diff options
Diffstat (limited to 'ipc/chromium/src/base/waitable_event_posix.cc')
-rw-r--r-- | ipc/chromium/src/base/waitable_event_posix.cc | 392 |
1 files changed, 392 insertions, 0 deletions
diff --git a/ipc/chromium/src/base/waitable_event_posix.cc b/ipc/chromium/src/base/waitable_event_posix.cc new file mode 100644 index 000000000..ed137c845 --- /dev/null +++ b/ipc/chromium/src/base/waitable_event_posix.cc @@ -0,0 +1,392 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ +/* vim: set ts=8 sts=2 et sw=2 tw=80: */ +// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#include "base/waitable_event.h" + +#include "base/condition_variable.h" +#include "base/lock.h" +#include "base/message_loop.h" + +// ----------------------------------------------------------------------------- +// A WaitableEvent on POSIX is implemented as a wait-list. Currently we don't +// support cross-process events (where one process can signal an event which +// others are waiting on). Because of this, we can avoid having one thread per +// listener in several cases. +// +// The WaitableEvent maintains a list of waiters, protected by a lock. Each +// waiter is either an async wait, in which case we have a Task and the +// MessageLoop to run it on, or a blocking wait, in which case we have the +// condition variable to signal. +// +// Waiting involves grabbing the lock and adding oneself to the wait list. Async +// waits can be canceled, which means grabbing the lock and removing oneself +// from the list. +// +// Waiting on multiple events is handled by adding a single, synchronous wait to +// the wait-list of many events. An event passes a pointer to itself when +// firing a waiter and so we can store that pointer to find out which event +// triggered. +// ----------------------------------------------------------------------------- + +namespace base { + +// ----------------------------------------------------------------------------- +// This is just an abstract base class for waking the two types of waiters +// ----------------------------------------------------------------------------- +WaitableEvent::WaitableEvent(bool manual_reset, bool initially_signaled) + : kernel_(new WaitableEventKernel(manual_reset, initially_signaled)) { +} + +WaitableEvent::~WaitableEvent() { +} + +void WaitableEvent::Reset() { + AutoLock locked(kernel_->lock_); + kernel_->signaled_ = false; +} + +void WaitableEvent::Signal() { + AutoLock locked(kernel_->lock_); + + if (kernel_->signaled_) + return; + + if (kernel_->manual_reset_) { + SignalAll(); + kernel_->signaled_ = true; + } else { + // In the case of auto reset, if no waiters were woken, we remain + // signaled. + if (!SignalOne()) + kernel_->signaled_ = true; + } +} + +bool WaitableEvent::IsSignaled() { + AutoLock locked(kernel_->lock_); + + const bool result = kernel_->signaled_; + if (result && !kernel_->manual_reset_) + kernel_->signaled_ = false; + return result; +} + +// ----------------------------------------------------------------------------- +// Synchronous waits + +// ----------------------------------------------------------------------------- +// This is an synchronous waiter. The thread is waiting on the given condition +// variable and the fired flag in this object. +// ----------------------------------------------------------------------------- +class SyncWaiter : public WaitableEvent::Waiter { + public: + SyncWaiter(ConditionVariable* cv, Lock* lock) + : fired_(false), + cv_(cv), + lock_(lock), + signaling_event_(NULL) { + } + + bool Fire(WaitableEvent *signaling_event) { + lock_->Acquire(); + const bool previous_value = fired_; + fired_ = true; + if (!previous_value) + signaling_event_ = signaling_event; + lock_->Release(); + + if (previous_value) + return false; + + cv_->Broadcast(); + + // SyncWaiters are stack allocated on the stack of the blocking thread. + return true; + } + + WaitableEvent* signaled_event() const { + return signaling_event_; + } + + // --------------------------------------------------------------------------- + // These waiters are always stack allocated and don't delete themselves. Thus + // there's no problem and the ABA tag is the same as the object pointer. + // --------------------------------------------------------------------------- + bool Compare(void* tag) { + return this == tag; + } + + // --------------------------------------------------------------------------- + // Called with lock held. + // --------------------------------------------------------------------------- + bool fired() const { + return fired_; + } + + // --------------------------------------------------------------------------- + // During a TimedWait, we need a way to make sure that an auto-reset + // WaitableEvent doesn't think that this event has been signaled between + // unlocking it and removing it from the wait-list. Called with lock held. + // --------------------------------------------------------------------------- + void Disable() { + fired_ = true; + } + + private: + bool fired_; + ConditionVariable *const cv_; + Lock *const lock_; + WaitableEvent* signaling_event_; // The WaitableEvent which woke us +}; + +bool WaitableEvent::TimedWait(const TimeDelta& max_time) { + const TimeTicks end_time(TimeTicks::Now() + max_time); + const bool finite_time = max_time.ToInternalValue() >= 0; + + kernel_->lock_.Acquire(); + if (kernel_->signaled_) { + if (!kernel_->manual_reset_) { + // In this case we were signaled when we had no waiters. Now that + // someone has waited upon us, we can automatically reset. + kernel_->signaled_ = false; + } + + kernel_->lock_.Release(); + return true; + } + + Lock lock; + lock.Acquire(); + ConditionVariable cv(&lock); + SyncWaiter sw(&cv, &lock); + + Enqueue(&sw); + kernel_->lock_.Release(); + // We are violating locking order here by holding the SyncWaiter lock but not + // the WaitableEvent lock. However, this is safe because we don't lock @lock_ + // again before unlocking it. + + for (;;) { + const TimeTicks current_time(TimeTicks::Now()); + + if (sw.fired() || (finite_time && current_time >= end_time)) { + const bool return_value = sw.fired(); + + // We can't acquire @lock_ before releasing @lock (because of locking + // order), however, inbetween the two a signal could be fired and @sw + // would accept it, however we will still return false, so the signal + // would be lost on an auto-reset WaitableEvent. Thus we call Disable + // which makes sw::Fire return false. + sw.Disable(); + lock.Release(); + + kernel_->lock_.Acquire(); + kernel_->Dequeue(&sw, &sw); + kernel_->lock_.Release(); + + return return_value; + } + + if (finite_time) { + const TimeDelta max_wait(end_time - current_time); + cv.TimedWait(max_wait); + } else { + cv.Wait(); + } + } +} + +bool WaitableEvent::Wait() { + return TimedWait(TimeDelta::FromSeconds(-1)); +} + +// ----------------------------------------------------------------------------- + + +// ----------------------------------------------------------------------------- +// Synchronous waiting on multiple objects. + +static bool // StrictWeakOrdering +cmp_fst_addr(const std::pair<WaitableEvent*, unsigned> &a, + const std::pair<WaitableEvent*, unsigned> &b) { + return a.first < b.first; +} + +// static +size_t WaitableEvent::WaitMany(WaitableEvent** raw_waitables, + size_t count) { + DCHECK(count) << "Cannot wait on no events"; + + // We need to acquire the locks in a globally consistent order. Thus we sort + // the array of waitables by address. We actually sort a pairs so that we can + // map back to the original index values later. + std::vector<std::pair<WaitableEvent*, size_t> > waitables; + waitables.reserve(count); + for (size_t i = 0; i < count; ++i) + waitables.push_back(std::make_pair(raw_waitables[i], i)); + + DCHECK_EQ(count, waitables.size()); + + sort(waitables.begin(), waitables.end(), cmp_fst_addr); + + // The set of waitables must be distinct. Since we have just sorted by + // address, we can check this cheaply by comparing pairs of consecutive + // elements. + for (size_t i = 0; i < waitables.size() - 1; ++i) { + DCHECK(waitables[i].first != waitables[i+1].first); + } + + Lock lock; + ConditionVariable cv(&lock); + SyncWaiter sw(&cv, &lock); + + const size_t r = EnqueueMany(&waitables[0], count, &sw); + if (r) { + // One of the events is already signaled. The SyncWaiter has not been + // enqueued anywhere. EnqueueMany returns the count of remaining waitables + // when the signaled one was seen, so the index of the signaled event is + // @count - @r. + return waitables[count - r].second; + } + + // At this point, we hold the locks on all the WaitableEvents and we have + // enqueued our waiter in them all. + lock.Acquire(); + // Release the WaitableEvent locks in the reverse order + for (size_t i = 0; i < count; ++i) { + waitables[count - (1 + i)].first->kernel_->lock_.Release(); + } + + for (;;) { + if (sw.fired()) + break; + + cv.Wait(); + } + lock.Release(); + + // The address of the WaitableEvent which fired is stored in the SyncWaiter. + WaitableEvent *const signaled_event = sw.signaled_event(); + // This will store the index of the raw_waitables which fired. + size_t signaled_index = 0; + + // Take the locks of each WaitableEvent in turn (except the signaled one) and + // remove our SyncWaiter from the wait-list + for (size_t i = 0; i < count; ++i) { + if (raw_waitables[i] != signaled_event) { + raw_waitables[i]->kernel_->lock_.Acquire(); + // There's no possible ABA issue with the address of the SyncWaiter here + // because it lives on the stack. Thus the tag value is just the pointer + // value again. + raw_waitables[i]->kernel_->Dequeue(&sw, &sw); + raw_waitables[i]->kernel_->lock_.Release(); + } else { + signaled_index = i; + } + } + + return signaled_index; +} + +// ----------------------------------------------------------------------------- +// If return value == 0: +// The locks of the WaitableEvents have been taken in order and the Waiter has +// been enqueued in the wait-list of each. None of the WaitableEvents are +// currently signaled +// else: +// None of the WaitableEvent locks are held. The Waiter has not been enqueued +// in any of them and the return value is the index of the first WaitableEvent +// which was signaled, from the end of the array. +// ----------------------------------------------------------------------------- +// static +size_t WaitableEvent::EnqueueMany + (std::pair<WaitableEvent*, size_t>* waitables, + size_t count, Waiter* waiter) { + if (!count) + return 0; + + waitables[0].first->kernel_->lock_.Acquire(); + if (waitables[0].first->kernel_->signaled_) { + if (!waitables[0].first->kernel_->manual_reset_) + waitables[0].first->kernel_->signaled_ = false; + waitables[0].first->kernel_->lock_.Release(); + return count; + } + + const size_t r = EnqueueMany(waitables + 1, count - 1, waiter); + if (r) { + waitables[0].first->kernel_->lock_.Release(); + } else { + waitables[0].first->Enqueue(waiter); + } + + return r; +} + +// ----------------------------------------------------------------------------- + + +// ----------------------------------------------------------------------------- +// Private functions... + +// ----------------------------------------------------------------------------- +// Wake all waiting waiters. Called with lock held. +// ----------------------------------------------------------------------------- +bool WaitableEvent::SignalAll() { + bool signaled_at_least_one = false; + + for (std::list<Waiter*>::iterator + i = kernel_->waiters_.begin(); i != kernel_->waiters_.end(); ++i) { + if ((*i)->Fire(this)) + signaled_at_least_one = true; + } + + kernel_->waiters_.clear(); + return signaled_at_least_one; +} + +// --------------------------------------------------------------------------- +// Try to wake a single waiter. Return true if one was woken. Called with lock +// held. +// --------------------------------------------------------------------------- +bool WaitableEvent::SignalOne() { + for (;;) { + if (kernel_->waiters_.empty()) + return false; + + const bool r = (*kernel_->waiters_.begin())->Fire(this); + kernel_->waiters_.pop_front(); + if (r) + return true; + } +} + +// ----------------------------------------------------------------------------- +// Add a waiter to the list of those waiting. Called with lock held. +// ----------------------------------------------------------------------------- +void WaitableEvent::Enqueue(Waiter* waiter) { + kernel_->waiters_.push_back(waiter); +} + +// ----------------------------------------------------------------------------- +// Remove a waiter from the list of those waiting. Return true if the waiter was +// actually removed. Called with lock held. +// ----------------------------------------------------------------------------- +bool WaitableEvent::WaitableEventKernel::Dequeue(Waiter* waiter, void* tag) { + for (std::list<Waiter*>::iterator + i = waiters_.begin(); i != waiters_.end(); ++i) { + if (*i == waiter && (*i)->Compare(tag)) { + waiters_.erase(i); + return true; + } + } + + return false; +} + +// ----------------------------------------------------------------------------- + +} // namespace base |