diff options
Diffstat (limited to 'js/src/jit/arm64/vixl/MozAssembler-vixl.cpp')
-rw-r--r-- | js/src/jit/arm64/vixl/MozAssembler-vixl.cpp | 712 |
1 files changed, 712 insertions, 0 deletions
diff --git a/js/src/jit/arm64/vixl/MozAssembler-vixl.cpp b/js/src/jit/arm64/vixl/MozAssembler-vixl.cpp new file mode 100644 index 000000000..3b2e0a8bc --- /dev/null +++ b/js/src/jit/arm64/vixl/MozAssembler-vixl.cpp @@ -0,0 +1,712 @@ +// Copyright 2015, ARM Limited +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are met: +// +// * Redistributions of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// * Neither the name of ARM Limited nor the names of its contributors may be +// used to endorse or promote products derived from this software without +// specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND +// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE +// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#include "jsutil.h" + +#include "jit/arm64/vixl/Assembler-vixl.h" +#include "jit/Label.h" + +namespace vixl { + + +// Assembler +void Assembler::FinalizeCode() { +#ifdef DEBUG + finalized_ = true; +#endif +} + +// Unbound Label Representation. +// +// We can have multiple branches using the same label before it is bound. +// Assembler::bind() must then be able to enumerate all the branches and patch +// them to target the final label location. +// +// When a Label is unbound with uses, its offset is pointing to the tip of a +// linked list of uses. The uses can be branches or adr/adrp instructions. In +// the case of branches, the next member in the linked list is simply encoded +// as the branch target. For adr/adrp, the relative pc offset is encoded in the +// immediate field as a signed instruction offset. +// +// In both cases, the end of the list is encoded as a 0 pc offset, i.e. the +// tail is pointing to itself. + +static const ptrdiff_t kEndOfLabelUseList = 0; + +BufferOffset +MozBaseAssembler::NextLink(BufferOffset cur) +{ + Instruction* link = getInstructionAt(cur); + // Raw encoded offset. + ptrdiff_t offset = link->ImmPCRawOffset(); + // End of the list is encoded as 0. + if (offset == kEndOfLabelUseList) + return BufferOffset(); + // The encoded offset is the number of instructions to move. + return BufferOffset(cur.getOffset() + offset * kInstructionSize); +} + +static ptrdiff_t +EncodeOffset(BufferOffset cur, BufferOffset next) +{ + MOZ_ASSERT(next.assigned() && cur.assigned()); + ptrdiff_t offset = next.getOffset() - cur.getOffset(); + MOZ_ASSERT(offset % kInstructionSize == 0); + return offset / kInstructionSize; +} + +void +MozBaseAssembler::SetNextLink(BufferOffset cur, BufferOffset next) +{ + Instruction* link = getInstructionAt(cur); + link->SetImmPCRawOffset(EncodeOffset(cur, next)); +} + +// A common implementation for the LinkAndGet<Type>OffsetTo helpers. +// +// If the label is bound, returns the offset as a multiple of 1 << elementShift. +// Otherwise, links the instruction to the label and returns the raw offset to +// encode. (This will be an instruction count.) +// +// The offset is calculated by aligning the PC and label addresses down to a +// multiple of 1 << elementShift, then calculating the (scaled) offset between +// them. This matches the semantics of adrp, for example. (Assuming that the +// assembler buffer is page-aligned, which it probably isn't.) +// +// For an unbound label, the returned offset will be encodable in the provided +// branch range. If the label is already bound, the caller is expected to make +// sure that it is in range, and emit the necessary branch instrutions if it +// isn't. +// +ptrdiff_t +MozBaseAssembler::LinkAndGetOffsetTo(BufferOffset branch, ImmBranchRangeType branchRange, + unsigned elementShift, Label* label) +{ + if (armbuffer_.oom()) + return kEndOfLabelUseList; + + if (label->bound()) { + // The label is bound: all uses are already linked. + ptrdiff_t branch_offset = ptrdiff_t(branch.getOffset() >> elementShift); + ptrdiff_t label_offset = ptrdiff_t(label->offset() >> elementShift); + return label_offset - branch_offset; + } + + // Keep track of short-range branches targeting unbound labels. We may need + // to insert veneers in PatchShortRangeBranchToVeneer() below. + if (branchRange < NumShortBranchRangeTypes) { + // This is the last possible branch target. + BufferOffset deadline(branch.getOffset() + + Instruction::ImmBranchMaxForwardOffset(branchRange)); + armbuffer_.registerBranchDeadline(branchRange, deadline); + } + + // The label is unbound and previously unused: Store the offset in the label + // itself for patching by bind(). + if (!label->used()) { + label->use(branch.getOffset()); + return kEndOfLabelUseList; + } + + // The label is unbound and has multiple users. Create a linked list between + // the branches, and update the linked list head in the label struct. This is + // not always trivial since the branches in the linked list have limited + // ranges. + + // What is the earliest buffer offset that would be reachable by the branch + // we're about to add? + ptrdiff_t earliestReachable = + branch.getOffset() + Instruction::ImmBranchMinBackwardOffset(branchRange); + + // If the existing instruction at the head of the list is within reach of the + // new branch, we can simply insert the new branch at the front of the list. + if (label->offset() >= earliestReachable) { + ptrdiff_t offset = EncodeOffset(branch, BufferOffset(label)); + label->use(branch.getOffset()); + MOZ_ASSERT(offset != kEndOfLabelUseList); + return offset; + } + + // The label already has a linked list of uses, but we can't reach the head + // of the list with the allowed branch range. Insert this branch at a + // different position in the list. + // + // Find an existing branch, exbr, such that: + // + // 1. The new branch can be reached by exbr, and either + // 2a. The new branch can reach exbr's target, or + // 2b. The exbr branch is at the end of the list. + // + // Then the new branch can be inserted after exbr in the linked list. + // + // We know that it is always possible to find an exbr branch satisfying these + // conditions because of the PatchShortRangeBranchToVeneer() mechanism. All + // branches are guaranteed to either be able to reach the end of the + // assembler buffer, or they will be pointing to an unconditional branch that + // can. + // + // In particular, the end of the list is always a viable candidate, so we'll + // just get that. + BufferOffset next(label); + BufferOffset exbr; + do { + exbr = next; + next = NextLink(next); + } while (next.assigned()); + SetNextLink(exbr, branch); + + // This branch becomes the new end of the list. + return kEndOfLabelUseList; +} + +ptrdiff_t MozBaseAssembler::LinkAndGetByteOffsetTo(BufferOffset branch, Label* label) { + return LinkAndGetOffsetTo(branch, UncondBranchRangeType, 0, label); +} + +ptrdiff_t MozBaseAssembler::LinkAndGetInstructionOffsetTo(BufferOffset branch, + ImmBranchRangeType branchRange, + Label* label) { + return LinkAndGetOffsetTo(branch, branchRange, kInstructionSizeLog2, label); +} + +ptrdiff_t MozBaseAssembler::LinkAndGetPageOffsetTo(BufferOffset branch, Label* label) { + return LinkAndGetOffsetTo(branch, UncondBranchRangeType, kPageSizeLog2, label); +} + +BufferOffset Assembler::b(int imm26) { + return EmitBranch(B | ImmUncondBranch(imm26)); +} + + +void Assembler::b(Instruction* at, int imm26) { + return EmitBranch(at, B | ImmUncondBranch(imm26)); +} + + +BufferOffset Assembler::b(int imm19, Condition cond) { + return EmitBranch(B_cond | ImmCondBranch(imm19) | cond); +} + + +void Assembler::b(Instruction* at, int imm19, Condition cond) { + EmitBranch(at, B_cond | ImmCondBranch(imm19) | cond); +} + + +BufferOffset Assembler::b(Label* label) { + // Encode the relative offset from the inserted branch to the label. + return b(LinkAndGetInstructionOffsetTo(nextInstrOffset(), UncondBranchRangeType, label)); +} + + +BufferOffset Assembler::b(Label* label, Condition cond) { + // Encode the relative offset from the inserted branch to the label. + return b(LinkAndGetInstructionOffsetTo(nextInstrOffset(), CondBranchRangeType, label), cond); +} + +void Assembler::br(Instruction* at, const Register& xn) { + VIXL_ASSERT(xn.Is64Bits()); + // No need for EmitBranch(): no immediate offset needs fixing. + Emit(at, BR | Rn(xn)); +} + + +void Assembler::blr(Instruction* at, const Register& xn) { + VIXL_ASSERT(xn.Is64Bits()); + // No need for EmitBranch(): no immediate offset needs fixing. + Emit(at, BLR | Rn(xn)); +} + + +void Assembler::bl(int imm26) { + EmitBranch(BL | ImmUncondBranch(imm26)); +} + + +void Assembler::bl(Instruction* at, int imm26) { + EmitBranch(at, BL | ImmUncondBranch(imm26)); +} + + +void Assembler::bl(Label* label) { + // Encode the relative offset from the inserted branch to the label. + return bl(LinkAndGetInstructionOffsetTo(nextInstrOffset(), UncondBranchRangeType, label)); +} + + +void Assembler::cbz(const Register& rt, int imm19) { + EmitBranch(SF(rt) | CBZ | ImmCmpBranch(imm19) | Rt(rt)); +} + + +void Assembler::cbz(Instruction* at, const Register& rt, int imm19) { + EmitBranch(at, SF(rt) | CBZ | ImmCmpBranch(imm19) | Rt(rt)); +} + + +void Assembler::cbz(const Register& rt, Label* label) { + // Encode the relative offset from the inserted branch to the label. + return cbz(rt, LinkAndGetInstructionOffsetTo(nextInstrOffset(), CondBranchRangeType, label)); +} + + +void Assembler::cbnz(const Register& rt, int imm19) { + EmitBranch(SF(rt) | CBNZ | ImmCmpBranch(imm19) | Rt(rt)); +} + + +void Assembler::cbnz(Instruction* at, const Register& rt, int imm19) { + EmitBranch(at, SF(rt) | CBNZ | ImmCmpBranch(imm19) | Rt(rt)); +} + + +void Assembler::cbnz(const Register& rt, Label* label) { + // Encode the relative offset from the inserted branch to the label. + return cbnz(rt, LinkAndGetInstructionOffsetTo(nextInstrOffset(), CondBranchRangeType, label)); +} + + +void Assembler::tbz(const Register& rt, unsigned bit_pos, int imm14) { + VIXL_ASSERT(rt.Is64Bits() || (rt.Is32Bits() && (bit_pos < kWRegSize))); + EmitBranch(TBZ | ImmTestBranchBit(bit_pos) | ImmTestBranch(imm14) | Rt(rt)); +} + + +void Assembler::tbz(Instruction* at, const Register& rt, unsigned bit_pos, int imm14) { + VIXL_ASSERT(rt.Is64Bits() || (rt.Is32Bits() && (bit_pos < kWRegSize))); + EmitBranch(at, TBZ | ImmTestBranchBit(bit_pos) | ImmTestBranch(imm14) | Rt(rt)); +} + + +void Assembler::tbz(const Register& rt, unsigned bit_pos, Label* label) { + // Encode the relative offset from the inserted branch to the label. + return tbz(rt, bit_pos, LinkAndGetInstructionOffsetTo(nextInstrOffset(), TestBranchRangeType, label)); +} + + +void Assembler::tbnz(const Register& rt, unsigned bit_pos, int imm14) { + VIXL_ASSERT(rt.Is64Bits() || (rt.Is32Bits() && (bit_pos < kWRegSize))); + EmitBranch(TBNZ | ImmTestBranchBit(bit_pos) | ImmTestBranch(imm14) | Rt(rt)); +} + + +void Assembler::tbnz(Instruction* at, const Register& rt, unsigned bit_pos, int imm14) { + VIXL_ASSERT(rt.Is64Bits() || (rt.Is32Bits() && (bit_pos < kWRegSize))); + EmitBranch(at, TBNZ | ImmTestBranchBit(bit_pos) | ImmTestBranch(imm14) | Rt(rt)); +} + + +void Assembler::tbnz(const Register& rt, unsigned bit_pos, Label* label) { + // Encode the relative offset from the inserted branch to the label. + return tbnz(rt, bit_pos, LinkAndGetInstructionOffsetTo(nextInstrOffset(), TestBranchRangeType, label)); +} + + +void Assembler::adr(const Register& rd, int imm21) { + VIXL_ASSERT(rd.Is64Bits()); + EmitBranch(ADR | ImmPCRelAddress(imm21) | Rd(rd)); +} + + +void Assembler::adr(Instruction* at, const Register& rd, int imm21) { + VIXL_ASSERT(rd.Is64Bits()); + EmitBranch(at, ADR | ImmPCRelAddress(imm21) | Rd(rd)); +} + + +void Assembler::adr(const Register& rd, Label* label) { + // Encode the relative offset from the inserted adr to the label. + return adr(rd, LinkAndGetByteOffsetTo(nextInstrOffset(), label)); +} + + +void Assembler::adrp(const Register& rd, int imm21) { + VIXL_ASSERT(rd.Is64Bits()); + EmitBranch(ADRP | ImmPCRelAddress(imm21) | Rd(rd)); +} + + +void Assembler::adrp(Instruction* at, const Register& rd, int imm21) { + VIXL_ASSERT(rd.Is64Bits()); + EmitBranch(at, ADRP | ImmPCRelAddress(imm21) | Rd(rd)); +} + + +void Assembler::adrp(const Register& rd, Label* label) { + VIXL_ASSERT(AllowPageOffsetDependentCode()); + // Encode the relative offset from the inserted adr to the label. + return adrp(rd, LinkAndGetPageOffsetTo(nextInstrOffset(), label)); +} + + +BufferOffset Assembler::ands(const Register& rd, const Register& rn, const Operand& operand) { + return Logical(rd, rn, operand, ANDS); +} + + +BufferOffset Assembler::tst(const Register& rn, const Operand& operand) { + return ands(AppropriateZeroRegFor(rn), rn, operand); +} + + +void Assembler::ldr(Instruction* at, const CPURegister& rt, int imm19) { + LoadLiteralOp op = LoadLiteralOpFor(rt); + Emit(at, op | ImmLLiteral(imm19) | Rt(rt)); +} + + +BufferOffset Assembler::hint(SystemHint code) { + return Emit(HINT | ImmHint(code) | Rt(xzr)); +} + + +void Assembler::hint(Instruction* at, SystemHint code) { + Emit(at, HINT | ImmHint(code) | Rt(xzr)); +} + + +void Assembler::svc(Instruction* at, int code) { + VIXL_ASSERT(is_uint16(code)); + Emit(at, SVC | ImmException(code)); +} + + +void Assembler::nop(Instruction* at) { + hint(at, NOP); +} + + +BufferOffset Assembler::Logical(const Register& rd, const Register& rn, + const Operand operand, LogicalOp op) +{ + VIXL_ASSERT(rd.size() == rn.size()); + if (operand.IsImmediate()) { + int64_t immediate = operand.immediate(); + unsigned reg_size = rd.size(); + + VIXL_ASSERT(immediate != 0); + VIXL_ASSERT(immediate != -1); + VIXL_ASSERT(rd.Is64Bits() || is_uint32(immediate)); + + // If the operation is NOT, invert the operation and immediate. + if ((op & NOT) == NOT) { + op = static_cast<LogicalOp>(op & ~NOT); + immediate = rd.Is64Bits() ? ~immediate : (~immediate & kWRegMask); + } + + unsigned n, imm_s, imm_r; + if (IsImmLogical(immediate, reg_size, &n, &imm_s, &imm_r)) { + // Immediate can be encoded in the instruction. + return LogicalImmediate(rd, rn, n, imm_s, imm_r, op); + } else { + // This case is handled in the macro assembler. + VIXL_UNREACHABLE(); + } + } else { + VIXL_ASSERT(operand.IsShiftedRegister()); + VIXL_ASSERT(operand.reg().size() == rd.size()); + Instr dp_op = static_cast<Instr>(op | LogicalShiftedFixed); + return DataProcShiftedRegister(rd, rn, operand, LeaveFlags, dp_op); + } +} + + +BufferOffset Assembler::LogicalImmediate(const Register& rd, const Register& rn, + unsigned n, unsigned imm_s, unsigned imm_r, LogicalOp op) +{ + unsigned reg_size = rd.size(); + Instr dest_reg = (op == ANDS) ? Rd(rd) : RdSP(rd); + return Emit(SF(rd) | LogicalImmediateFixed | op | BitN(n, reg_size) | + ImmSetBits(imm_s, reg_size) | ImmRotate(imm_r, reg_size) | dest_reg | Rn(rn)); +} + + +BufferOffset Assembler::DataProcShiftedRegister(const Register& rd, const Register& rn, + const Operand& operand, FlagsUpdate S, Instr op) +{ + VIXL_ASSERT(operand.IsShiftedRegister()); + VIXL_ASSERT(rn.Is64Bits() || (rn.Is32Bits() && is_uint5(operand.shift_amount()))); + return Emit(SF(rd) | op | Flags(S) | + ShiftDP(operand.shift()) | ImmDPShift(operand.shift_amount()) | + Rm(operand.reg()) | Rn(rn) | Rd(rd)); +} + + +void MozBaseAssembler::InsertIndexIntoTag(uint8_t* load, uint32_t index) { + // Store the js::jit::PoolEntry index into the instruction. + // finishPool() will walk over all literal load instructions + // and use PatchConstantPoolLoad() to patch to the final relative offset. + *((uint32_t*)load) |= Assembler::ImmLLiteral(index); +} + + +bool MozBaseAssembler::PatchConstantPoolLoad(void* loadAddr, void* constPoolAddr) { + Instruction* load = reinterpret_cast<Instruction*>(loadAddr); + + // The load currently contains the js::jit::PoolEntry's index, + // as written by InsertIndexIntoTag(). + uint32_t index = load->ImmLLiteral(); + + // Each entry in the literal pool is uint32_t-sized, + // but literals may use multiple entries. + uint32_t* constPool = reinterpret_cast<uint32_t*>(constPoolAddr); + Instruction* source = reinterpret_cast<Instruction*>(&constPool[index]); + + load->SetImmLLiteral(source); + return false; // Nothing uses the return value. +} + +void +MozBaseAssembler::PatchShortRangeBranchToVeneer(ARMBuffer* buffer, unsigned rangeIdx, + BufferOffset deadline, BufferOffset veneer) +{ + // Reconstruct the position of the branch from (rangeIdx, deadline). + vixl::ImmBranchRangeType branchRange = static_cast<vixl::ImmBranchRangeType>(rangeIdx); + BufferOffset branch(deadline.getOffset() - Instruction::ImmBranchMaxForwardOffset(branchRange)); + Instruction *branchInst = buffer->getInst(branch); + Instruction *veneerInst = buffer->getInst(veneer); + + // Verify that the branch range matches what's encoded. + MOZ_ASSERT(Instruction::ImmBranchTypeToRange(branchInst->BranchType()) == branchRange); + + // We want to insert veneer after branch in the linked list of instructions + // that use the same unbound label. + // The veneer should be an unconditional branch. + ptrdiff_t nextElemOffset = branchInst->ImmPCRawOffset(); + + // If offset is 0, this is the end of the linked list. + if (nextElemOffset != kEndOfLabelUseList) { + // Make the offset relative to veneer so it targets the same instruction + // as branchInst. + nextElemOffset *= kInstructionSize; + nextElemOffset += branch.getOffset() - veneer.getOffset(); + nextElemOffset /= kInstructionSize; + } + Assembler::b(veneerInst, nextElemOffset); + + // Now point branchInst at veneer. See also SetNextLink() above. + branchInst->SetImmPCRawOffset(EncodeOffset(branch, veneer)); +} + +struct PoolHeader { + uint32_t data; + + struct Header { + // The size should take into account the pool header. + // The size is in units of Instruction (4bytes), not byte. + union { + struct { + uint32_t size : 15; + + // "Natural" guards are part of the normal instruction stream, + // while "non-natural" guards are inserted for the sole purpose + // of skipping around a pool. + bool isNatural : 1; + uint32_t ONES : 16; + }; + uint32_t data; + }; + + Header(int size_, bool isNatural_) + : size(size_), + isNatural(isNatural_), + ONES(0xffff) + { } + + Header(uint32_t data) + : data(data) + { + JS_STATIC_ASSERT(sizeof(Header) == sizeof(uint32_t)); + VIXL_ASSERT(ONES == 0xffff); + } + + uint32_t raw() const { + JS_STATIC_ASSERT(sizeof(Header) == sizeof(uint32_t)); + return data; + } + }; + + PoolHeader(int size_, bool isNatural_) + : data(Header(size_, isNatural_).raw()) + { } + + uint32_t size() const { + Header tmp(data); + return tmp.size; + } + + uint32_t isNatural() const { + Header tmp(data); + return tmp.isNatural; + } +}; + + +void MozBaseAssembler::WritePoolHeader(uint8_t* start, js::jit::Pool* p, bool isNatural) { + JS_STATIC_ASSERT(sizeof(PoolHeader) == 4); + + // Get the total size of the pool. + const uintptr_t totalPoolSize = sizeof(PoolHeader) + p->getPoolSize(); + const uintptr_t totalPoolInstructions = totalPoolSize / sizeof(Instruction); + + VIXL_ASSERT((totalPoolSize & 0x3) == 0); + VIXL_ASSERT(totalPoolInstructions < (1 << 15)); + + PoolHeader header(totalPoolInstructions, isNatural); + *(PoolHeader*)start = header; +} + + +void MozBaseAssembler::WritePoolFooter(uint8_t* start, js::jit::Pool* p, bool isNatural) { + return; +} + + +void MozBaseAssembler::WritePoolGuard(BufferOffset branch, Instruction* inst, BufferOffset dest) { + int byteOffset = dest.getOffset() - branch.getOffset(); + VIXL_ASSERT(byteOffset % kInstructionSize == 0); + + int instOffset = byteOffset >> kInstructionSizeLog2; + Assembler::b(inst, instOffset); +} + + +ptrdiff_t MozBaseAssembler::GetBranchOffset(const Instruction* ins) { + // Branch instructions use an instruction offset. + if (ins->BranchType() != UnknownBranchType) + return ins->ImmPCRawOffset() * kInstructionSize; + + // ADR and ADRP encode relative offsets and therefore require patching as if they were branches. + // ADR uses a byte offset. + if (ins->IsADR()) + return ins->ImmPCRawOffset(); + + // ADRP uses a page offset. + if (ins->IsADRP()) + return ins->ImmPCRawOffset() * kPageSize; + + MOZ_CRASH("Unsupported branch type"); +} + + +void MozBaseAssembler::RetargetNearBranch(Instruction* i, int offset, Condition cond, bool final) { + if (i->IsCondBranchImm()) { + VIXL_ASSERT(i->IsCondB()); + Assembler::b(i, offset, cond); + return; + } + MOZ_CRASH("Unsupported branch type"); +} + + +void MozBaseAssembler::RetargetNearBranch(Instruction* i, int byteOffset, bool final) { + const int instOffset = byteOffset >> kInstructionSizeLog2; + + // The only valid conditional instruction is B. + if (i->IsCondBranchImm()) { + VIXL_ASSERT(byteOffset % kInstructionSize == 0); + VIXL_ASSERT(i->IsCondB()); + Condition cond = static_cast<Condition>(i->ConditionBranch()); + Assembler::b(i, instOffset, cond); + return; + } + + // Valid unconditional branches are B and BL. + if (i->IsUncondBranchImm()) { + VIXL_ASSERT(byteOffset % kInstructionSize == 0); + if (i->IsUncondB()) { + Assembler::b(i, instOffset); + } else { + VIXL_ASSERT(i->IsBL()); + Assembler::bl(i, instOffset); + } + + VIXL_ASSERT(i->ImmUncondBranch() == instOffset); + return; + } + + // Valid compare branches are CBZ and CBNZ. + if (i->IsCompareBranch()) { + VIXL_ASSERT(byteOffset % kInstructionSize == 0); + Register rt = i->SixtyFourBits() ? Register::XRegFromCode(i->Rt()) + : Register::WRegFromCode(i->Rt()); + + if (i->IsCBZ()) { + Assembler::cbz(i, rt, instOffset); + } else { + VIXL_ASSERT(i->IsCBNZ()); + Assembler::cbnz(i, rt, instOffset); + } + + VIXL_ASSERT(i->ImmCmpBranch() == instOffset); + return; + } + + // Valid test branches are TBZ and TBNZ. + if (i->IsTestBranch()) { + VIXL_ASSERT(byteOffset % kInstructionSize == 0); + // Opposite of ImmTestBranchBit(): MSB in bit 5, 0:5 at bit 40. + unsigned bit_pos = (i->ImmTestBranchBit5() << 5) | (i->ImmTestBranchBit40()); + VIXL_ASSERT(is_uint6(bit_pos)); + + // Register size doesn't matter for the encoding. + Register rt = Register::XRegFromCode(i->Rt()); + + if (i->IsTBZ()) { + Assembler::tbz(i, rt, bit_pos, instOffset); + } else { + VIXL_ASSERT(i->IsTBNZ()); + Assembler::tbnz(i, rt, bit_pos, instOffset); + } + + VIXL_ASSERT(i->ImmTestBranch() == instOffset); + return; + } + + if (i->IsADR()) { + Register rd = Register::XRegFromCode(i->Rd()); + Assembler::adr(i, rd, byteOffset); + return; + } + + if (i->IsADRP()) { + const int pageOffset = byteOffset >> kPageSizeLog2; + Register rd = Register::XRegFromCode(i->Rd()); + Assembler::adrp(i, rd, pageOffset); + return; + } + + MOZ_CRASH("Unsupported branch type"); +} + + +void MozBaseAssembler::RetargetFarBranch(Instruction* i, uint8_t** slot, uint8_t* dest, Condition cond) { + MOZ_CRASH("RetargetFarBranch()"); +} + + +} // namespace vixl + |