diff options
Diffstat (limited to 'ipc/chromium/src/base/time_win.cc')
-rw-r--r-- | ipc/chromium/src/base/time_win.cc | 376 |
1 files changed, 376 insertions, 0 deletions
diff --git a/ipc/chromium/src/base/time_win.cc b/ipc/chromium/src/base/time_win.cc new file mode 100644 index 000000000..54252b1b4 --- /dev/null +++ b/ipc/chromium/src/base/time_win.cc @@ -0,0 +1,376 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ +/* vim: set ts=8 sts=2 et sw=2 tw=80: */ +// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + + +// Windows Timer Primer +// +// A good article: http://www.ddj.com/windows/184416651 +// A good mozilla bug: http://bugzilla.mozilla.org/show_bug.cgi?id=363258 +// +// The default windows timer, GetSystemTimeAsFileTime is not very precise. +// It is only good to ~15.5ms. +// +// QueryPerformanceCounter is the logical choice for a high-precision timer. +// However, it is known to be buggy on some hardware. Specifically, it can +// sometimes "jump". On laptops, QPC can also be very expensive to call. +// It's 3-4x slower than timeGetTime() on desktops, but can be 10x slower +// on laptops. A unittest exists which will show the relative cost of various +// timers on any system. +// +// The next logical choice is timeGetTime(). timeGetTime has a precision of +// 1ms, but only if you call APIs (timeBeginPeriod()) which affect all other +// applications on the system. By default, precision is only 15.5ms. +// Unfortunately, we don't want to call timeBeginPeriod because we don't +// want to affect other applications. Further, on mobile platforms, use of +// faster multimedia timers can hurt battery life. See the intel +// article about this here: +// http://softwarecommunity.intel.com/articles/eng/1086.htm +// +// To work around all this, we're going to generally use timeGetTime(). We +// will only increase the system-wide timer if we're not running on battery +// power. Using timeBeginPeriod(1) is a requirement in order to make our +// message loop waits have the same resolution that our time measurements +// do. Otherwise, WaitForSingleObject(..., 1) will no less than 15ms when +// there is nothing else to waken the Wait. + +#include "base/time.h" + +#pragma comment(lib, "winmm.lib") +#include <windows.h> +#include <mmsystem.h> + +#include "base/basictypes.h" +#include "base/lock.h" +#include "base/logging.h" +#include "base/cpu.h" +#include "base/singleton.h" +#include "mozilla/Casting.h" + +using base::Time; +using base::TimeDelta; +using base::TimeTicks; +using mozilla::BitwiseCast; + +namespace { + +// From MSDN, FILETIME "Contains a 64-bit value representing the number of +// 100-nanosecond intervals since January 1, 1601 (UTC)." +int64_t FileTimeToMicroseconds(const FILETIME& ft) { + // Need to BitwiseCast to fix alignment, then divide by 10 to convert + // 100-nanoseconds to milliseconds. This only works on little-endian + // machines. + return BitwiseCast<int64_t>(ft) / 10; +} + +void MicrosecondsToFileTime(int64_t us, FILETIME* ft) { + DCHECK(us >= 0) << "Time is less than 0, negative values are not " + "representable in FILETIME"; + + // Multiply by 10 to convert milliseconds to 100-nanoseconds. BitwiseCast will + // handle alignment problems. This only works on little-endian machines. + *ft = BitwiseCast<FILETIME>(us * 10); +} + +int64_t CurrentWallclockMicroseconds() { + FILETIME ft; + ::GetSystemTimeAsFileTime(&ft); + return FileTimeToMicroseconds(ft); +} + +// Time between resampling the un-granular clock for this API. 60 seconds. +const int kMaxMillisecondsToAvoidDrift = 60 * Time::kMillisecondsPerSecond; + +int64_t initial_time = 0; +TimeTicks initial_ticks; + +void InitializeClock() { + initial_ticks = TimeTicks::Now(); + initial_time = CurrentWallclockMicroseconds(); +} + +} // namespace + +// Time ----------------------------------------------------------------------- + +// The internal representation of Time uses FILETIME, whose epoch is 1601-01-01 +// 00:00:00 UTC. ((1970-1601)*365+89)*24*60*60*1000*1000, where 89 is the +// number of leap year days between 1601 and 1970: (1970-1601)/4 excluding +// 1700, 1800, and 1900. +// static +const int64_t Time::kTimeTToMicrosecondsOffset = GG_INT64_C(11644473600000000); + +// static +Time Time::Now() { + if (initial_time == 0) + InitializeClock(); + + // We implement time using the high-resolution timers so that we can get + // timeouts which are smaller than 10-15ms. If we just used + // CurrentWallclockMicroseconds(), we'd have the less-granular timer. + // + // To make this work, we initialize the clock (initial_time) and the + // counter (initial_ctr). To compute the initial time, we can check + // the number of ticks that have elapsed, and compute the delta. + // + // To avoid any drift, we periodically resync the counters to the system + // clock. + while(true) { + TimeTicks ticks = TimeTicks::Now(); + + // Calculate the time elapsed since we started our timer + TimeDelta elapsed = ticks - initial_ticks; + + // Check if enough time has elapsed that we need to resync the clock. + if (elapsed.InMilliseconds() > kMaxMillisecondsToAvoidDrift) { + InitializeClock(); + continue; + } + + return Time(elapsed + Time(initial_time)); + } +} + +// static +Time Time::NowFromSystemTime() { + // Force resync. + InitializeClock(); + return Time(initial_time); +} + +// static +Time Time::FromFileTime(FILETIME ft) { + return Time(FileTimeToMicroseconds(ft)); +} + +FILETIME Time::ToFileTime() const { + FILETIME utc_ft; + MicrosecondsToFileTime(us_, &utc_ft); + return utc_ft; +} + +// static +Time Time::FromExploded(bool is_local, const Exploded& exploded) { + // Create the system struct representing our exploded time. It will either be + // in local time or UTC. + SYSTEMTIME st; + st.wYear = exploded.year; + st.wMonth = exploded.month; + st.wDayOfWeek = exploded.day_of_week; + st.wDay = exploded.day_of_month; + st.wHour = exploded.hour; + st.wMinute = exploded.minute; + st.wSecond = exploded.second; + st.wMilliseconds = exploded.millisecond; + + // Convert to FILETIME. + FILETIME ft; + if (!SystemTimeToFileTime(&st, &ft)) { + NOTREACHED() << "Unable to convert time"; + return Time(0); + } + + // Ensure that it's in UTC. + if (is_local) { + FILETIME utc_ft; + LocalFileTimeToFileTime(&ft, &utc_ft); + return Time(FileTimeToMicroseconds(utc_ft)); + } + return Time(FileTimeToMicroseconds(ft)); +} + +void Time::Explode(bool is_local, Exploded* exploded) const { + // FILETIME in UTC. + FILETIME utc_ft; + MicrosecondsToFileTime(us_, &utc_ft); + + // FILETIME in local time if necessary. + BOOL success = TRUE; + FILETIME ft; + if (is_local) + success = FileTimeToLocalFileTime(&utc_ft, &ft); + else + ft = utc_ft; + + // FILETIME in SYSTEMTIME (exploded). + SYSTEMTIME st; + if (!success || !FileTimeToSystemTime(&ft, &st)) { + NOTREACHED() << "Unable to convert time, don't know why"; + ZeroMemory(exploded, sizeof(*exploded)); + return; + } + + exploded->year = st.wYear; + exploded->month = st.wMonth; + exploded->day_of_week = st.wDayOfWeek; + exploded->day_of_month = st.wDay; + exploded->hour = st.wHour; + exploded->minute = st.wMinute; + exploded->second = st.wSecond; + exploded->millisecond = st.wMilliseconds; +} + +// TimeTicks ------------------------------------------------------------------ +namespace { + +// We define a wrapper to adapt between the __stdcall and __cdecl call of the +// mock function, and to avoid a static constructor. Assigning an import to a +// function pointer directly would require setup code to fetch from the IAT. +DWORD timeGetTimeWrapper() { + return timeGetTime(); +} + + +DWORD (*tick_function)(void) = &timeGetTimeWrapper; + +// We use timeGetTime() to implement TimeTicks::Now(). This can be problematic +// because it returns the number of milliseconds since Windows has started, +// which will roll over the 32-bit value every ~49 days. We try to track +// rollover ourselves, which works if TimeTicks::Now() is called at least every +// 49 days. +class NowSingleton { + public: + NowSingleton() + : rollover_(TimeDelta::FromMilliseconds(0)), + last_seen_(0) { + } + + TimeDelta Now() { + AutoLock locked(lock_); + // We should hold the lock while calling tick_function to make sure that + // we keep our last_seen_ stay correctly in sync. + DWORD now = tick_function(); + if (now < last_seen_) + rollover_ += TimeDelta::FromMilliseconds(GG_LONGLONG(0x100000000)); // ~49.7 days. + last_seen_ = now; + return TimeDelta::FromMilliseconds(now) + rollover_; + } + + private: + Lock lock_; // To protected last_seen_ and rollover_. + TimeDelta rollover_; // Accumulation of time lost due to rollover. + DWORD last_seen_; // The last timeGetTime value we saw, to detect rollover. + + DISALLOW_COPY_AND_ASSIGN(NowSingleton); +}; + +// Overview of time counters: +// (1) CPU cycle counter. (Retrieved via RDTSC) +// The CPU counter provides the highest resolution time stamp and is the least +// expensive to retrieve. However, the CPU counter is unreliable and should not +// be used in production. Its biggest issue is that it is per processor and it +// is not synchronized between processors. Also, on some computers, the counters +// will change frequency due to thermal and power changes, and stop in some +// states. +// +// (2) QueryPerformanceCounter (QPC). The QPC counter provides a high- +// resolution (100 nanoseconds) time stamp but is comparatively more expensive +// to retrieve. What QueryPerformanceCounter actually does is up to the HAL. +// (with some help from ACPI). +// According to http://blogs.msdn.com/oldnewthing/archive/2005/09/02/459952.aspx +// in the worst case, it gets the counter from the rollover interrupt on the +// programmable interrupt timer. In best cases, the HAL may conclude that the +// RDTSC counter runs at a constant frequency, then it uses that instead. On +// multiprocessor machines, it will try to verify the values returned from +// RDTSC on each processor are consistent with each other, and apply a handful +// of workarounds for known buggy hardware. In other words, QPC is supposed to +// give consistent result on a multiprocessor computer, but it is unreliable in +// reality due to bugs in BIOS or HAL on some, especially old computers. +// With recent updates on HAL and newer BIOS, QPC is getting more reliable but +// it should be used with caution. +// +// (3) System time. The system time provides a low-resolution (typically 10ms +// to 55 milliseconds) time stamp but is comparatively less expensive to +// retrieve and more reliable. +class HighResNowSingleton { + public: + HighResNowSingleton() + : ticks_per_microsecond_(0.0), + skew_(0) { + InitializeClock(); + + // On Athlon X2 CPUs (e.g. model 15) QueryPerformanceCounter is + // unreliable. Fallback to low-res clock. + base::CPU cpu; + if (cpu.vendor_name() == "AuthenticAMD" && cpu.family() == 15) + DisableHighResClock(); + } + + bool IsUsingHighResClock() { + return ticks_per_microsecond_ != 0.0; + } + + void DisableHighResClock() { + ticks_per_microsecond_ = 0.0; + } + + TimeDelta Now() { + // Our maximum tolerance for QPC drifting. + const int kMaxTimeDrift = 50 * Time::kMicrosecondsPerMillisecond; + + if (IsUsingHighResClock()) { + int64_t now = UnreliableNow(); + + // Verify that QPC does not seem to drift. + DCHECK(now - ReliableNow() - skew_ < kMaxTimeDrift); + + return TimeDelta::FromMicroseconds(now); + } + + // Just fallback to the slower clock. + return Singleton<NowSingleton>::get()->Now(); + } + + private: + // Synchronize the QPC clock with GetSystemTimeAsFileTime. + void InitializeClock() { + LARGE_INTEGER ticks_per_sec = {{0}}; + if (!QueryPerformanceFrequency(&ticks_per_sec)) + return; // Broken, we don't guarantee this function works. + ticks_per_microsecond_ = static_cast<float>(ticks_per_sec.QuadPart) / + static_cast<float>(Time::kMicrosecondsPerSecond); + + skew_ = UnreliableNow() - ReliableNow(); + } + + // Get the number of microseconds since boot in a reliable fashion + int64_t UnreliableNow() { + LARGE_INTEGER now; + QueryPerformanceCounter(&now); + return static_cast<int64_t>(now.QuadPart / ticks_per_microsecond_); + } + + // Get the number of microseconds since boot in a reliable fashion + int64_t ReliableNow() { + return Singleton<NowSingleton>::get()->Now().InMicroseconds(); + } + + // Cached clock frequency -> microseconds. This assumes that the clock + // frequency is faster than one microsecond (which is 1MHz, should be OK). + float ticks_per_microsecond_; // 0 indicates QPF failed and we're broken. + int64_t skew_; // Skew between lo-res and hi-res clocks (for debugging). + + DISALLOW_COPY_AND_ASSIGN(HighResNowSingleton); +}; + +} // namespace + +// static +TimeTicks::TickFunctionType TimeTicks::SetMockTickFunction( + TickFunctionType ticker) { + TickFunctionType old = tick_function; + tick_function = ticker; + return old; +} + +// static +TimeTicks TimeTicks::Now() { + return TimeTicks() + Singleton<NowSingleton>::get()->Now(); +} + +// static +TimeTicks TimeTicks::HighResNow() { + return TimeTicks() + Singleton<HighResNowSingleton>::get()->Now(); +} |