summaryrefslogtreecommitdiffstats
path: root/ipc/chromium/src/base/string_util.cc
diff options
context:
space:
mode:
Diffstat (limited to 'ipc/chromium/src/base/string_util.cc')
-rw-r--r--ipc/chromium/src/base/string_util.cc780
1 files changed, 780 insertions, 0 deletions
diff --git a/ipc/chromium/src/base/string_util.cc b/ipc/chromium/src/base/string_util.cc
new file mode 100644
index 000000000..339b12271
--- /dev/null
+++ b/ipc/chromium/src/base/string_util.cc
@@ -0,0 +1,780 @@
+/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
+/* vim: set ts=8 sts=2 et sw=2 tw=80: */
+// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "base/string_util.h"
+
+#include "build/build_config.h"
+
+#include <ctype.h>
+#include <errno.h>
+#include <math.h>
+#include <stdarg.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <time.h>
+#include <wchar.h>
+#include <wctype.h>
+
+#include <algorithm>
+#include <vector>
+
+#include "base/basictypes.h"
+#include "base/logging.h"
+#include "base/singleton.h"
+
+namespace {
+
+// Force the singleton used by Empty[W]String[16] to be a unique type. This
+// prevents other code that might accidentally use Singleton<string> from
+// getting our internal one.
+struct EmptyStrings {
+ EmptyStrings() {}
+ const std::string s;
+ const std::wstring ws;
+ const string16 s16;
+};
+
+// Hack to convert any char-like type to its unsigned counterpart.
+// For example, it will convert char, signed char and unsigned char to unsigned
+// char.
+template<typename T>
+struct ToUnsigned {
+ typedef T Unsigned;
+};
+
+template<>
+struct ToUnsigned<char> {
+ typedef unsigned char Unsigned;
+};
+template<>
+struct ToUnsigned<signed char> {
+ typedef unsigned char Unsigned;
+};
+template<>
+struct ToUnsigned<wchar_t> {
+#if defined(WCHAR_T_IS_UTF16)
+ typedef unsigned short Unsigned;
+#elif defined(WCHAR_T_IS_UTF32)
+ typedef uint32_t Unsigned;
+#endif
+};
+template<>
+struct ToUnsigned<short> {
+ typedef unsigned short Unsigned;
+};
+
+// Generalized string-to-number conversion.
+//
+// StringToNumberTraits should provide:
+// - a typedef for string_type, the STL string type used as input.
+// - a typedef for value_type, the target numeric type.
+// - a static function, convert_func, which dispatches to an appropriate
+// strtol-like function and returns type value_type.
+// - a static function, valid_func, which validates |input| and returns a bool
+// indicating whether it is in proper form. This is used to check for
+// conditions that convert_func tolerates but should result in
+// StringToNumber returning false. For strtol-like funtions, valid_func
+// should check for leading whitespace.
+template<typename StringToNumberTraits>
+bool StringToNumber(const typename StringToNumberTraits::string_type& input,
+ typename StringToNumberTraits::value_type* output) {
+ typedef StringToNumberTraits traits;
+
+ errno = 0; // Thread-safe? It is on at least Mac, Linux, and Windows.
+ typename traits::string_type::value_type* endptr = NULL;
+ typename traits::value_type value = traits::convert_func(input.c_str(),
+ &endptr);
+ *output = value;
+
+ // Cases to return false:
+ // - If errno is ERANGE, there was an overflow or underflow.
+ // - If the input string is empty, there was nothing to parse.
+ // - If endptr does not point to the end of the string, there are either
+ // characters remaining in the string after a parsed number, or the string
+ // does not begin with a parseable number. endptr is compared to the
+ // expected end given the string's stated length to correctly catch cases
+ // where the string contains embedded NUL characters.
+ // - valid_func determines that the input is not in preferred form.
+ return errno == 0 &&
+ !input.empty() &&
+ input.c_str() + input.length() == endptr &&
+ traits::valid_func(input);
+}
+
+class StringToLongTraits {
+ public:
+ typedef std::string string_type;
+ typedef long value_type;
+ static const int kBase = 10;
+ static inline value_type convert_func(const string_type::value_type* str,
+ string_type::value_type** endptr) {
+ return strtol(str, endptr, kBase);
+ }
+ static inline bool valid_func(const string_type& str) {
+ return !str.empty() && !isspace(str[0]);
+ }
+};
+
+class String16ToLongTraits {
+ public:
+ typedef string16 string_type;
+ typedef long value_type;
+ static const int kBase = 10;
+ static inline value_type convert_func(const string_type::value_type* str,
+ string_type::value_type** endptr) {
+#if defined(WCHAR_T_IS_UTF16)
+ return wcstol(str, endptr, kBase);
+#elif defined(WCHAR_T_IS_UTF32)
+ std::string ascii_string = UTF16ToASCII(string16(str));
+ char* ascii_end = NULL;
+ value_type ret = strtol(ascii_string.c_str(), &ascii_end, kBase);
+ if (ascii_string.c_str() + ascii_string.length() == ascii_end) {
+ *endptr =
+ const_cast<string_type::value_type*>(str) + ascii_string.length();
+ }
+ return ret;
+#endif
+ }
+ static inline bool valid_func(const string_type& str) {
+ return !str.empty() && !iswspace(str[0]);
+ }
+};
+
+class StringToInt64Traits {
+ public:
+ typedef std::string string_type;
+ typedef int64_t value_type;
+ static const int kBase = 10;
+ static inline value_type convert_func(const string_type::value_type* str,
+ string_type::value_type** endptr) {
+#ifdef OS_WIN
+ return _strtoi64(str, endptr, kBase);
+#else // assume OS_POSIX
+ return strtoll(str, endptr, kBase);
+#endif
+ }
+ static inline bool valid_func(const string_type& str) {
+ return !str.empty() && !isspace(str[0]);
+ }
+};
+
+class String16ToInt64Traits {
+ public:
+ typedef string16 string_type;
+ typedef int64_t value_type;
+ static const int kBase = 10;
+ static inline value_type convert_func(const string_type::value_type* str,
+ string_type::value_type** endptr) {
+#ifdef OS_WIN
+ return _wcstoi64(str, endptr, kBase);
+#else // assume OS_POSIX
+ std::string ascii_string = UTF16ToASCII(string16(str));
+ char* ascii_end = NULL;
+ value_type ret = strtoll(ascii_string.c_str(), &ascii_end, kBase);
+ if (ascii_string.c_str() + ascii_string.length() == ascii_end) {
+ *endptr =
+ const_cast<string_type::value_type*>(str) + ascii_string.length();
+ }
+ return ret;
+#endif
+ }
+ static inline bool valid_func(const string_type& str) {
+ return !str.empty() && !iswspace(str[0]);
+ }
+};
+
+} // namespace
+
+
+namespace base {
+
+bool IsWprintfFormatPortable(const wchar_t* format) {
+ for (const wchar_t* position = format; *position != '\0'; ++position) {
+
+ if (*position == '%') {
+ bool in_specification = true;
+ bool modifier_l = false;
+ while (in_specification) {
+ // Eat up characters until reaching a known specifier.
+ if (*++position == '\0') {
+ // The format string ended in the middle of a specification. Call
+ // it portable because no unportable specifications were found. The
+ // string is equally broken on all platforms.
+ return true;
+ }
+
+ if (*position == 'l') {
+ // 'l' is the only thing that can save the 's' and 'c' specifiers.
+ modifier_l = true;
+ } else if (((*position == 's' || *position == 'c') && !modifier_l) ||
+ *position == 'S' || *position == 'C' || *position == 'F' ||
+ *position == 'D' || *position == 'O' || *position == 'U') {
+ // Not portable.
+ return false;
+ }
+
+ if (wcschr(L"diouxXeEfgGaAcspn%", *position)) {
+ // Portable, keep scanning the rest of the format string.
+ in_specification = false;
+ }
+ }
+ }
+
+ }
+
+ return true;
+}
+
+
+} // namespace base
+
+static const wchar_t kWhitespaceWide[] = {
+ 0x0009, // <control-0009> to <control-000D>
+ 0x000A,
+ 0x000B,
+ 0x000C,
+ 0x000D,
+ 0x0020, // Space
+ 0x0085, // <control-0085>
+ 0x00A0, // No-Break Space
+ 0x1680, // Ogham Space Mark
+ 0x180E, // Mongolian Vowel Separator
+ 0x2000, // En Quad to Hair Space
+ 0x2001,
+ 0x2002,
+ 0x2003,
+ 0x2004,
+ 0x2005,
+ 0x2006,
+ 0x2007,
+ 0x2008,
+ 0x2009,
+ 0x200A,
+ 0x200C, // Zero Width Non-Joiner
+ 0x2028, // Line Separator
+ 0x2029, // Paragraph Separator
+ 0x202F, // Narrow No-Break Space
+ 0x205F, // Medium Mathematical Space
+ 0x3000, // Ideographic Space
+ 0
+};
+static const char kWhitespaceASCII[] = {
+ 0x09, // <control-0009> to <control-000D>
+ 0x0A,
+ 0x0B,
+ 0x0C,
+ 0x0D,
+ 0x20, // Space
+ 0
+};
+
+template<typename STR>
+TrimPositions TrimStringT(const STR& input,
+ const typename STR::value_type trim_chars[],
+ TrimPositions positions,
+ STR* output) {
+ // Find the edges of leading/trailing whitespace as desired.
+ const typename STR::size_type last_char = input.length() - 1;
+ const typename STR::size_type first_good_char = (positions & TRIM_LEADING) ?
+ input.find_first_not_of(trim_chars) : 0;
+ const typename STR::size_type last_good_char = (positions & TRIM_TRAILING) ?
+ input.find_last_not_of(trim_chars) : last_char;
+
+ // When the string was all whitespace, report that we stripped off whitespace
+ // from whichever position the caller was interested in. For empty input, we
+ // stripped no whitespace, but we still need to clear |output|.
+ if (input.empty() ||
+ (first_good_char == STR::npos) || (last_good_char == STR::npos)) {
+ bool input_was_empty = input.empty(); // in case output == &input
+ output->clear();
+ return input_was_empty ? TRIM_NONE : positions;
+ }
+
+ // Trim the whitespace.
+ *output =
+ input.substr(first_good_char, last_good_char - first_good_char + 1);
+
+ // Return where we trimmed from.
+ return static_cast<TrimPositions>(
+ ((first_good_char == 0) ? TRIM_NONE : TRIM_LEADING) |
+ ((last_good_char == last_char) ? TRIM_NONE : TRIM_TRAILING));
+}
+
+TrimPositions TrimWhitespace(const std::wstring& input,
+ TrimPositions positions,
+ std::wstring* output) {
+ return TrimStringT(input, kWhitespaceWide, positions, output);
+}
+
+TrimPositions TrimWhitespaceASCII(const std::string& input,
+ TrimPositions positions,
+ std::string* output) {
+ return TrimStringT(input, kWhitespaceASCII, positions, output);
+}
+
+// This function is only for backward-compatibility.
+// To be removed when all callers are updated.
+TrimPositions TrimWhitespace(const std::string& input,
+ TrimPositions positions,
+ std::string* output) {
+ return TrimWhitespaceASCII(input, positions, output);
+}
+
+std::string WideToASCII(const std::wstring& wide) {
+ DCHECK(IsStringASCII(wide));
+ return std::string(wide.begin(), wide.end());
+}
+
+std::wstring ASCIIToWide(const std::string& ascii) {
+ DCHECK(IsStringASCII(ascii));
+ return std::wstring(ascii.begin(), ascii.end());
+}
+
+std::string UTF16ToASCII(const string16& utf16) {
+ DCHECK(IsStringASCII(utf16));
+ return std::string(utf16.begin(), utf16.end());
+}
+
+string16 ASCIIToUTF16(const std::string& ascii) {
+ DCHECK(IsStringASCII(ascii));
+ return string16(ascii.begin(), ascii.end());
+}
+
+template<class STR>
+static bool DoIsStringASCII(const STR& str) {
+ for (size_t i = 0; i < str.length(); i++) {
+ typename ToUnsigned<typename STR::value_type>::Unsigned c = str[i];
+ if (c > 0x7F)
+ return false;
+ }
+ return true;
+}
+
+bool IsStringASCII(const std::wstring& str) {
+ return DoIsStringASCII(str);
+}
+
+#if !defined(WCHAR_T_IS_UTF16)
+bool IsStringASCII(const string16& str) {
+ return DoIsStringASCII(str);
+}
+#endif
+
+bool IsStringASCII(const std::string& str) {
+ return DoIsStringASCII(str);
+}
+
+// Overloaded wrappers around vsnprintf and vswprintf. The buf_size parameter
+// is the size of the buffer. These return the number of characters in the
+// formatted string excluding the NUL terminator. If the buffer is not
+// large enough to accommodate the formatted string without truncation, they
+// return the number of characters that would be in the fully-formatted string
+// (vsnprintf, and vswprintf on Windows), or -1 (vswprintf on POSIX platforms).
+inline int vsnprintfT(char* buffer,
+ size_t buf_size,
+ const char* format,
+ va_list argptr) {
+ return base::vsnprintf(buffer, buf_size, format, argptr);
+}
+
+inline int vsnprintfT(wchar_t* buffer,
+ size_t buf_size,
+ const wchar_t* format,
+ va_list argptr) {
+ return base::vswprintf(buffer, buf_size, format, argptr);
+}
+
+// Templatized backend for StringPrintF/StringAppendF. This does not finalize
+// the va_list, the caller is expected to do that.
+template <class StringType>
+static void StringAppendVT(StringType* dst,
+ const typename StringType::value_type* format,
+ va_list ap) {
+ // First try with a small fixed size buffer.
+ // This buffer size should be kept in sync with StringUtilTest.GrowBoundary
+ // and StringUtilTest.StringPrintfBounds.
+ typename StringType::value_type stack_buf[1024];
+
+ va_list backup_ap;
+ base_va_copy(backup_ap, ap);
+
+#if !defined(OS_WIN)
+ errno = 0;
+#endif
+ int result = vsnprintfT(stack_buf, arraysize(stack_buf), format, backup_ap);
+ va_end(backup_ap);
+
+ if (result >= 0 && result < static_cast<int>(arraysize(stack_buf))) {
+ // It fit.
+ dst->append(stack_buf, result);
+ return;
+ }
+
+ // Repeatedly increase buffer size until it fits.
+ int mem_length = arraysize(stack_buf);
+ while (true) {
+ if (result < 0) {
+#if !defined(OS_WIN)
+ // On Windows, vsnprintfT always returns the number of characters in a
+ // fully-formatted string, so if we reach this point, something else is
+ // wrong and no amount of buffer-doubling is going to fix it.
+ if (errno != 0 && errno != EOVERFLOW)
+#endif
+ {
+ // If an error other than overflow occurred, it's never going to work.
+ DLOG(WARNING) << "Unable to printf the requested string due to error.";
+ return;
+ }
+ // Try doubling the buffer size.
+ mem_length *= 2;
+ } else {
+ // We need exactly "result + 1" characters.
+ mem_length = result + 1;
+ }
+
+ if (mem_length > 32 * 1024 * 1024) {
+ // That should be plenty, don't try anything larger. This protects
+ // against huge allocations when using vsnprintfT implementations that
+ // return -1 for reasons other than overflow without setting errno.
+ DLOG(WARNING) << "Unable to printf the requested string due to size.";
+ return;
+ }
+
+ std::vector<typename StringType::value_type> mem_buf(mem_length);
+
+ // Restore the va_list before we use it again.
+ base_va_copy(backup_ap, ap);
+
+ result = vsnprintfT(&mem_buf[0], mem_length, format, ap);
+ va_end(backup_ap);
+
+ if ((result >= 0) && (result < mem_length)) {
+ // It fit.
+ dst->append(&mem_buf[0], result);
+ return;
+ }
+ }
+}
+
+namespace {
+
+template <typename STR, typename INT, typename UINT, bool NEG>
+struct IntToStringT {
+
+ // This is to avoid a compiler warning about unary minus on unsigned type.
+ // For example, say you had the following code:
+ // template <typename INT>
+ // INT abs(INT value) { return value < 0 ? -value : value; }
+ // Even though if INT is unsigned, it's impossible for value < 0, so the
+ // unary minus will never be taken, the compiler will still generate a
+ // warning. We do a little specialization dance...
+ template <typename INT2, typename UINT2, bool NEG2>
+ struct ToUnsignedT { };
+
+ template <typename INT2, typename UINT2>
+ struct ToUnsignedT<INT2, UINT2, false> {
+ static UINT2 ToUnsigned(INT2 value) {
+ return static_cast<UINT2>(value);
+ }
+ };
+
+ template <typename INT2, typename UINT2>
+ struct ToUnsignedT<INT2, UINT2, true> {
+ static UINT2 ToUnsigned(INT2 value) {
+ return static_cast<UINT2>(value < 0 ? -value : value);
+ }
+ };
+
+ // This set of templates is very similar to the above templates, but
+ // for testing whether an integer is negative.
+ template <typename INT2, bool NEG2>
+ struct TestNegT {};
+ template <typename INT2>
+ struct TestNegT<INT2, false> {
+ static bool TestNeg(INT2 value) {
+ // value is unsigned, and can never be negative.
+ return false;
+ }
+ };
+ template <typename INT2>
+ struct TestNegT<INT2, true> {
+ static bool TestNeg(INT2 value) {
+ return value < 0;
+ }
+ };
+
+ static STR IntToString(INT value) {
+ // log10(2) ~= 0.3 bytes needed per bit or per byte log10(2**8) ~= 2.4.
+ // So round up to allocate 3 output characters per byte, plus 1 for '-'.
+ const int kOutputBufSize = 3 * sizeof(INT) + 1;
+
+ // Allocate the whole string right away, we will right back to front, and
+ // then return the substr of what we ended up using.
+ STR outbuf(kOutputBufSize, 0);
+
+ bool is_neg = TestNegT<INT, NEG>::TestNeg(value);
+ // Even though is_neg will never be true when INT is parameterized as
+ // unsigned, even the presence of the unary operation causes a warning.
+ UINT res = ToUnsignedT<INT, UINT, NEG>::ToUnsigned(value);
+
+ for (typename STR::iterator it = outbuf.end();;) {
+ --it;
+ DCHECK(it != outbuf.begin());
+ *it = static_cast<typename STR::value_type>((res % 10) + '0');
+ res /= 10;
+
+ // We're done..
+ if (res == 0) {
+ if (is_neg) {
+ --it;
+ DCHECK(it != outbuf.begin());
+ *it = static_cast<typename STR::value_type>('-');
+ }
+ return STR(it, outbuf.end());
+ }
+ }
+ NOTREACHED();
+ return STR();
+ }
+};
+
+}
+
+std::string IntToString(int value) {
+ return IntToStringT<std::string, int, unsigned int, true>::
+ IntToString(value);
+}
+std::wstring IntToWString(int value) {
+ return IntToStringT<std::wstring, int, unsigned int, true>::
+ IntToString(value);
+}
+std::string UintToString(unsigned int value) {
+ return IntToStringT<std::string, unsigned int, unsigned int, false>::
+ IntToString(value);
+}
+std::wstring UintToWString(unsigned int value) {
+ return IntToStringT<std::wstring, unsigned int, unsigned int, false>::
+ IntToString(value);
+}
+std::string Int64ToString(int64_t value) {
+ return IntToStringT<std::string, int64_t, uint64_t, true>::
+ IntToString(value);
+}
+std::wstring Int64ToWString(int64_t value) {
+ return IntToStringT<std::wstring, int64_t, uint64_t, true>::
+ IntToString(value);
+}
+std::string Uint64ToString(uint64_t value) {
+ return IntToStringT<std::string, uint64_t, uint64_t, false>::
+ IntToString(value);
+}
+std::wstring Uint64ToWString(uint64_t value) {
+ return IntToStringT<std::wstring, uint64_t, uint64_t, false>::
+ IntToString(value);
+}
+
+// Lower-level routine that takes a va_list and appends to a specified
+// string. All other routines are just convenience wrappers around it.
+static void StringAppendV(std::string* dst, const char* format, va_list ap) {
+ StringAppendVT(dst, format, ap);
+}
+
+static void StringAppendV(std::wstring* dst, const wchar_t* format, va_list ap) {
+ StringAppendVT(dst, format, ap);
+}
+
+std::string StringPrintf(const char* format, ...) {
+ va_list ap;
+ va_start(ap, format);
+ std::string result;
+ StringAppendV(&result, format, ap);
+ va_end(ap);
+ return result;
+}
+
+std::wstring StringPrintf(const wchar_t* format, ...) {
+ va_list ap;
+ va_start(ap, format);
+ std::wstring result;
+ StringAppendV(&result, format, ap);
+ va_end(ap);
+ return result;
+}
+
+const std::string& SStringPrintf(std::string* dst, const char* format, ...) {
+ va_list ap;
+ va_start(ap, format);
+ dst->clear();
+ StringAppendV(dst, format, ap);
+ va_end(ap);
+ return *dst;
+}
+
+const std::wstring& SStringPrintf(std::wstring* dst,
+ const wchar_t* format, ...) {
+ va_list ap;
+ va_start(ap, format);
+ dst->clear();
+ StringAppendV(dst, format, ap);
+ va_end(ap);
+ return *dst;
+}
+
+void StringAppendF(std::string* dst, const char* format, ...) {
+ va_list ap;
+ va_start(ap, format);
+ StringAppendV(dst, format, ap);
+ va_end(ap);
+}
+
+void StringAppendF(std::wstring* dst, const wchar_t* format, ...) {
+ va_list ap;
+ va_start(ap, format);
+ StringAppendV(dst, format, ap);
+ va_end(ap);
+}
+
+template<typename STR>
+static void SplitStringT(const STR& str,
+ const typename STR::value_type s,
+ bool trim_whitespace,
+ std::vector<STR>* r) {
+ size_t last = 0;
+ size_t i;
+ size_t c = str.size();
+ for (i = 0; i <= c; ++i) {
+ if (i == c || str[i] == s) {
+ size_t len = i - last;
+ STR tmp = str.substr(last, len);
+ if (trim_whitespace) {
+ STR t_tmp;
+ TrimWhitespace(tmp, TRIM_ALL, &t_tmp);
+ r->push_back(t_tmp);
+ } else {
+ r->push_back(tmp);
+ }
+ last = i + 1;
+ }
+ }
+}
+
+void SplitString(const std::wstring& str,
+ wchar_t s,
+ std::vector<std::wstring>* r) {
+ SplitStringT(str, s, true, r);
+}
+
+void SplitString(const std::string& str,
+ char s,
+ std::vector<std::string>* r) {
+ SplitStringT(str, s, true, r);
+}
+
+// For the various *ToInt conversions, there are no *ToIntTraits classes to use
+// because there's no such thing as strtoi. Use *ToLongTraits through a cast
+// instead, requiring that long and int are compatible and equal-width. They
+// are on our target platforms.
+
+// XXX Sigh.
+
+#if !defined(ARCH_CPU_64_BITS)
+bool StringToInt(const std::string& input, int* output) {
+ COMPILE_ASSERT(sizeof(int) == sizeof(long), cannot_strtol_to_int);
+ return StringToNumber<StringToLongTraits>(input,
+ reinterpret_cast<long*>(output));
+}
+
+bool StringToInt(const string16& input, int* output) {
+ COMPILE_ASSERT(sizeof(int) == sizeof(long), cannot_wcstol_to_int);
+ return StringToNumber<String16ToLongTraits>(input,
+ reinterpret_cast<long*>(output));
+}
+
+#else
+bool StringToInt(const std::string& input, int* output) {
+ long tmp;
+ bool ok = StringToNumber<StringToLongTraits>(input, &tmp);
+ if (!ok || tmp > kint32max) {
+ return false;
+ }
+ *output = static_cast<int>(tmp);
+ return true;
+}
+
+bool StringToInt(const string16& input, int* output) {
+ long tmp;
+ bool ok = StringToNumber<String16ToLongTraits>(input, &tmp);
+ if (!ok || tmp > kint32max) {
+ return false;
+ }
+ *output = static_cast<int>(tmp);
+ return true;
+}
+#endif // !defined(ARCH_CPU_64_BITS)
+
+bool StringToInt64(const std::string& input, int64_t* output) {
+ return StringToNumber<StringToInt64Traits>(input, output);
+}
+
+bool StringToInt64(const string16& input, int64_t* output) {
+ return StringToNumber<String16ToInt64Traits>(input, output);
+}
+
+int StringToInt(const std::string& value) {
+ int result;
+ StringToInt(value, &result);
+ return result;
+}
+
+int StringToInt(const string16& value) {
+ int result;
+ StringToInt(value, &result);
+ return result;
+}
+
+int64_t StringToInt64(const std::string& value) {
+ int64_t result;
+ StringToInt64(value, &result);
+ return result;
+}
+
+int64_t StringToInt64(const string16& value) {
+ int64_t result;
+ StringToInt64(value, &result);
+ return result;
+}
+
+// The following code is compatible with the OpenBSD lcpy interface. See:
+// http://www.gratisoft.us/todd/papers/strlcpy.html
+// ftp://ftp.openbsd.org/pub/OpenBSD/src/lib/libc/string/{wcs,str}lcpy.c
+
+namespace {
+
+template <typename CHAR>
+size_t lcpyT(CHAR* dst, const CHAR* src, size_t dst_size) {
+ for (size_t i = 0; i < dst_size; ++i) {
+ if ((dst[i] = src[i]) == 0) // We hit and copied the terminating NULL.
+ return i;
+ }
+
+ // We were left off at dst_size. We over copied 1 byte. Null terminate.
+ if (dst_size != 0)
+ dst[dst_size - 1] = 0;
+
+ // Count the rest of the |src|, and return it's length in characters.
+ while (src[dst_size]) ++dst_size;
+ return dst_size;
+}
+
+} // namespace
+
+size_t base::strlcpy(char* dst, const char* src, size_t dst_size) {
+ return lcpyT<char>(dst, src, dst_size);
+}
+size_t base::wcslcpy(wchar_t* dst, const wchar_t* src, size_t dst_size) {
+ return lcpyT<wchar_t>(dst, src, dst_size);
+}