diff options
Diffstat (limited to 'js/src/tests/ecma/Math/15.8.2.18.js')
-rw-r--r-- | js/src/tests/ecma/Math/15.8.2.18.js | 131 |
1 files changed, 131 insertions, 0 deletions
diff --git a/js/src/tests/ecma/Math/15.8.2.18.js b/js/src/tests/ecma/Math/15.8.2.18.js new file mode 100644 index 000000000..d857599ef --- /dev/null +++ b/js/src/tests/ecma/Math/15.8.2.18.js @@ -0,0 +1,131 @@ +/* -*- tab-width: 2; indent-tabs-mode: nil; js-indent-level: 2 -*- */ +/* This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + + +/** + File Name: 15.8.2.18.js + ECMA Section: 15.8.2.18 tan( x ) + Description: return an approximation to the tan of the + argument. argument is expressed in radians + special cases: + - if x is NaN result is NaN + - if x is 0 result is 0 + - if x is -0 result is -0 + - if x is Infinity or -Infinity result is NaN + Author: christine@netscape.com + Date: 7 july 1997 +*/ + +var SECTION = "15.8.2.18"; +var VERSION = "ECMA_1"; +startTest(); +var TITLE = "Math.tan(x)"; +var EXCLUDE = "true"; + +writeHeaderToLog( SECTION + " "+ TITLE); + +new TestCase( SECTION, + "Math.tan.length", + 1, + Math.tan.length ); + +new TestCase( SECTION, + "Math.tan()", + Number.NaN, + Math.tan() ); + +new TestCase( SECTION, + "Math.tan(void 0)", + Number.NaN, + Math.tan(void 0)); + +new TestCase( SECTION, + "Math.tan(null)", + 0, + Math.tan(null) ); + +new TestCase( SECTION, + "Math.tan(false)", + 0, + Math.tan(false) ); + +new TestCase( SECTION, + "Math.tan(NaN)", + Number.NaN, + Math.tan(Number.NaN) ); + +new TestCase( SECTION, + "Math.tan(0)", + 0, + Math.tan(0)); + +new TestCase( SECTION, + "Math.tan(-0)", + -0, + Math.tan(-0)); + +new TestCase( SECTION, + "Math.tan(Infinity)", + Number.NaN, + Math.tan(Number.POSITIVE_INFINITY)); + +new TestCase( SECTION, + "Math.tan(-Infinity)", + Number.NaN, + Math.tan(Number.NEGATIVE_INFINITY)); + +new TestCase( SECTION, + "Math.tan(Math.PI/4)", + 1, + Math.tan(Math.PI/4)); + +new TestCase( SECTION, + "Math.tan(3*Math.PI/4)", + -1, + Math.tan(3*Math.PI/4)); + +new TestCase( SECTION, + "Math.tan(Math.PI)", + -0, + Math.tan(Math.PI)); + +new TestCase( SECTION, + "Math.tan(5*Math.PI/4)", + 1, + Math.tan(5*Math.PI/4)); + +new TestCase( SECTION, + "Math.tan(7*Math.PI/4)", + -1, + Math.tan(7*Math.PI/4)); + +new TestCase( SECTION, + "Infinity/Math.tan(-0)", + -Infinity, + Infinity/Math.tan(-0) ); + +/* + Arctan (x) ~ PI/2 - 1/x for large x. For x = 1.6x10^16, 1/x is about the last binary digit of double precision PI/2. + That is to say, perturbing PI/2 by this much is about the smallest rounding error possible. + + This suggests that the answer Christine is getting and a real Infinity are "adjacent" results from the tangent function. I + suspect that tan (PI/2 + one ulp) is a negative result about the same size as tan (PI/2) and that this pair are the closest + results to infinity that the algorithm can deliver. + + In any case, my call is that the answer we're seeing is "right". I suggest the test pass on any result this size or larger. + = C = +*/ + +new TestCase( SECTION, + "Math.tan(3*Math.PI/2) >= 5443000000000000", + true, + Math.tan(3*Math.PI/2) >= 5443000000000000 ); + +new TestCase( SECTION, + "Math.tan(Math.PI/2) >= 5443000000000000", + true, + Math.tan(Math.PI/2) >= 5443000000000000 ); + +test(); |