+
+ public:
+ static DebugEnvironmentProxy* create(JSContext* cx, EnvironmentObject& env,
+ HandleObject enclosing);
+
+ EnvironmentObject& environment() const;
+ JSObject& enclosingEnvironment() const;
+
+ /* May only be called for proxies to function call objects. */
+ ArrayObject* maybeSnapshot() const;
+ void initSnapshot(ArrayObject& snapshot);
+
+ // Currently, the 'declarative' environments are function, module, and
+ // lexical environments.
+ bool isForDeclarative() const;
+
+ // Get a property by 'id', but returns sentinel values instead of throwing
+ // on exceptional cases.
+ bool getMaybeSentinelValue(JSContext* cx, HandleId id, MutableHandleValue vp);
+
+ // Returns true iff this is a function environment with its own this-binding
+ // (all functions except arrow functions and generator expression lambdas).
+ bool isFunctionEnvironmentWithThis();
+
+ // Does this debug environment not have a real counterpart or was never
+ // live (and thus does not have a synthesized EnvironmentObject or a
+ // snapshot)?
+ bool isOptimizedOut() const;
+};
+
+/* Maintains per-compartment debug environment bookkeeping information. */
+class DebugEnvironments
+{
+ /* The map from (non-debug) environments to debug environments. */
+ ObjectWeakMap proxiedEnvs;
+
+ /*
+ * The map from live frames which have optimized-away environments to the
+ * corresponding debug environments.
+ */
+ typedef HashMap<MissingEnvironmentKey,
+ ReadBarrieredDebugEnvironmentProxy,
+ MissingEnvironmentKey,
+ RuntimeAllocPolicy> MissingEnvironmentMap;
+ MissingEnvironmentMap missingEnvs;
+
+ /*
+ * The map from environment objects of live frames to the live frame. This
+ * map updated lazily whenever the debugger needs the information. In
+ * between two lazy updates, liveEnvs becomes incomplete (but not invalid,
+ * onPop* removes environments as they are popped). Thus, two consecutive
+ * debugger lazy updates of liveEnvs need only fill in the new
+ * environments.
+ */
+ typedef GCHashMap<ReadBarriered<JSObject*>,
+ LiveEnvironmentVal,
+ MovableCellHasher<ReadBarriered<JSObject*>>,
+ RuntimeAllocPolicy> LiveEnvironmentMap;
+ LiveEnvironmentMap liveEnvs;
+
+ public:
+ explicit DebugEnvironments(JSContext* cx);
+ ~DebugEnvironments();
+
+ private:
+ bool init();
+
+ static DebugEnvironments* ensureCompartmentData(JSContext* cx);
+
+ template <typename Environment, typename Scope>
+ static void onPopGeneric(JSContext* cx, const EnvironmentIter& ei);
+
+ public:
+ void mark(JSTracer* trc);
+ void sweep(JSRuntime* rt);
+ void finish();
+#ifdef JS_GC_ZEAL
+ void checkHashTablesAfterMovingGC(JSRuntime* rt);
+#endif
+
+ // If a live frame has a synthesized entry in missingEnvs, make sure it's not
+ // collected.
+ void markLiveFrame(JSTracer* trc, AbstractFramePtr frame);
+
+ static DebugEnvironmentProxy* hasDebugEnvironment(JSContext* cx, EnvironmentObject& env);
+ static bool addDebugEnvironment(JSContext* cx, Handle<EnvironmentObject*> env,
+ Handle<DebugEnvironmentProxy*> debugEnv);
+
+ static DebugEnvironmentProxy* hasDebugEnvironment(JSContext* cx, const EnvironmentIter& ei);
+ static bool addDebugEnvironment(JSContext* cx, const EnvironmentIter& ei,
+ Handle<DebugEnvironmentProxy*> debugEnv);
+
+ static bool updateLiveEnvironments(JSContext* cx);
+ static LiveEnvironmentVal* hasLiveEnvironment(EnvironmentObject& env);
+ static void unsetPrevUpToDateUntil(JSContext* cx, AbstractFramePtr frame);
+
+ // When a frame bails out from Ion to Baseline, there might be missing
+ // envs keyed on, and live envs containing, the old
+ // RematerializedFrame. Forward those values to the new BaselineFrame.
+ static void forwardLiveFrame(JSContext* cx, AbstractFramePtr from, AbstractFramePtr to);
+
+ // When an environment is popped, we store a snapshot of its bindings that
+ // live on the frame.
+ //
+ // This is done during frame unwinding, which cannot handle errors
+ // gracefully. Errors result in no snapshot being set on the
+ // DebugEnvironmentProxy.
+ static void takeFrameSnapshot(JSContext* cx, Handle<DebugEnvironmentProxy*> debugEnv,
+ AbstractFramePtr frame);
+
+ // In debug-mode, these must be called whenever exiting a scope that might
+ // have stack-allocated locals.
+ static void onPopCall(JSContext* cx, AbstractFramePtr frame);
+ static void onPopVar(JSContext* cx, const EnvironmentIter& ei);
+ static void onPopVar(JSContext* cx, AbstractFramePtr frame, jsbytecode* pc);
+ static void onPopLexical(JSContext* cx, const EnvironmentIter& ei);
+ static void onPopLexical(JSContext* cx, AbstractFramePtr frame, jsbytecode* pc);
+ static void onPopWith(AbstractFramePtr frame);
+ static void onCompartmentUnsetIsDebuggee(JSCompartment* c);
+};
+
+} /* namespace js */
+
+template <>
+inline bool
+JSObject::is<js::EnvironmentObject>() const
+{
+ return is<js::CallObject>() ||
+ is<js::VarEnvironmentObject>() ||
+ is<js::ModuleEnvironmentObject>() ||
+ is<js::LexicalEnvironmentObject>() ||
+ is<js::WithEnvironmentObject>() ||
+ is<js::NonSyntacticVariablesObject>() ||
+ is<js::RuntimeLexicalErrorObject>();
+}
+
+template<>
+bool
+JSObject::is<js::DebugEnvironmentProxy>() const;
+
+namespace js {
+
+inline bool
+IsSyntacticEnvironment(JSObject* env)
+{
+ if (!env->is<EnvironmentObject>())
+ return false;
+
+ if (env->is<WithEnvironmentObject>())
+ return env->as<WithEnvironmentObject>().isSyntactic();
+
+ if (env->is<LexicalEnvironmentObject>())
+ return env->as<LexicalEnvironmentObject>().isSyntactic();
+
+ if (env->is<NonSyntacticVariablesObject>())
+ return false;
+
+ return true;
+}
+
+inline bool
+IsExtensibleLexicalEnvironment(JSObject* env)
+{
+ return env->is<LexicalEnvironmentObject>() &&
+ env->as<LexicalEnvironmentObject>().isExtensible();
+}
+
+inline bool
+IsGlobalLexicalEnvironment(JSObject* env)
+{
+ return env->is<LexicalEnvironmentObject>() &&
+ env->as<LexicalEnvironmentObject>().isGlobal();
+}
+
+template <typename SpecificEnvironment>
+inline bool
+IsFrameInitialEnvironment(AbstractFramePtr frame, SpecificEnvironment& env)
+{
+ // A frame's initial environment is the innermost environment
+ // corresponding to the scope chain from frame.script()->bodyScope() to
+ // frame.script()->outermostScope(). This environment must be on the chain
+ // for the frame to be considered initialized. That is, it must be on the
+ // chain for the environment chain to fully match the scope chain at the
+ // start of execution in the frame.
+ //
+ // This logic must be in sync with the HAS_INITIAL_ENV logic in
+ // InitFromBailout.
+
+ // A function frame's CallObject, if present, is always the initial
+ // environment.
+ if (mozilla::IsSame<SpecificEnvironment, CallObject>::value)
+ return true;
+
+ // For an eval frame, the VarEnvironmentObject, if present, is always the
+ // initial environment.
+ if (mozilla::IsSame<SpecificEnvironment, VarEnvironmentObject>::value &&
+ frame.isEvalFrame())
+ {
+ return true;
+ }
+
+ // For named lambda frames without CallObjects (i.e., no binding in the
+ // body of the function was closed over), the LexicalEnvironmentObject
+ // corresponding to the named lambda scope is the initial environment.
+ if (mozilla::IsSame<SpecificEnvironment, NamedLambdaObject>::value &&
+ frame.isFunctionFrame() &&
+ frame.callee()->needsNamedLambdaEnvironment() &&
+ !frame.callee()->needsCallObject())
+ {
+ LexicalScope* namedLambdaScope = frame.script()->maybeNamedLambdaScope();
+ return &env.template as<LexicalEnvironmentObject>().scope() == namedLambdaScope;
+ }
+
+ return false;
+}
+
+extern bool
+CreateObjectsForEnvironmentChain(JSContext* cx, AutoObjectVector& chain,
+ HandleObject terminatingEnv,
+ MutableHandleObject envObj);
+
+ModuleEnvironmentObject* GetModuleEnvironmentForScript(JSScript* script);
+
+MOZ_MUST_USE bool
+GetThisValueForDebuggerMaybeOptimizedOut(JSContext* cx, AbstractFramePtr frame,
+ jsbytecode* pc, MutableHandleValue res);
+
+MOZ_MUST_USE bool
+CheckVarNameConflict(JSContext* cx, Handle<LexicalEnvironmentObject*> lexicalEnv,
+ HandlePropertyName name);
+
+MOZ_MUST_USE bool
+CheckCanDeclareGlobalBinding(JSContext* cx, Handle<GlobalObject*> global,
+ HandlePropertyName name, bool isFunction);
+
+MOZ_MUST_USE bool
+CheckLexicalNameConflict(JSContext* cx, Handle<LexicalEnvironmentObject*> lexicalEnv,
+ HandleObject varObj, HandlePropertyName name);
+
+MOZ_MUST_USE bool
+CheckGlobalDeclarationConflicts(JSContext* cx, HandleScript script,
+ Handle<LexicalEnvironmentObject*> lexicalEnv,
+ HandleObject varObj);
+
+MOZ_MUST_USE bool
+CheckEvalDeclarationConflicts(JSContext* cx, HandleScript script, HandleObject envChain,
+ HandleObject varObj);
+
+MOZ_MUST_USE bool
+InitFunctionEnvironmentObjects(JSContext* cx, AbstractFramePtr frame);
+
+MOZ_MUST_USE bool
+PushVarEnvironmentObject(JSContext* cx, HandleScope scope, AbstractFramePtr frame);
+
+#ifdef DEBUG
+bool
+AnalyzeEntrainedVariables(JSContext* cx, HandleScript script);
+#endif
+
+} // namespace js
+
+namespace JS {
+
+template <>
+struct DeletePolicy<js::DebugEnvironments> : public js::GCManagedDeletePolicy<js::DebugEnvironments>
+{};
+
+} // namespace JS
+
+#endif /* vm_EnvironmentObject_h */