diff options
Diffstat (limited to 'intl/icu/source/i18n/rematch.cpp')
-rw-r--r-- | intl/icu/source/i18n/rematch.cpp | 5798 |
1 files changed, 5798 insertions, 0 deletions
diff --git a/intl/icu/source/i18n/rematch.cpp b/intl/icu/source/i18n/rematch.cpp new file mode 100644 index 000000000..0e795f216 --- /dev/null +++ b/intl/icu/source/i18n/rematch.cpp @@ -0,0 +1,5798 @@ +// Copyright (C) 2016 and later: Unicode, Inc. and others. +// License & terms of use: http://www.unicode.org/copyright.html +/* +************************************************************************** +* Copyright (C) 2002-2016 International Business Machines Corporation +* and others. All rights reserved. +************************************************************************** +*/ +// +// file: rematch.cpp +// +// Contains the implementation of class RegexMatcher, +// which is one of the main API classes for the ICU regular expression package. +// + +#include "unicode/utypes.h" +#if !UCONFIG_NO_REGULAR_EXPRESSIONS + +#include "unicode/regex.h" +#include "unicode/uniset.h" +#include "unicode/uchar.h" +#include "unicode/ustring.h" +#include "unicode/rbbi.h" +#include "unicode/utf.h" +#include "unicode/utf16.h" +#include "uassert.h" +#include "cmemory.h" +#include "cstr.h" +#include "uvector.h" +#include "uvectr32.h" +#include "uvectr64.h" +#include "regeximp.h" +#include "regexst.h" +#include "regextxt.h" +#include "ucase.h" + +// #include <malloc.h> // Needed for heapcheck testing + + +U_NAMESPACE_BEGIN + +// Default limit for the size of the back track stack, to avoid system +// failures causedby heap exhaustion. Units are in 32 bit words, not bytes. +// This value puts ICU's limits higher than most other regexp implementations, +// which use recursion rather than the heap, and take more storage per +// backtrack point. +// +static const int32_t DEFAULT_BACKTRACK_STACK_CAPACITY = 8000000; + +// Time limit counter constant. +// Time limits for expression evaluation are in terms of quanta of work by +// the engine, each of which is 10,000 state saves. +// This constant determines that state saves per tick number. +static const int32_t TIMER_INITIAL_VALUE = 10000; + + +// Test for any of the Unicode line terminating characters. +static inline UBool isLineTerminator(UChar32 c) { + if (c & ~(0x0a | 0x0b | 0x0c | 0x0d | 0x85 | 0x2028 | 0x2029)) { + return false; + } + return (c<=0x0d && c>=0x0a) || c==0x85 || c==0x2028 || c==0x2029; +} + +//----------------------------------------------------------------------------- +// +// Constructor and Destructor +// +//----------------------------------------------------------------------------- +RegexMatcher::RegexMatcher(const RegexPattern *pat) { + fDeferredStatus = U_ZERO_ERROR; + init(fDeferredStatus); + if (U_FAILURE(fDeferredStatus)) { + return; + } + if (pat==NULL) { + fDeferredStatus = U_ILLEGAL_ARGUMENT_ERROR; + return; + } + fPattern = pat; + init2(RegexStaticSets::gStaticSets->fEmptyText, fDeferredStatus); +} + + + +RegexMatcher::RegexMatcher(const UnicodeString ®exp, const UnicodeString &input, + uint32_t flags, UErrorCode &status) { + init(status); + if (U_FAILURE(status)) { + return; + } + UParseError pe; + fPatternOwned = RegexPattern::compile(regexp, flags, pe, status); + fPattern = fPatternOwned; + + UText inputText = UTEXT_INITIALIZER; + utext_openConstUnicodeString(&inputText, &input, &status); + init2(&inputText, status); + utext_close(&inputText); + + fInputUniStrMaybeMutable = TRUE; +} + + +RegexMatcher::RegexMatcher(UText *regexp, UText *input, + uint32_t flags, UErrorCode &status) { + init(status); + if (U_FAILURE(status)) { + return; + } + UParseError pe; + fPatternOwned = RegexPattern::compile(regexp, flags, pe, status); + if (U_FAILURE(status)) { + return; + } + + fPattern = fPatternOwned; + init2(input, status); +} + + +RegexMatcher::RegexMatcher(const UnicodeString ®exp, + uint32_t flags, UErrorCode &status) { + init(status); + if (U_FAILURE(status)) { + return; + } + UParseError pe; + fPatternOwned = RegexPattern::compile(regexp, flags, pe, status); + if (U_FAILURE(status)) { + return; + } + fPattern = fPatternOwned; + init2(RegexStaticSets::gStaticSets->fEmptyText, status); +} + +RegexMatcher::RegexMatcher(UText *regexp, + uint32_t flags, UErrorCode &status) { + init(status); + if (U_FAILURE(status)) { + return; + } + UParseError pe; + fPatternOwned = RegexPattern::compile(regexp, flags, pe, status); + if (U_FAILURE(status)) { + return; + } + + fPattern = fPatternOwned; + init2(RegexStaticSets::gStaticSets->fEmptyText, status); +} + + + + +RegexMatcher::~RegexMatcher() { + delete fStack; + if (fData != fSmallData) { + uprv_free(fData); + fData = NULL; + } + if (fPatternOwned) { + delete fPatternOwned; + fPatternOwned = NULL; + fPattern = NULL; + } + + if (fInput) { + delete fInput; + } + if (fInputText) { + utext_close(fInputText); + } + if (fAltInputText) { + utext_close(fAltInputText); + } + + #if UCONFIG_NO_BREAK_ITERATION==0 + delete fWordBreakItr; + #endif +} + +// +// init() common initialization for use by all constructors. +// Initialize all fields, get the object into a consistent state. +// This must be done even when the initial status shows an error, +// so that the object is initialized sufficiently well for the destructor +// to run safely. +// +void RegexMatcher::init(UErrorCode &status) { + fPattern = NULL; + fPatternOwned = NULL; + fFrameSize = 0; + fRegionStart = 0; + fRegionLimit = 0; + fAnchorStart = 0; + fAnchorLimit = 0; + fLookStart = 0; + fLookLimit = 0; + fActiveStart = 0; + fActiveLimit = 0; + fTransparentBounds = FALSE; + fAnchoringBounds = TRUE; + fMatch = FALSE; + fMatchStart = 0; + fMatchEnd = 0; + fLastMatchEnd = -1; + fAppendPosition = 0; + fHitEnd = FALSE; + fRequireEnd = FALSE; + fStack = NULL; + fFrame = NULL; + fTimeLimit = 0; + fTime = 0; + fTickCounter = 0; + fStackLimit = DEFAULT_BACKTRACK_STACK_CAPACITY; + fCallbackFn = NULL; + fCallbackContext = NULL; + fFindProgressCallbackFn = NULL; + fFindProgressCallbackContext = NULL; + fTraceDebug = FALSE; + fDeferredStatus = status; + fData = fSmallData; + fWordBreakItr = NULL; + + fStack = NULL; + fInputText = NULL; + fAltInputText = NULL; + fInput = NULL; + fInputLength = 0; + fInputUniStrMaybeMutable = FALSE; +} + +// +// init2() Common initialization for use by RegexMatcher constructors, part 2. +// This handles the common setup to be done after the Pattern is available. +// +void RegexMatcher::init2(UText *input, UErrorCode &status) { + if (U_FAILURE(status)) { + fDeferredStatus = status; + return; + } + + if (fPattern->fDataSize > UPRV_LENGTHOF(fSmallData)) { + fData = (int64_t *)uprv_malloc(fPattern->fDataSize * sizeof(int64_t)); + if (fData == NULL) { + status = fDeferredStatus = U_MEMORY_ALLOCATION_ERROR; + return; + } + } + + fStack = new UVector64(status); + if (fStack == NULL) { + status = fDeferredStatus = U_MEMORY_ALLOCATION_ERROR; + return; + } + + reset(input); + setStackLimit(DEFAULT_BACKTRACK_STACK_CAPACITY, status); + if (U_FAILURE(status)) { + fDeferredStatus = status; + return; + } +} + + +static const UChar BACKSLASH = 0x5c; +static const UChar DOLLARSIGN = 0x24; +static const UChar LEFTBRACKET = 0x7b; +static const UChar RIGHTBRACKET = 0x7d; + +//-------------------------------------------------------------------------------- +// +// appendReplacement +// +//-------------------------------------------------------------------------------- +RegexMatcher &RegexMatcher::appendReplacement(UnicodeString &dest, + const UnicodeString &replacement, + UErrorCode &status) { + UText replacementText = UTEXT_INITIALIZER; + + utext_openConstUnicodeString(&replacementText, &replacement, &status); + if (U_SUCCESS(status)) { + UText resultText = UTEXT_INITIALIZER; + utext_openUnicodeString(&resultText, &dest, &status); + + if (U_SUCCESS(status)) { + appendReplacement(&resultText, &replacementText, status); + utext_close(&resultText); + } + utext_close(&replacementText); + } + + return *this; +} + +// +// appendReplacement, UText mode +// +RegexMatcher &RegexMatcher::appendReplacement(UText *dest, + UText *replacement, + UErrorCode &status) { + if (U_FAILURE(status)) { + return *this; + } + if (U_FAILURE(fDeferredStatus)) { + status = fDeferredStatus; + return *this; + } + if (fMatch == FALSE) { + status = U_REGEX_INVALID_STATE; + return *this; + } + + // Copy input string from the end of previous match to start of current match + int64_t destLen = utext_nativeLength(dest); + if (fMatchStart > fAppendPosition) { + if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) { + destLen += utext_replace(dest, destLen, destLen, fInputText->chunkContents+fAppendPosition, + (int32_t)(fMatchStart-fAppendPosition), &status); + } else { + int32_t len16; + if (UTEXT_USES_U16(fInputText)) { + len16 = (int32_t)(fMatchStart-fAppendPosition); + } else { + UErrorCode lengthStatus = U_ZERO_ERROR; + len16 = utext_extract(fInputText, fAppendPosition, fMatchStart, NULL, 0, &lengthStatus); + } + UChar *inputChars = (UChar *)uprv_malloc(sizeof(UChar)*(len16+1)); + if (inputChars == NULL) { + status = U_MEMORY_ALLOCATION_ERROR; + return *this; + } + utext_extract(fInputText, fAppendPosition, fMatchStart, inputChars, len16+1, &status); + destLen += utext_replace(dest, destLen, destLen, inputChars, len16, &status); + uprv_free(inputChars); + } + } + fAppendPosition = fMatchEnd; + + + // scan the replacement text, looking for substitutions ($n) and \escapes. + // TODO: optimize this loop by efficiently scanning for '$' or '\', + // move entire ranges not containing substitutions. + UTEXT_SETNATIVEINDEX(replacement, 0); + for (UChar32 c = UTEXT_NEXT32(replacement); U_SUCCESS(status) && c != U_SENTINEL; c = UTEXT_NEXT32(replacement)) { + if (c == BACKSLASH) { + // Backslash Escape. Copy the following char out without further checks. + // Note: Surrogate pairs don't need any special handling + // The second half wont be a '$' or a '\', and + // will move to the dest normally on the next + // loop iteration. + c = UTEXT_CURRENT32(replacement); + if (c == U_SENTINEL) { + break; + } + + if (c==0x55/*U*/ || c==0x75/*u*/) { + // We have a \udddd or \Udddddddd escape sequence. + int32_t offset = 0; + struct URegexUTextUnescapeCharContext context = U_REGEX_UTEXT_UNESCAPE_CONTEXT(replacement); + UChar32 escapedChar = u_unescapeAt(uregex_utext_unescape_charAt, &offset, INT32_MAX, &context); + if (escapedChar != (UChar32)0xFFFFFFFF) { + if (U_IS_BMP(escapedChar)) { + UChar c16 = (UChar)escapedChar; + destLen += utext_replace(dest, destLen, destLen, &c16, 1, &status); + } else { + UChar surrogate[2]; + surrogate[0] = U16_LEAD(escapedChar); + surrogate[1] = U16_TRAIL(escapedChar); + if (U_SUCCESS(status)) { + destLen += utext_replace(dest, destLen, destLen, surrogate, 2, &status); + } + } + // TODO: Report errors for mal-formed \u escapes? + // As this is, the original sequence is output, which may be OK. + if (context.lastOffset == offset) { + (void)UTEXT_PREVIOUS32(replacement); + } else if (context.lastOffset != offset-1) { + utext_moveIndex32(replacement, offset - context.lastOffset - 1); + } + } + } else { + (void)UTEXT_NEXT32(replacement); + // Plain backslash escape. Just put out the escaped character. + if (U_IS_BMP(c)) { + UChar c16 = (UChar)c; + destLen += utext_replace(dest, destLen, destLen, &c16, 1, &status); + } else { + UChar surrogate[2]; + surrogate[0] = U16_LEAD(c); + surrogate[1] = U16_TRAIL(c); + if (U_SUCCESS(status)) { + destLen += utext_replace(dest, destLen, destLen, surrogate, 2, &status); + } + } + } + } else if (c != DOLLARSIGN) { + // Normal char, not a $. Copy it out without further checks. + if (U_IS_BMP(c)) { + UChar c16 = (UChar)c; + destLen += utext_replace(dest, destLen, destLen, &c16, 1, &status); + } else { + UChar surrogate[2]; + surrogate[0] = U16_LEAD(c); + surrogate[1] = U16_TRAIL(c); + if (U_SUCCESS(status)) { + destLen += utext_replace(dest, destLen, destLen, surrogate, 2, &status); + } + } + } else { + // We've got a $. Pick up a capture group name or number if one follows. + // Consume digits so long as the resulting group number <= the number of + // number of capture groups in the pattern. + + int32_t groupNum = 0; + int32_t numDigits = 0; + UChar32 nextChar = utext_current32(replacement); + if (nextChar == LEFTBRACKET) { + // Scan for a Named Capture Group, ${name}. + UnicodeString groupName; + utext_next32(replacement); + while(U_SUCCESS(status) && nextChar != RIGHTBRACKET) { + nextChar = utext_next32(replacement); + if (nextChar == U_SENTINEL) { + status = U_REGEX_INVALID_CAPTURE_GROUP_NAME; + } else if ((nextChar >= 0x41 && nextChar <= 0x5a) || // A..Z + (nextChar >= 0x61 && nextChar <= 0x7a) || // a..z + (nextChar >= 0x31 && nextChar <= 0x39)) { // 0..9 + groupName.append(nextChar); + } else if (nextChar == RIGHTBRACKET) { + groupNum = uhash_geti(fPattern->fNamedCaptureMap, &groupName); + if (groupNum == 0) { + status = U_REGEX_INVALID_CAPTURE_GROUP_NAME; + } + } else { + // Character was something other than a name char or a closing '}' + status = U_REGEX_INVALID_CAPTURE_GROUP_NAME; + } + } + + } else if (u_isdigit(nextChar)) { + // $n Scan for a capture group number + int32_t numCaptureGroups = fPattern->fGroupMap->size(); + for (;;) { + nextChar = UTEXT_CURRENT32(replacement); + if (nextChar == U_SENTINEL) { + break; + } + if (u_isdigit(nextChar) == FALSE) { + break; + } + int32_t nextDigitVal = u_charDigitValue(nextChar); + if (groupNum*10 + nextDigitVal > numCaptureGroups) { + // Don't consume the next digit if it makes the capture group number too big. + if (numDigits == 0) { + status = U_INDEX_OUTOFBOUNDS_ERROR; + } + break; + } + (void)UTEXT_NEXT32(replacement); + groupNum=groupNum*10 + nextDigitVal; + ++numDigits; + } + } else { + // $ not followed by capture group name or number. + status = U_REGEX_INVALID_CAPTURE_GROUP_NAME; + } + + if (U_SUCCESS(status)) { + destLen += appendGroup(groupNum, dest, status); + } + } // End of $ capture group handling + } // End of per-character loop through the replacement string. + + return *this; +} + + + +//-------------------------------------------------------------------------------- +// +// appendTail Intended to be used in conjunction with appendReplacement() +// To the destination string, append everything following +// the last match position from the input string. +// +// Note: Match ranges do not affect appendTail or appendReplacement +// +//-------------------------------------------------------------------------------- +UnicodeString &RegexMatcher::appendTail(UnicodeString &dest) { + UErrorCode status = U_ZERO_ERROR; + UText resultText = UTEXT_INITIALIZER; + utext_openUnicodeString(&resultText, &dest, &status); + + if (U_SUCCESS(status)) { + appendTail(&resultText, status); + utext_close(&resultText); + } + + return dest; +} + +// +// appendTail, UText mode +// +UText *RegexMatcher::appendTail(UText *dest, UErrorCode &status) { + if (U_FAILURE(status)) { + return dest; + } + if (U_FAILURE(fDeferredStatus)) { + status = fDeferredStatus; + return dest; + } + + if (fInputLength > fAppendPosition) { + if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) { + int64_t destLen = utext_nativeLength(dest); + utext_replace(dest, destLen, destLen, fInputText->chunkContents+fAppendPosition, + (int32_t)(fInputLength-fAppendPosition), &status); + } else { + int32_t len16; + if (UTEXT_USES_U16(fInputText)) { + len16 = (int32_t)(fInputLength-fAppendPosition); + } else { + len16 = utext_extract(fInputText, fAppendPosition, fInputLength, NULL, 0, &status); + status = U_ZERO_ERROR; // buffer overflow + } + + UChar *inputChars = (UChar *)uprv_malloc(sizeof(UChar)*(len16)); + if (inputChars == NULL) { + fDeferredStatus = U_MEMORY_ALLOCATION_ERROR; + } else { + utext_extract(fInputText, fAppendPosition, fInputLength, inputChars, len16, &status); // unterminated + int64_t destLen = utext_nativeLength(dest); + utext_replace(dest, destLen, destLen, inputChars, len16, &status); + uprv_free(inputChars); + } + } + } + return dest; +} + + + +//-------------------------------------------------------------------------------- +// +// end +// +//-------------------------------------------------------------------------------- +int32_t RegexMatcher::end(UErrorCode &err) const { + return end(0, err); +} + +int64_t RegexMatcher::end64(UErrorCode &err) const { + return end64(0, err); +} + +int64_t RegexMatcher::end64(int32_t group, UErrorCode &err) const { + if (U_FAILURE(err)) { + return -1; + } + if (fMatch == FALSE) { + err = U_REGEX_INVALID_STATE; + return -1; + } + if (group < 0 || group > fPattern->fGroupMap->size()) { + err = U_INDEX_OUTOFBOUNDS_ERROR; + return -1; + } + int64_t e = -1; + if (group == 0) { + e = fMatchEnd; + } else { + // Get the position within the stack frame of the variables for + // this capture group. + int32_t groupOffset = fPattern->fGroupMap->elementAti(group-1); + U_ASSERT(groupOffset < fPattern->fFrameSize); + U_ASSERT(groupOffset >= 0); + e = fFrame->fExtra[groupOffset + 1]; + } + + return e; +} + +int32_t RegexMatcher::end(int32_t group, UErrorCode &err) const { + return (int32_t)end64(group, err); +} + +//-------------------------------------------------------------------------------- +// +// findProgressInterrupt This function is called once for each advance in the target +// string from the find() function, and calls the user progress callback +// function if there is one installed. +// +// Return: TRUE if the find operation is to be terminated. +// FALSE if the find operation is to continue running. +// +//-------------------------------------------------------------------------------- +UBool RegexMatcher::findProgressInterrupt(int64_t pos, UErrorCode &status) { + if (fFindProgressCallbackFn && !(*fFindProgressCallbackFn)(fFindProgressCallbackContext, pos)) { + status = U_REGEX_STOPPED_BY_CALLER; + return TRUE; + } + return FALSE; +} + +//-------------------------------------------------------------------------------- +// +// find() +// +//-------------------------------------------------------------------------------- +UBool RegexMatcher::find() { + if (U_FAILURE(fDeferredStatus)) { + return FALSE; + } + UErrorCode status = U_ZERO_ERROR; + UBool result = find(status); + return result; +} + +//-------------------------------------------------------------------------------- +// +// find() +// +//-------------------------------------------------------------------------------- +UBool RegexMatcher::find(UErrorCode &status) { + // Start at the position of the last match end. (Will be zero if the + // matcher has been reset.) + // + if (U_FAILURE(status)) { + return FALSE; + } + if (U_FAILURE(fDeferredStatus)) { + status = fDeferredStatus; + return FALSE; + } + + if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) { + return findUsingChunk(status); + } + + int64_t startPos = fMatchEnd; + if (startPos==0) { + startPos = fActiveStart; + } + + if (fMatch) { + // Save the position of any previous successful match. + fLastMatchEnd = fMatchEnd; + + if (fMatchStart == fMatchEnd) { + // Previous match had zero length. Move start position up one position + // to avoid sending find() into a loop on zero-length matches. + if (startPos >= fActiveLimit) { + fMatch = FALSE; + fHitEnd = TRUE; + return FALSE; + } + UTEXT_SETNATIVEINDEX(fInputText, startPos); + (void)UTEXT_NEXT32(fInputText); + startPos = UTEXT_GETNATIVEINDEX(fInputText); + } + } else { + if (fLastMatchEnd >= 0) { + // A previous find() failed to match. Don't try again. + // (without this test, a pattern with a zero-length match + // could match again at the end of an input string.) + fHitEnd = TRUE; + return FALSE; + } + } + + + // Compute the position in the input string beyond which a match can not begin, because + // the minimum length match would extend past the end of the input. + // Note: some patterns that cannot match anything will have fMinMatchLength==Max Int. + // Be aware of possible overflows if making changes here. + int64_t testStartLimit; + if (UTEXT_USES_U16(fInputText)) { + testStartLimit = fActiveLimit - fPattern->fMinMatchLen; + if (startPos > testStartLimit) { + fMatch = FALSE; + fHitEnd = TRUE; + return FALSE; + } + } else { + // We don't know exactly how long the minimum match length is in native characters. + // Treat anything > 0 as 1. + testStartLimit = fActiveLimit - (fPattern->fMinMatchLen > 0 ? 1 : 0); + } + + UChar32 c; + U_ASSERT(startPos >= 0); + + switch (fPattern->fStartType) { + case START_NO_INFO: + // No optimization was found. + // Try a match at each input position. + for (;;) { + MatchAt(startPos, FALSE, status); + if (U_FAILURE(status)) { + return FALSE; + } + if (fMatch) { + return TRUE; + } + if (startPos >= testStartLimit) { + fHitEnd = TRUE; + return FALSE; + } + UTEXT_SETNATIVEINDEX(fInputText, startPos); + (void)UTEXT_NEXT32(fInputText); + startPos = UTEXT_GETNATIVEINDEX(fInputText); + // Note that it's perfectly OK for a pattern to have a zero-length + // match at the end of a string, so we must make sure that the loop + // runs with startPos == testStartLimit the last time through. + if (findProgressInterrupt(startPos, status)) + return FALSE; + } + U_ASSERT(FALSE); + + case START_START: + // Matches are only possible at the start of the input string + // (pattern begins with ^ or \A) + if (startPos > fActiveStart) { + fMatch = FALSE; + return FALSE; + } + MatchAt(startPos, FALSE, status); + if (U_FAILURE(status)) { + return FALSE; + } + return fMatch; + + + case START_SET: + { + // Match may start on any char from a pre-computed set. + U_ASSERT(fPattern->fMinMatchLen > 0); + UTEXT_SETNATIVEINDEX(fInputText, startPos); + for (;;) { + int64_t pos = startPos; + c = UTEXT_NEXT32(fInputText); + startPos = UTEXT_GETNATIVEINDEX(fInputText); + // c will be -1 (U_SENTINEL) at end of text, in which case we + // skip this next block (so we don't have a negative array index) + // and handle end of text in the following block. + if (c >= 0 && ((c<256 && fPattern->fInitialChars8->contains(c)) || + (c>=256 && fPattern->fInitialChars->contains(c)))) { + MatchAt(pos, FALSE, status); + if (U_FAILURE(status)) { + return FALSE; + } + if (fMatch) { + return TRUE; + } + UTEXT_SETNATIVEINDEX(fInputText, pos); + } + if (startPos > testStartLimit) { + fMatch = FALSE; + fHitEnd = TRUE; + return FALSE; + } + if (findProgressInterrupt(startPos, status)) + return FALSE; + } + } + U_ASSERT(FALSE); + + case START_STRING: + case START_CHAR: + { + // Match starts on exactly one char. + U_ASSERT(fPattern->fMinMatchLen > 0); + UChar32 theChar = fPattern->fInitialChar; + UTEXT_SETNATIVEINDEX(fInputText, startPos); + for (;;) { + int64_t pos = startPos; + c = UTEXT_NEXT32(fInputText); + startPos = UTEXT_GETNATIVEINDEX(fInputText); + if (c == theChar) { + MatchAt(pos, FALSE, status); + if (U_FAILURE(status)) { + return FALSE; + } + if (fMatch) { + return TRUE; + } + UTEXT_SETNATIVEINDEX(fInputText, startPos); + } + if (startPos > testStartLimit) { + fMatch = FALSE; + fHitEnd = TRUE; + return FALSE; + } + if (findProgressInterrupt(startPos, status)) + return FALSE; + } + } + U_ASSERT(FALSE); + + case START_LINE: + { + UChar32 c; + if (startPos == fAnchorStart) { + MatchAt(startPos, FALSE, status); + if (U_FAILURE(status)) { + return FALSE; + } + if (fMatch) { + return TRUE; + } + UTEXT_SETNATIVEINDEX(fInputText, startPos); + c = UTEXT_NEXT32(fInputText); + startPos = UTEXT_GETNATIVEINDEX(fInputText); + } else { + UTEXT_SETNATIVEINDEX(fInputText, startPos); + c = UTEXT_PREVIOUS32(fInputText); + UTEXT_SETNATIVEINDEX(fInputText, startPos); + } + + if (fPattern->fFlags & UREGEX_UNIX_LINES) { + for (;;) { + if (c == 0x0a) { + MatchAt(startPos, FALSE, status); + if (U_FAILURE(status)) { + return FALSE; + } + if (fMatch) { + return TRUE; + } + UTEXT_SETNATIVEINDEX(fInputText, startPos); + } + if (startPos >= testStartLimit) { + fMatch = FALSE; + fHitEnd = TRUE; + return FALSE; + } + c = UTEXT_NEXT32(fInputText); + startPos = UTEXT_GETNATIVEINDEX(fInputText); + // Note that it's perfectly OK for a pattern to have a zero-length + // match at the end of a string, so we must make sure that the loop + // runs with startPos == testStartLimit the last time through. + if (findProgressInterrupt(startPos, status)) + return FALSE; + } + } else { + for (;;) { + if (isLineTerminator(c)) { + if (c == 0x0d && startPos < fActiveLimit && UTEXT_CURRENT32(fInputText) == 0x0a) { + (void)UTEXT_NEXT32(fInputText); + startPos = UTEXT_GETNATIVEINDEX(fInputText); + } + MatchAt(startPos, FALSE, status); + if (U_FAILURE(status)) { + return FALSE; + } + if (fMatch) { + return TRUE; + } + UTEXT_SETNATIVEINDEX(fInputText, startPos); + } + if (startPos >= testStartLimit) { + fMatch = FALSE; + fHitEnd = TRUE; + return FALSE; + } + c = UTEXT_NEXT32(fInputText); + startPos = UTEXT_GETNATIVEINDEX(fInputText); + // Note that it's perfectly OK for a pattern to have a zero-length + // match at the end of a string, so we must make sure that the loop + // runs with startPos == testStartLimit the last time through. + if (findProgressInterrupt(startPos, status)) + return FALSE; + } + } + } + + default: + U_ASSERT(FALSE); + } + + U_ASSERT(FALSE); + return FALSE; +} + + + +UBool RegexMatcher::find(int64_t start, UErrorCode &status) { + if (U_FAILURE(status)) { + return FALSE; + } + if (U_FAILURE(fDeferredStatus)) { + status = fDeferredStatus; + return FALSE; + } + this->reset(); // Note: Reset() is specified by Java Matcher documentation. + // This will reset the region to be the full input length. + if (start < 0) { + status = U_INDEX_OUTOFBOUNDS_ERROR; + return FALSE; + } + + int64_t nativeStart = start; + if (nativeStart < fActiveStart || nativeStart > fActiveLimit) { + status = U_INDEX_OUTOFBOUNDS_ERROR; + return FALSE; + } + fMatchEnd = nativeStart; + return find(status); +} + + +//-------------------------------------------------------------------------------- +// +// findUsingChunk() -- like find(), but with the advance knowledge that the +// entire string is available in the UText's chunk buffer. +// +//-------------------------------------------------------------------------------- +UBool RegexMatcher::findUsingChunk(UErrorCode &status) { + // Start at the position of the last match end. (Will be zero if the + // matcher has been reset. + // + + int32_t startPos = (int32_t)fMatchEnd; + if (startPos==0) { + startPos = (int32_t)fActiveStart; + } + + const UChar *inputBuf = fInputText->chunkContents; + + if (fMatch) { + // Save the position of any previous successful match. + fLastMatchEnd = fMatchEnd; + + if (fMatchStart == fMatchEnd) { + // Previous match had zero length. Move start position up one position + // to avoid sending find() into a loop on zero-length matches. + if (startPos >= fActiveLimit) { + fMatch = FALSE; + fHitEnd = TRUE; + return FALSE; + } + U16_FWD_1(inputBuf, startPos, fInputLength); + } + } else { + if (fLastMatchEnd >= 0) { + // A previous find() failed to match. Don't try again. + // (without this test, a pattern with a zero-length match + // could match again at the end of an input string.) + fHitEnd = TRUE; + return FALSE; + } + } + + + // Compute the position in the input string beyond which a match can not begin, because + // the minimum length match would extend past the end of the input. + // Note: some patterns that cannot match anything will have fMinMatchLength==Max Int. + // Be aware of possible overflows if making changes here. + // Note: a match can begin at inputBuf + testLen; it is an inclusive limit. + int32_t testLen = (int32_t)(fActiveLimit - fPattern->fMinMatchLen); + if (startPos > testLen) { + fMatch = FALSE; + fHitEnd = TRUE; + return FALSE; + } + + UChar32 c; + U_ASSERT(startPos >= 0); + + switch (fPattern->fStartType) { + case START_NO_INFO: + // No optimization was found. + // Try a match at each input position. + for (;;) { + MatchChunkAt(startPos, FALSE, status); + if (U_FAILURE(status)) { + return FALSE; + } + if (fMatch) { + return TRUE; + } + if (startPos >= testLen) { + fHitEnd = TRUE; + return FALSE; + } + U16_FWD_1(inputBuf, startPos, fActiveLimit); + // Note that it's perfectly OK for a pattern to have a zero-length + // match at the end of a string, so we must make sure that the loop + // runs with startPos == testLen the last time through. + if (findProgressInterrupt(startPos, status)) + return FALSE; + } + U_ASSERT(FALSE); + + case START_START: + // Matches are only possible at the start of the input string + // (pattern begins with ^ or \A) + if (startPos > fActiveStart) { + fMatch = FALSE; + return FALSE; + } + MatchChunkAt(startPos, FALSE, status); + if (U_FAILURE(status)) { + return FALSE; + } + return fMatch; + + + case START_SET: + { + // Match may start on any char from a pre-computed set. + U_ASSERT(fPattern->fMinMatchLen > 0); + for (;;) { + int32_t pos = startPos; + U16_NEXT(inputBuf, startPos, fActiveLimit, c); // like c = inputBuf[startPos++]; + if ((c<256 && fPattern->fInitialChars8->contains(c)) || + (c>=256 && fPattern->fInitialChars->contains(c))) { + MatchChunkAt(pos, FALSE, status); + if (U_FAILURE(status)) { + return FALSE; + } + if (fMatch) { + return TRUE; + } + } + if (startPos > testLen) { + fMatch = FALSE; + fHitEnd = TRUE; + return FALSE; + } + if (findProgressInterrupt(startPos, status)) + return FALSE; + } + } + U_ASSERT(FALSE); + + case START_STRING: + case START_CHAR: + { + // Match starts on exactly one char. + U_ASSERT(fPattern->fMinMatchLen > 0); + UChar32 theChar = fPattern->fInitialChar; + for (;;) { + int32_t pos = startPos; + U16_NEXT(inputBuf, startPos, fActiveLimit, c); // like c = inputBuf[startPos++]; + if (c == theChar) { + MatchChunkAt(pos, FALSE, status); + if (U_FAILURE(status)) { + return FALSE; + } + if (fMatch) { + return TRUE; + } + } + if (startPos > testLen) { + fMatch = FALSE; + fHitEnd = TRUE; + return FALSE; + } + if (findProgressInterrupt(startPos, status)) + return FALSE; + } + } + U_ASSERT(FALSE); + + case START_LINE: + { + UChar32 c; + if (startPos == fAnchorStart) { + MatchChunkAt(startPos, FALSE, status); + if (U_FAILURE(status)) { + return FALSE; + } + if (fMatch) { + return TRUE; + } + U16_FWD_1(inputBuf, startPos, fActiveLimit); + } + + if (fPattern->fFlags & UREGEX_UNIX_LINES) { + for (;;) { + c = inputBuf[startPos-1]; + if (c == 0x0a) { + MatchChunkAt(startPos, FALSE, status); + if (U_FAILURE(status)) { + return FALSE; + } + if (fMatch) { + return TRUE; + } + } + if (startPos >= testLen) { + fMatch = FALSE; + fHitEnd = TRUE; + return FALSE; + } + U16_FWD_1(inputBuf, startPos, fActiveLimit); + // Note that it's perfectly OK for a pattern to have a zero-length + // match at the end of a string, so we must make sure that the loop + // runs with startPos == testLen the last time through. + if (findProgressInterrupt(startPos, status)) + return FALSE; + } + } else { + for (;;) { + c = inputBuf[startPos-1]; + if (isLineTerminator(c)) { + if (c == 0x0d && startPos < fActiveLimit && inputBuf[startPos] == 0x0a) { + startPos++; + } + MatchChunkAt(startPos, FALSE, status); + if (U_FAILURE(status)) { + return FALSE; + } + if (fMatch) { + return TRUE; + } + } + if (startPos >= testLen) { + fMatch = FALSE; + fHitEnd = TRUE; + return FALSE; + } + U16_FWD_1(inputBuf, startPos, fActiveLimit); + // Note that it's perfectly OK for a pattern to have a zero-length + // match at the end of a string, so we must make sure that the loop + // runs with startPos == testLen the last time through. + if (findProgressInterrupt(startPos, status)) + return FALSE; + } + } + } + + default: + U_ASSERT(FALSE); + } + + U_ASSERT(FALSE); + return FALSE; +} + + + +//-------------------------------------------------------------------------------- +// +// group() +// +//-------------------------------------------------------------------------------- +UnicodeString RegexMatcher::group(UErrorCode &status) const { + return group(0, status); +} + +// Return immutable shallow clone +UText *RegexMatcher::group(UText *dest, int64_t &group_len, UErrorCode &status) const { + return group(0, dest, group_len, status); +} + +// Return immutable shallow clone +UText *RegexMatcher::group(int32_t groupNum, UText *dest, int64_t &group_len, UErrorCode &status) const { + group_len = 0; + if (U_FAILURE(status)) { + return dest; + } + if (U_FAILURE(fDeferredStatus)) { + status = fDeferredStatus; + } else if (fMatch == FALSE) { + status = U_REGEX_INVALID_STATE; + } else if (groupNum < 0 || groupNum > fPattern->fGroupMap->size()) { + status = U_INDEX_OUTOFBOUNDS_ERROR; + } + + if (U_FAILURE(status)) { + return dest; + } + + int64_t s, e; + if (groupNum == 0) { + s = fMatchStart; + e = fMatchEnd; + } else { + int32_t groupOffset = fPattern->fGroupMap->elementAti(groupNum-1); + U_ASSERT(groupOffset < fPattern->fFrameSize); + U_ASSERT(groupOffset >= 0); + s = fFrame->fExtra[groupOffset]; + e = fFrame->fExtra[groupOffset+1]; + } + + if (s < 0) { + // A capture group wasn't part of the match + return utext_clone(dest, fInputText, FALSE, TRUE, &status); + } + U_ASSERT(s <= e); + group_len = e - s; + + dest = utext_clone(dest, fInputText, FALSE, TRUE, &status); + if (dest) + UTEXT_SETNATIVEINDEX(dest, s); + return dest; +} + +UnicodeString RegexMatcher::group(int32_t groupNum, UErrorCode &status) const { + UnicodeString result; + int64_t groupStart = start64(groupNum, status); + int64_t groupEnd = end64(groupNum, status); + if (U_FAILURE(status) || groupStart == -1 || groupStart == groupEnd) { + return result; + } + + // Get the group length using a utext_extract preflight. + // UText is actually pretty efficient at this when underlying encoding is UTF-16. + int32_t length = utext_extract(fInputText, groupStart, groupEnd, NULL, 0, &status); + if (status != U_BUFFER_OVERFLOW_ERROR) { + return result; + } + + status = U_ZERO_ERROR; + UChar *buf = result.getBuffer(length); + if (buf == NULL) { + status = U_MEMORY_ALLOCATION_ERROR; + } else { + int32_t extractLength = utext_extract(fInputText, groupStart, groupEnd, buf, length, &status); + result.releaseBuffer(extractLength); + U_ASSERT(length == extractLength); + } + return result; +} + + +//-------------------------------------------------------------------------------- +// +// appendGroup() -- currently internal only, appends a group to a UText rather +// than replacing its contents +// +//-------------------------------------------------------------------------------- + +int64_t RegexMatcher::appendGroup(int32_t groupNum, UText *dest, UErrorCode &status) const { + if (U_FAILURE(status)) { + return 0; + } + if (U_FAILURE(fDeferredStatus)) { + status = fDeferredStatus; + return 0; + } + int64_t destLen = utext_nativeLength(dest); + + if (fMatch == FALSE) { + status = U_REGEX_INVALID_STATE; + return utext_replace(dest, destLen, destLen, NULL, 0, &status); + } + if (groupNum < 0 || groupNum > fPattern->fGroupMap->size()) { + status = U_INDEX_OUTOFBOUNDS_ERROR; + return utext_replace(dest, destLen, destLen, NULL, 0, &status); + } + + int64_t s, e; + if (groupNum == 0) { + s = fMatchStart; + e = fMatchEnd; + } else { + int32_t groupOffset = fPattern->fGroupMap->elementAti(groupNum-1); + U_ASSERT(groupOffset < fPattern->fFrameSize); + U_ASSERT(groupOffset >= 0); + s = fFrame->fExtra[groupOffset]; + e = fFrame->fExtra[groupOffset+1]; + } + + if (s < 0) { + // A capture group wasn't part of the match + return utext_replace(dest, destLen, destLen, NULL, 0, &status); + } + U_ASSERT(s <= e); + + int64_t deltaLen; + if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) { + U_ASSERT(e <= fInputLength); + deltaLen = utext_replace(dest, destLen, destLen, fInputText->chunkContents+s, (int32_t)(e-s), &status); + } else { + int32_t len16; + if (UTEXT_USES_U16(fInputText)) { + len16 = (int32_t)(e-s); + } else { + UErrorCode lengthStatus = U_ZERO_ERROR; + len16 = utext_extract(fInputText, s, e, NULL, 0, &lengthStatus); + } + UChar *groupChars = (UChar *)uprv_malloc(sizeof(UChar)*(len16+1)); + if (groupChars == NULL) { + status = U_MEMORY_ALLOCATION_ERROR; + return 0; + } + utext_extract(fInputText, s, e, groupChars, len16+1, &status); + + deltaLen = utext_replace(dest, destLen, destLen, groupChars, len16, &status); + uprv_free(groupChars); + } + return deltaLen; +} + + + +//-------------------------------------------------------------------------------- +// +// groupCount() +// +//-------------------------------------------------------------------------------- +int32_t RegexMatcher::groupCount() const { + return fPattern->fGroupMap->size(); +} + +//-------------------------------------------------------------------------------- +// +// hasAnchoringBounds() +// +//-------------------------------------------------------------------------------- +UBool RegexMatcher::hasAnchoringBounds() const { + return fAnchoringBounds; +} + + +//-------------------------------------------------------------------------------- +// +// hasTransparentBounds() +// +//-------------------------------------------------------------------------------- +UBool RegexMatcher::hasTransparentBounds() const { + return fTransparentBounds; +} + + + +//-------------------------------------------------------------------------------- +// +// hitEnd() +// +//-------------------------------------------------------------------------------- +UBool RegexMatcher::hitEnd() const { + return fHitEnd; +} + + +//-------------------------------------------------------------------------------- +// +// input() +// +//-------------------------------------------------------------------------------- +const UnicodeString &RegexMatcher::input() const { + if (!fInput) { + UErrorCode status = U_ZERO_ERROR; + int32_t len16; + if (UTEXT_USES_U16(fInputText)) { + len16 = (int32_t)fInputLength; + } else { + len16 = utext_extract(fInputText, 0, fInputLength, NULL, 0, &status); + status = U_ZERO_ERROR; // overflow, length status + } + UnicodeString *result = new UnicodeString(len16, 0, 0); + + UChar *inputChars = result->getBuffer(len16); + utext_extract(fInputText, 0, fInputLength, inputChars, len16, &status); // unterminated warning + result->releaseBuffer(len16); + + (*(const UnicodeString **)&fInput) = result; // pointer assignment, rather than operator= + } + + return *fInput; +} + +//-------------------------------------------------------------------------------- +// +// inputText() +// +//-------------------------------------------------------------------------------- +UText *RegexMatcher::inputText() const { + return fInputText; +} + + +//-------------------------------------------------------------------------------- +// +// getInput() -- like inputText(), but makes a clone or copies into another UText +// +//-------------------------------------------------------------------------------- +UText *RegexMatcher::getInput (UText *dest, UErrorCode &status) const { + if (U_FAILURE(status)) { + return dest; + } + if (U_FAILURE(fDeferredStatus)) { + status = fDeferredStatus; + return dest; + } + + if (dest) { + if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) { + utext_replace(dest, 0, utext_nativeLength(dest), fInputText->chunkContents, (int32_t)fInputLength, &status); + } else { + int32_t input16Len; + if (UTEXT_USES_U16(fInputText)) { + input16Len = (int32_t)fInputLength; + } else { + UErrorCode lengthStatus = U_ZERO_ERROR; + input16Len = utext_extract(fInputText, 0, fInputLength, NULL, 0, &lengthStatus); // buffer overflow error + } + UChar *inputChars = (UChar *)uprv_malloc(sizeof(UChar)*(input16Len)); + if (inputChars == NULL) { + return dest; + } + + status = U_ZERO_ERROR; + utext_extract(fInputText, 0, fInputLength, inputChars, input16Len, &status); // not terminated warning + status = U_ZERO_ERROR; + utext_replace(dest, 0, utext_nativeLength(dest), inputChars, input16Len, &status); + + uprv_free(inputChars); + } + return dest; + } else { + return utext_clone(NULL, fInputText, FALSE, TRUE, &status); + } +} + + +static UBool compat_SyncMutableUTextContents(UText *ut); +static UBool compat_SyncMutableUTextContents(UText *ut) { + UBool retVal = FALSE; + + // In the following test, we're really only interested in whether the UText should switch + // between heap and stack allocation. If length hasn't changed, we won't, so the chunkContents + // will still point to the correct data. + if (utext_nativeLength(ut) != ut->nativeIndexingLimit) { + UnicodeString *us=(UnicodeString *)ut->context; + + // Update to the latest length. + // For example, (utext_nativeLength(ut) != ut->nativeIndexingLimit). + int32_t newLength = us->length(); + + // Update the chunk description. + // The buffer may have switched between stack- and heap-based. + ut->chunkContents = us->getBuffer(); + ut->chunkLength = newLength; + ut->chunkNativeLimit = newLength; + ut->nativeIndexingLimit = newLength; + retVal = TRUE; + } + + return retVal; +} + +//-------------------------------------------------------------------------------- +// +// lookingAt() +// +//-------------------------------------------------------------------------------- +UBool RegexMatcher::lookingAt(UErrorCode &status) { + if (U_FAILURE(status)) { + return FALSE; + } + if (U_FAILURE(fDeferredStatus)) { + status = fDeferredStatus; + return FALSE; + } + + if (fInputUniStrMaybeMutable) { + if (compat_SyncMutableUTextContents(fInputText)) { + fInputLength = utext_nativeLength(fInputText); + reset(); + } + } + else { + resetPreserveRegion(); + } + if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) { + MatchChunkAt((int32_t)fActiveStart, FALSE, status); + } else { + MatchAt(fActiveStart, FALSE, status); + } + return fMatch; +} + + +UBool RegexMatcher::lookingAt(int64_t start, UErrorCode &status) { + if (U_FAILURE(status)) { + return FALSE; + } + if (U_FAILURE(fDeferredStatus)) { + status = fDeferredStatus; + return FALSE; + } + reset(); + + if (start < 0) { + status = U_INDEX_OUTOFBOUNDS_ERROR; + return FALSE; + } + + if (fInputUniStrMaybeMutable) { + if (compat_SyncMutableUTextContents(fInputText)) { + fInputLength = utext_nativeLength(fInputText); + reset(); + } + } + + int64_t nativeStart; + nativeStart = start; + if (nativeStart < fActiveStart || nativeStart > fActiveLimit) { + status = U_INDEX_OUTOFBOUNDS_ERROR; + return FALSE; + } + + if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) { + MatchChunkAt((int32_t)nativeStart, FALSE, status); + } else { + MatchAt(nativeStart, FALSE, status); + } + return fMatch; +} + + + +//-------------------------------------------------------------------------------- +// +// matches() +// +//-------------------------------------------------------------------------------- +UBool RegexMatcher::matches(UErrorCode &status) { + if (U_FAILURE(status)) { + return FALSE; + } + if (U_FAILURE(fDeferredStatus)) { + status = fDeferredStatus; + return FALSE; + } + + if (fInputUniStrMaybeMutable) { + if (compat_SyncMutableUTextContents(fInputText)) { + fInputLength = utext_nativeLength(fInputText); + reset(); + } + } + else { + resetPreserveRegion(); + } + + if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) { + MatchChunkAt((int32_t)fActiveStart, TRUE, status); + } else { + MatchAt(fActiveStart, TRUE, status); + } + return fMatch; +} + + +UBool RegexMatcher::matches(int64_t start, UErrorCode &status) { + if (U_FAILURE(status)) { + return FALSE; + } + if (U_FAILURE(fDeferredStatus)) { + status = fDeferredStatus; + return FALSE; + } + reset(); + + if (start < 0) { + status = U_INDEX_OUTOFBOUNDS_ERROR; + return FALSE; + } + + if (fInputUniStrMaybeMutable) { + if (compat_SyncMutableUTextContents(fInputText)) { + fInputLength = utext_nativeLength(fInputText); + reset(); + } + } + + int64_t nativeStart; + nativeStart = start; + if (nativeStart < fActiveStart || nativeStart > fActiveLimit) { + status = U_INDEX_OUTOFBOUNDS_ERROR; + return FALSE; + } + + if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) { + MatchChunkAt((int32_t)nativeStart, TRUE, status); + } else { + MatchAt(nativeStart, TRUE, status); + } + return fMatch; +} + + + +//-------------------------------------------------------------------------------- +// +// pattern +// +//-------------------------------------------------------------------------------- +const RegexPattern &RegexMatcher::pattern() const { + return *fPattern; +} + + + +//-------------------------------------------------------------------------------- +// +// region +// +//-------------------------------------------------------------------------------- +RegexMatcher &RegexMatcher::region(int64_t regionStart, int64_t regionLimit, int64_t startIndex, UErrorCode &status) { + if (U_FAILURE(status)) { + return *this; + } + + if (regionStart>regionLimit || regionStart<0 || regionLimit<0) { + status = U_ILLEGAL_ARGUMENT_ERROR; + } + + int64_t nativeStart = regionStart; + int64_t nativeLimit = regionLimit; + if (nativeStart > fInputLength || nativeLimit > fInputLength) { + status = U_ILLEGAL_ARGUMENT_ERROR; + } + + if (startIndex == -1) + this->reset(); + else + resetPreserveRegion(); + + fRegionStart = nativeStart; + fRegionLimit = nativeLimit; + fActiveStart = nativeStart; + fActiveLimit = nativeLimit; + + if (startIndex != -1) { + if (startIndex < fActiveStart || startIndex > fActiveLimit) { + status = U_INDEX_OUTOFBOUNDS_ERROR; + } + fMatchEnd = startIndex; + } + + if (!fTransparentBounds) { + fLookStart = nativeStart; + fLookLimit = nativeLimit; + } + if (fAnchoringBounds) { + fAnchorStart = nativeStart; + fAnchorLimit = nativeLimit; + } + return *this; +} + +RegexMatcher &RegexMatcher::region(int64_t start, int64_t limit, UErrorCode &status) { + return region(start, limit, -1, status); +} + +//-------------------------------------------------------------------------------- +// +// regionEnd +// +//-------------------------------------------------------------------------------- +int32_t RegexMatcher::regionEnd() const { + return (int32_t)fRegionLimit; +} + +int64_t RegexMatcher::regionEnd64() const { + return fRegionLimit; +} + +//-------------------------------------------------------------------------------- +// +// regionStart +// +//-------------------------------------------------------------------------------- +int32_t RegexMatcher::regionStart() const { + return (int32_t)fRegionStart; +} + +int64_t RegexMatcher::regionStart64() const { + return fRegionStart; +} + + +//-------------------------------------------------------------------------------- +// +// replaceAll +// +//-------------------------------------------------------------------------------- +UnicodeString RegexMatcher::replaceAll(const UnicodeString &replacement, UErrorCode &status) { + UText replacementText = UTEXT_INITIALIZER; + UText resultText = UTEXT_INITIALIZER; + UnicodeString resultString; + if (U_FAILURE(status)) { + return resultString; + } + + utext_openConstUnicodeString(&replacementText, &replacement, &status); + utext_openUnicodeString(&resultText, &resultString, &status); + + replaceAll(&replacementText, &resultText, status); + + utext_close(&resultText); + utext_close(&replacementText); + + return resultString; +} + + +// +// replaceAll, UText mode +// +UText *RegexMatcher::replaceAll(UText *replacement, UText *dest, UErrorCode &status) { + if (U_FAILURE(status)) { + return dest; + } + if (U_FAILURE(fDeferredStatus)) { + status = fDeferredStatus; + return dest; + } + + if (dest == NULL) { + UnicodeString emptyString; + UText empty = UTEXT_INITIALIZER; + + utext_openUnicodeString(&empty, &emptyString, &status); + dest = utext_clone(NULL, &empty, TRUE, FALSE, &status); + utext_close(&empty); + } + + if (U_SUCCESS(status)) { + reset(); + while (find()) { + appendReplacement(dest, replacement, status); + if (U_FAILURE(status)) { + break; + } + } + appendTail(dest, status); + } + + return dest; +} + + +//-------------------------------------------------------------------------------- +// +// replaceFirst +// +//-------------------------------------------------------------------------------- +UnicodeString RegexMatcher::replaceFirst(const UnicodeString &replacement, UErrorCode &status) { + UText replacementText = UTEXT_INITIALIZER; + UText resultText = UTEXT_INITIALIZER; + UnicodeString resultString; + + utext_openConstUnicodeString(&replacementText, &replacement, &status); + utext_openUnicodeString(&resultText, &resultString, &status); + + replaceFirst(&replacementText, &resultText, status); + + utext_close(&resultText); + utext_close(&replacementText); + + return resultString; +} + +// +// replaceFirst, UText mode +// +UText *RegexMatcher::replaceFirst(UText *replacement, UText *dest, UErrorCode &status) { + if (U_FAILURE(status)) { + return dest; + } + if (U_FAILURE(fDeferredStatus)) { + status = fDeferredStatus; + return dest; + } + + reset(); + if (!find()) { + return getInput(dest, status); + } + + if (dest == NULL) { + UnicodeString emptyString; + UText empty = UTEXT_INITIALIZER; + + utext_openUnicodeString(&empty, &emptyString, &status); + dest = utext_clone(NULL, &empty, TRUE, FALSE, &status); + utext_close(&empty); + } + + appendReplacement(dest, replacement, status); + appendTail(dest, status); + + return dest; +} + + +//-------------------------------------------------------------------------------- +// +// requireEnd +// +//-------------------------------------------------------------------------------- +UBool RegexMatcher::requireEnd() const { + return fRequireEnd; +} + + +//-------------------------------------------------------------------------------- +// +// reset +// +//-------------------------------------------------------------------------------- +RegexMatcher &RegexMatcher::reset() { + fRegionStart = 0; + fRegionLimit = fInputLength; + fActiveStart = 0; + fActiveLimit = fInputLength; + fAnchorStart = 0; + fAnchorLimit = fInputLength; + fLookStart = 0; + fLookLimit = fInputLength; + resetPreserveRegion(); + return *this; +} + + + +void RegexMatcher::resetPreserveRegion() { + fMatchStart = 0; + fMatchEnd = 0; + fLastMatchEnd = -1; + fAppendPosition = 0; + fMatch = FALSE; + fHitEnd = FALSE; + fRequireEnd = FALSE; + fTime = 0; + fTickCounter = TIMER_INITIAL_VALUE; + //resetStack(); // more expensive than it looks... +} + + +RegexMatcher &RegexMatcher::reset(const UnicodeString &input) { + fInputText = utext_openConstUnicodeString(fInputText, &input, &fDeferredStatus); + if (fPattern->fNeedsAltInput) { + fAltInputText = utext_clone(fAltInputText, fInputText, FALSE, TRUE, &fDeferredStatus); + } + if (U_FAILURE(fDeferredStatus)) { + return *this; + } + fInputLength = utext_nativeLength(fInputText); + + reset(); + delete fInput; + fInput = NULL; + + // Do the following for any UnicodeString. + // This is for compatibility for those clients who modify the input string "live" during regex operations. + fInputUniStrMaybeMutable = TRUE; + + if (fWordBreakItr != NULL) { +#if UCONFIG_NO_BREAK_ITERATION==0 + UErrorCode status = U_ZERO_ERROR; + fWordBreakItr->setText(fInputText, status); +#endif + } + return *this; +} + + +RegexMatcher &RegexMatcher::reset(UText *input) { + if (fInputText != input) { + fInputText = utext_clone(fInputText, input, FALSE, TRUE, &fDeferredStatus); + if (fPattern->fNeedsAltInput) fAltInputText = utext_clone(fAltInputText, fInputText, FALSE, TRUE, &fDeferredStatus); + if (U_FAILURE(fDeferredStatus)) { + return *this; + } + fInputLength = utext_nativeLength(fInputText); + + delete fInput; + fInput = NULL; + + if (fWordBreakItr != NULL) { +#if UCONFIG_NO_BREAK_ITERATION==0 + UErrorCode status = U_ZERO_ERROR; + fWordBreakItr->setText(input, status); +#endif + } + } + reset(); + fInputUniStrMaybeMutable = FALSE; + + return *this; +} + +/*RegexMatcher &RegexMatcher::reset(const UChar *) { + fDeferredStatus = U_INTERNAL_PROGRAM_ERROR; + return *this; +}*/ + +RegexMatcher &RegexMatcher::reset(int64_t position, UErrorCode &status) { + if (U_FAILURE(status)) { + return *this; + } + reset(); // Reset also resets the region to be the entire string. + + if (position < 0 || position > fActiveLimit) { + status = U_INDEX_OUTOFBOUNDS_ERROR; + return *this; + } + fMatchEnd = position; + return *this; +} + + +//-------------------------------------------------------------------------------- +// +// refresh +// +//-------------------------------------------------------------------------------- +RegexMatcher &RegexMatcher::refreshInputText(UText *input, UErrorCode &status) { + if (U_FAILURE(status)) { + return *this; + } + if (input == NULL) { + status = U_ILLEGAL_ARGUMENT_ERROR; + return *this; + } + if (utext_nativeLength(fInputText) != utext_nativeLength(input)) { + status = U_ILLEGAL_ARGUMENT_ERROR; + return *this; + } + int64_t pos = utext_getNativeIndex(fInputText); + // Shallow read-only clone of the new UText into the existing input UText + fInputText = utext_clone(fInputText, input, FALSE, TRUE, &status); + if (U_FAILURE(status)) { + return *this; + } + utext_setNativeIndex(fInputText, pos); + + if (fAltInputText != NULL) { + pos = utext_getNativeIndex(fAltInputText); + fAltInputText = utext_clone(fAltInputText, input, FALSE, TRUE, &status); + if (U_FAILURE(status)) { + return *this; + } + utext_setNativeIndex(fAltInputText, pos); + } + return *this; +} + + + +//-------------------------------------------------------------------------------- +// +// setTrace +// +//-------------------------------------------------------------------------------- +void RegexMatcher::setTrace(UBool state) { + fTraceDebug = state; +} + + + +/** + * UText, replace entire contents of the destination UText with a substring of the source UText. + * + * @param src The source UText + * @param dest The destination UText. Must be writable. + * May be NULL, in which case a new UText will be allocated. + * @param start Start index of source substring. + * @param limit Limit index of source substring. + * @param status An error code. + */ +static UText *utext_extract_replace(UText *src, UText *dest, int64_t start, int64_t limit, UErrorCode *status) { + if (U_FAILURE(*status)) { + return dest; + } + if (start == limit) { + if (dest) { + utext_replace(dest, 0, utext_nativeLength(dest), NULL, 0, status); + return dest; + } else { + return utext_openUChars(NULL, NULL, 0, status); + } + } + int32_t length = utext_extract(src, start, limit, NULL, 0, status); + if (*status != U_BUFFER_OVERFLOW_ERROR && U_FAILURE(*status)) { + return dest; + } + *status = U_ZERO_ERROR; + MaybeStackArray<UChar, 40> buffer; + if (length >= buffer.getCapacity()) { + UChar *newBuf = buffer.resize(length+1); // Leave space for terminating Nul. + if (newBuf == NULL) { + *status = U_MEMORY_ALLOCATION_ERROR; + } + } + utext_extract(src, start, limit, buffer.getAlias(), length+1, status); + if (dest) { + utext_replace(dest, 0, utext_nativeLength(dest), buffer.getAlias(), length, status); + return dest; + } + + // Caller did not provide a prexisting UText. + // Open a new one, and have it adopt the text buffer storage. + if (U_FAILURE(*status)) { + return NULL; + } + int32_t ownedLength = 0; + UChar *ownedBuf = buffer.orphanOrClone(length+1, ownedLength); + if (ownedBuf == NULL) { + *status = U_MEMORY_ALLOCATION_ERROR; + return NULL; + } + UText *result = utext_openUChars(NULL, ownedBuf, length, status); + if (U_FAILURE(*status)) { + uprv_free(ownedBuf); + return NULL; + } + result->providerProperties |= (1 << UTEXT_PROVIDER_OWNS_TEXT); + return result; +} + + +//--------------------------------------------------------------------- +// +// split +// +//--------------------------------------------------------------------- +int32_t RegexMatcher::split(const UnicodeString &input, + UnicodeString dest[], + int32_t destCapacity, + UErrorCode &status) +{ + UText inputText = UTEXT_INITIALIZER; + utext_openConstUnicodeString(&inputText, &input, &status); + if (U_FAILURE(status)) { + return 0; + } + + UText **destText = (UText **)uprv_malloc(sizeof(UText*)*destCapacity); + if (destText == NULL) { + status = U_MEMORY_ALLOCATION_ERROR; + return 0; + } + int32_t i; + for (i = 0; i < destCapacity; i++) { + destText[i] = utext_openUnicodeString(NULL, &dest[i], &status); + } + + int32_t fieldCount = split(&inputText, destText, destCapacity, status); + + for (i = 0; i < destCapacity; i++) { + utext_close(destText[i]); + } + + uprv_free(destText); + utext_close(&inputText); + return fieldCount; +} + +// +// split, UText mode +// +int32_t RegexMatcher::split(UText *input, + UText *dest[], + int32_t destCapacity, + UErrorCode &status) +{ + // + // Check arguements for validity + // + if (U_FAILURE(status)) { + return 0; + }; + + if (destCapacity < 1) { + status = U_ILLEGAL_ARGUMENT_ERROR; + return 0; + } + + // + // Reset for the input text + // + reset(input); + int64_t nextOutputStringStart = 0; + if (fActiveLimit == 0) { + return 0; + } + + // + // Loop through the input text, searching for the delimiter pattern + // + int32_t i; + int32_t numCaptureGroups = fPattern->fGroupMap->size(); + for (i=0; ; i++) { + if (i>=destCapacity-1) { + // There is one or zero output string left. + // Fill the last output string with whatever is left from the input, then exit the loop. + // ( i will be == destCapacity if we filled the output array while processing + // capture groups of the delimiter expression, in which case we will discard the + // last capture group saved in favor of the unprocessed remainder of the + // input string.) + i = destCapacity-1; + if (fActiveLimit > nextOutputStringStart) { + if (UTEXT_FULL_TEXT_IN_CHUNK(input, fInputLength)) { + if (dest[i]) { + utext_replace(dest[i], 0, utext_nativeLength(dest[i]), + input->chunkContents+nextOutputStringStart, + (int32_t)(fActiveLimit-nextOutputStringStart), &status); + } else { + UText remainingText = UTEXT_INITIALIZER; + utext_openUChars(&remainingText, input->chunkContents+nextOutputStringStart, + fActiveLimit-nextOutputStringStart, &status); + dest[i] = utext_clone(NULL, &remainingText, TRUE, FALSE, &status); + utext_close(&remainingText); + } + } else { + UErrorCode lengthStatus = U_ZERO_ERROR; + int32_t remaining16Length = + utext_extract(input, nextOutputStringStart, fActiveLimit, NULL, 0, &lengthStatus); + UChar *remainingChars = (UChar *)uprv_malloc(sizeof(UChar)*(remaining16Length+1)); + if (remainingChars == NULL) { + status = U_MEMORY_ALLOCATION_ERROR; + break; + } + + utext_extract(input, nextOutputStringStart, fActiveLimit, remainingChars, remaining16Length+1, &status); + if (dest[i]) { + utext_replace(dest[i], 0, utext_nativeLength(dest[i]), remainingChars, remaining16Length, &status); + } else { + UText remainingText = UTEXT_INITIALIZER; + utext_openUChars(&remainingText, remainingChars, remaining16Length, &status); + dest[i] = utext_clone(NULL, &remainingText, TRUE, FALSE, &status); + utext_close(&remainingText); + } + + uprv_free(remainingChars); + } + } + break; + } + if (find()) { + // We found another delimiter. Move everything from where we started looking + // up until the start of the delimiter into the next output string. + if (UTEXT_FULL_TEXT_IN_CHUNK(input, fInputLength)) { + if (dest[i]) { + utext_replace(dest[i], 0, utext_nativeLength(dest[i]), + input->chunkContents+nextOutputStringStart, + (int32_t)(fMatchStart-nextOutputStringStart), &status); + } else { + UText remainingText = UTEXT_INITIALIZER; + utext_openUChars(&remainingText, input->chunkContents+nextOutputStringStart, + fMatchStart-nextOutputStringStart, &status); + dest[i] = utext_clone(NULL, &remainingText, TRUE, FALSE, &status); + utext_close(&remainingText); + } + } else { + UErrorCode lengthStatus = U_ZERO_ERROR; + int32_t remaining16Length = utext_extract(input, nextOutputStringStart, fMatchStart, NULL, 0, &lengthStatus); + UChar *remainingChars = (UChar *)uprv_malloc(sizeof(UChar)*(remaining16Length+1)); + if (remainingChars == NULL) { + status = U_MEMORY_ALLOCATION_ERROR; + break; + } + utext_extract(input, nextOutputStringStart, fMatchStart, remainingChars, remaining16Length+1, &status); + if (dest[i]) { + utext_replace(dest[i], 0, utext_nativeLength(dest[i]), remainingChars, remaining16Length, &status); + } else { + UText remainingText = UTEXT_INITIALIZER; + utext_openUChars(&remainingText, remainingChars, remaining16Length, &status); + dest[i] = utext_clone(NULL, &remainingText, TRUE, FALSE, &status); + utext_close(&remainingText); + } + + uprv_free(remainingChars); + } + nextOutputStringStart = fMatchEnd; + + // If the delimiter pattern has capturing parentheses, the captured + // text goes out into the next n destination strings. + int32_t groupNum; + for (groupNum=1; groupNum<=numCaptureGroups; groupNum++) { + if (i >= destCapacity-2) { + // Never fill the last available output string with capture group text. + // It will filled with the last field, the remainder of the + // unsplit input text. + break; + } + i++; + dest[i] = utext_extract_replace(fInputText, dest[i], + start64(groupNum, status), end64(groupNum, status), &status); + } + + if (nextOutputStringStart == fActiveLimit) { + // The delimiter was at the end of the string. We're done, but first + // we output one last empty string, for the empty field following + // the delimiter at the end of input. + if (i+1 < destCapacity) { + ++i; + if (dest[i] == NULL) { + dest[i] = utext_openUChars(NULL, NULL, 0, &status); + } else { + static UChar emptyString[] = {(UChar)0}; + utext_replace(dest[i], 0, utext_nativeLength(dest[i]), emptyString, 0, &status); + } + } + break; + + } + } + else + { + // We ran off the end of the input while looking for the next delimiter. + // All the remaining text goes into the current output string. + if (UTEXT_FULL_TEXT_IN_CHUNK(input, fInputLength)) { + if (dest[i]) { + utext_replace(dest[i], 0, utext_nativeLength(dest[i]), + input->chunkContents+nextOutputStringStart, + (int32_t)(fActiveLimit-nextOutputStringStart), &status); + } else { + UText remainingText = UTEXT_INITIALIZER; + utext_openUChars(&remainingText, input->chunkContents+nextOutputStringStart, + fActiveLimit-nextOutputStringStart, &status); + dest[i] = utext_clone(NULL, &remainingText, TRUE, FALSE, &status); + utext_close(&remainingText); + } + } else { + UErrorCode lengthStatus = U_ZERO_ERROR; + int32_t remaining16Length = utext_extract(input, nextOutputStringStart, fActiveLimit, NULL, 0, &lengthStatus); + UChar *remainingChars = (UChar *)uprv_malloc(sizeof(UChar)*(remaining16Length+1)); + if (remainingChars == NULL) { + status = U_MEMORY_ALLOCATION_ERROR; + break; + } + + utext_extract(input, nextOutputStringStart, fActiveLimit, remainingChars, remaining16Length+1, &status); + if (dest[i]) { + utext_replace(dest[i], 0, utext_nativeLength(dest[i]), remainingChars, remaining16Length, &status); + } else { + UText remainingText = UTEXT_INITIALIZER; + utext_openUChars(&remainingText, remainingChars, remaining16Length, &status); + dest[i] = utext_clone(NULL, &remainingText, TRUE, FALSE, &status); + utext_close(&remainingText); + } + + uprv_free(remainingChars); + } + break; + } + if (U_FAILURE(status)) { + break; + } + } // end of for loop + return i+1; +} + + +//-------------------------------------------------------------------------------- +// +// start +// +//-------------------------------------------------------------------------------- +int32_t RegexMatcher::start(UErrorCode &status) const { + return start(0, status); +} + +int64_t RegexMatcher::start64(UErrorCode &status) const { + return start64(0, status); +} + +//-------------------------------------------------------------------------------- +// +// start(int32_t group, UErrorCode &status) +// +//-------------------------------------------------------------------------------- + +int64_t RegexMatcher::start64(int32_t group, UErrorCode &status) const { + if (U_FAILURE(status)) { + return -1; + } + if (U_FAILURE(fDeferredStatus)) { + status = fDeferredStatus; + return -1; + } + if (fMatch == FALSE) { + status = U_REGEX_INVALID_STATE; + return -1; + } + if (group < 0 || group > fPattern->fGroupMap->size()) { + status = U_INDEX_OUTOFBOUNDS_ERROR; + return -1; + } + int64_t s; + if (group == 0) { + s = fMatchStart; + } else { + int32_t groupOffset = fPattern->fGroupMap->elementAti(group-1); + U_ASSERT(groupOffset < fPattern->fFrameSize); + U_ASSERT(groupOffset >= 0); + s = fFrame->fExtra[groupOffset]; + } + + return s; +} + + +int32_t RegexMatcher::start(int32_t group, UErrorCode &status) const { + return (int32_t)start64(group, status); +} + +//-------------------------------------------------------------------------------- +// +// useAnchoringBounds +// +//-------------------------------------------------------------------------------- +RegexMatcher &RegexMatcher::useAnchoringBounds(UBool b) { + fAnchoringBounds = b; + fAnchorStart = (fAnchoringBounds ? fRegionStart : 0); + fAnchorLimit = (fAnchoringBounds ? fRegionLimit : fInputLength); + return *this; +} + + +//-------------------------------------------------------------------------------- +// +// useTransparentBounds +// +//-------------------------------------------------------------------------------- +RegexMatcher &RegexMatcher::useTransparentBounds(UBool b) { + fTransparentBounds = b; + fLookStart = (fTransparentBounds ? 0 : fRegionStart); + fLookLimit = (fTransparentBounds ? fInputLength : fRegionLimit); + return *this; +} + +//-------------------------------------------------------------------------------- +// +// setTimeLimit +// +//-------------------------------------------------------------------------------- +void RegexMatcher::setTimeLimit(int32_t limit, UErrorCode &status) { + if (U_FAILURE(status)) { + return; + } + if (U_FAILURE(fDeferredStatus)) { + status = fDeferredStatus; + return; + } + if (limit < 0) { + status = U_ILLEGAL_ARGUMENT_ERROR; + return; + } + fTimeLimit = limit; +} + + +//-------------------------------------------------------------------------------- +// +// getTimeLimit +// +//-------------------------------------------------------------------------------- +int32_t RegexMatcher::getTimeLimit() const { + return fTimeLimit; +} + + +//-------------------------------------------------------------------------------- +// +// setStackLimit +// +//-------------------------------------------------------------------------------- +void RegexMatcher::setStackLimit(int32_t limit, UErrorCode &status) { + if (U_FAILURE(status)) { + return; + } + if (U_FAILURE(fDeferredStatus)) { + status = fDeferredStatus; + return; + } + if (limit < 0) { + status = U_ILLEGAL_ARGUMENT_ERROR; + return; + } + + // Reset the matcher. This is needed here in case there is a current match + // whose final stack frame (containing the match results, pointed to by fFrame) + // would be lost by resizing to a smaller stack size. + reset(); + + if (limit == 0) { + // Unlimited stack expansion + fStack->setMaxCapacity(0); + } else { + // Change the units of the limit from bytes to ints, and bump the size up + // to be big enough to hold at least one stack frame for the pattern, + // if it isn't there already. + int32_t adjustedLimit = limit / sizeof(int32_t); + if (adjustedLimit < fPattern->fFrameSize) { + adjustedLimit = fPattern->fFrameSize; + } + fStack->setMaxCapacity(adjustedLimit); + } + fStackLimit = limit; +} + + +//-------------------------------------------------------------------------------- +// +// getStackLimit +// +//-------------------------------------------------------------------------------- +int32_t RegexMatcher::getStackLimit() const { + return fStackLimit; +} + + +//-------------------------------------------------------------------------------- +// +// setMatchCallback +// +//-------------------------------------------------------------------------------- +void RegexMatcher::setMatchCallback(URegexMatchCallback *callback, + const void *context, + UErrorCode &status) { + if (U_FAILURE(status)) { + return; + } + fCallbackFn = callback; + fCallbackContext = context; +} + + +//-------------------------------------------------------------------------------- +// +// getMatchCallback +// +//-------------------------------------------------------------------------------- +void RegexMatcher::getMatchCallback(URegexMatchCallback *&callback, + const void *&context, + UErrorCode &status) { + if (U_FAILURE(status)) { + return; + } + callback = fCallbackFn; + context = fCallbackContext; +} + + +//-------------------------------------------------------------------------------- +// +// setMatchCallback +// +//-------------------------------------------------------------------------------- +void RegexMatcher::setFindProgressCallback(URegexFindProgressCallback *callback, + const void *context, + UErrorCode &status) { + if (U_FAILURE(status)) { + return; + } + fFindProgressCallbackFn = callback; + fFindProgressCallbackContext = context; +} + + +//-------------------------------------------------------------------------------- +// +// getMatchCallback +// +//-------------------------------------------------------------------------------- +void RegexMatcher::getFindProgressCallback(URegexFindProgressCallback *&callback, + const void *&context, + UErrorCode &status) { + if (U_FAILURE(status)) { + return; + } + callback = fFindProgressCallbackFn; + context = fFindProgressCallbackContext; +} + + +//================================================================================ +// +// Code following this point in this file is the internal +// Match Engine Implementation. +// +//================================================================================ + + +//-------------------------------------------------------------------------------- +// +// resetStack +// Discard any previous contents of the state save stack, and initialize a +// new stack frame to all -1. The -1s are needed for capture group limits, +// where they indicate that a group has not yet matched anything. +//-------------------------------------------------------------------------------- +REStackFrame *RegexMatcher::resetStack() { + // Discard any previous contents of the state save stack, and initialize a + // new stack frame with all -1 data. The -1s are needed for capture group limits, + // where they indicate that a group has not yet matched anything. + fStack->removeAllElements(); + + REStackFrame *iFrame = (REStackFrame *)fStack->reserveBlock(fPattern->fFrameSize, fDeferredStatus); + if(U_FAILURE(fDeferredStatus)) { + return NULL; + } + + int32_t i; + for (i=0; i<fPattern->fFrameSize-RESTACKFRAME_HDRCOUNT; i++) { + iFrame->fExtra[i] = -1; + } + return iFrame; +} + + + +//-------------------------------------------------------------------------------- +// +// isWordBoundary +// in perl, "xab..cd..", \b is true at positions 0,3,5,7 +// For us, +// If the current char is a combining mark, +// \b is FALSE. +// Else Scan backwards to the first non-combining char. +// We are at a boundary if the this char and the original chars are +// opposite in membership in \w set +// +// parameters: pos - the current position in the input buffer +// +// TODO: double-check edge cases at region boundaries. +// +//-------------------------------------------------------------------------------- +UBool RegexMatcher::isWordBoundary(int64_t pos) { + UBool isBoundary = FALSE; + UBool cIsWord = FALSE; + + if (pos >= fLookLimit) { + fHitEnd = TRUE; + } else { + // Determine whether char c at current position is a member of the word set of chars. + // If we're off the end of the string, behave as though we're not at a word char. + UTEXT_SETNATIVEINDEX(fInputText, pos); + UChar32 c = UTEXT_CURRENT32(fInputText); + if (u_hasBinaryProperty(c, UCHAR_GRAPHEME_EXTEND) || u_charType(c) == U_FORMAT_CHAR) { + // Current char is a combining one. Not a boundary. + return FALSE; + } + cIsWord = fPattern->fStaticSets[URX_ISWORD_SET]->contains(c); + } + + // Back up until we come to a non-combining char, determine whether + // that char is a word char. + UBool prevCIsWord = FALSE; + for (;;) { + if (UTEXT_GETNATIVEINDEX(fInputText) <= fLookStart) { + break; + } + UChar32 prevChar = UTEXT_PREVIOUS32(fInputText); + if (!(u_hasBinaryProperty(prevChar, UCHAR_GRAPHEME_EXTEND) + || u_charType(prevChar) == U_FORMAT_CHAR)) { + prevCIsWord = fPattern->fStaticSets[URX_ISWORD_SET]->contains(prevChar); + break; + } + } + isBoundary = cIsWord ^ prevCIsWord; + return isBoundary; +} + +UBool RegexMatcher::isChunkWordBoundary(int32_t pos) { + UBool isBoundary = FALSE; + UBool cIsWord = FALSE; + + const UChar *inputBuf = fInputText->chunkContents; + + if (pos >= fLookLimit) { + fHitEnd = TRUE; + } else { + // Determine whether char c at current position is a member of the word set of chars. + // If we're off the end of the string, behave as though we're not at a word char. + UChar32 c; + U16_GET(inputBuf, fLookStart, pos, fLookLimit, c); + if (u_hasBinaryProperty(c, UCHAR_GRAPHEME_EXTEND) || u_charType(c) == U_FORMAT_CHAR) { + // Current char is a combining one. Not a boundary. + return FALSE; + } + cIsWord = fPattern->fStaticSets[URX_ISWORD_SET]->contains(c); + } + + // Back up until we come to a non-combining char, determine whether + // that char is a word char. + UBool prevCIsWord = FALSE; + for (;;) { + if (pos <= fLookStart) { + break; + } + UChar32 prevChar; + U16_PREV(inputBuf, fLookStart, pos, prevChar); + if (!(u_hasBinaryProperty(prevChar, UCHAR_GRAPHEME_EXTEND) + || u_charType(prevChar) == U_FORMAT_CHAR)) { + prevCIsWord = fPattern->fStaticSets[URX_ISWORD_SET]->contains(prevChar); + break; + } + } + isBoundary = cIsWord ^ prevCIsWord; + return isBoundary; +} + +//-------------------------------------------------------------------------------- +// +// isUWordBoundary +// +// Test for a word boundary using RBBI word break. +// +// parameters: pos - the current position in the input buffer +// +//-------------------------------------------------------------------------------- +UBool RegexMatcher::isUWordBoundary(int64_t pos) { + UBool returnVal = FALSE; +#if UCONFIG_NO_BREAK_ITERATION==0 + + // If we haven't yet created a break iterator for this matcher, do it now. + if (fWordBreakItr == NULL) { + fWordBreakItr = + (RuleBasedBreakIterator *)BreakIterator::createWordInstance(Locale::getEnglish(), fDeferredStatus); + if (U_FAILURE(fDeferredStatus)) { + return FALSE; + } + fWordBreakItr->setText(fInputText, fDeferredStatus); + } + + if (pos >= fLookLimit) { + fHitEnd = TRUE; + returnVal = TRUE; // With Unicode word rules, only positions within the interior of "real" + // words are not boundaries. All non-word chars stand by themselves, + // with word boundaries on both sides. + } else { + if (!UTEXT_USES_U16(fInputText)) { + // !!!: Would like a better way to do this! + UErrorCode status = U_ZERO_ERROR; + pos = utext_extract(fInputText, 0, pos, NULL, 0, &status); + } + returnVal = fWordBreakItr->isBoundary((int32_t)pos); + } +#endif + return returnVal; +} + +//-------------------------------------------------------------------------------- +// +// IncrementTime This function is called once each TIMER_INITIAL_VALUE state +// saves. Increment the "time" counter, and call the +// user callback function if there is one installed. +// +// If the match operation needs to be aborted, either for a time-out +// or because the user callback asked for it, just set an error status. +// The engine will pick that up and stop in its outer loop. +// +//-------------------------------------------------------------------------------- +void RegexMatcher::IncrementTime(UErrorCode &status) { + fTickCounter = TIMER_INITIAL_VALUE; + fTime++; + if (fCallbackFn != NULL) { + if ((*fCallbackFn)(fCallbackContext, fTime) == FALSE) { + status = U_REGEX_STOPPED_BY_CALLER; + return; + } + } + if (fTimeLimit > 0 && fTime >= fTimeLimit) { + status = U_REGEX_TIME_OUT; + } +} + +//-------------------------------------------------------------------------------- +// +// StateSave +// Make a new stack frame, initialized as a copy of the current stack frame. +// Set the pattern index in the original stack frame from the operand value +// in the opcode. Execution of the engine continues with the state in +// the newly created stack frame +// +// Note that reserveBlock() may grow the stack, resulting in the +// whole thing being relocated in memory. +// +// Parameters: +// fp The top frame pointer when called. At return, a new +// fame will be present +// savePatIdx An index into the compiled pattern. Goes into the original +// (not new) frame. If execution ever back-tracks out of the +// new frame, this will be where we continue from in the pattern. +// Return +// The new frame pointer. +// +//-------------------------------------------------------------------------------- +inline REStackFrame *RegexMatcher::StateSave(REStackFrame *fp, int64_t savePatIdx, UErrorCode &status) { + if (U_FAILURE(status)) { + return fp; + } + // push storage for a new frame. + int64_t *newFP = fStack->reserveBlock(fFrameSize, status); + if (U_FAILURE(status)) { + // Failure on attempted stack expansion. + // Stack function set some other error code, change it to a more + // specific one for regular expressions. + status = U_REGEX_STACK_OVERFLOW; + // We need to return a writable stack frame, so just return the + // previous frame. The match operation will stop quickly + // because of the error status, after which the frame will never + // be looked at again. + return fp; + } + fp = (REStackFrame *)(newFP - fFrameSize); // in case of realloc of stack. + + // New stack frame = copy of old top frame. + int64_t *source = (int64_t *)fp; + int64_t *dest = newFP; + for (;;) { + *dest++ = *source++; + if (source == newFP) { + break; + } + } + + fTickCounter--; + if (fTickCounter <= 0) { + IncrementTime(status); // Re-initializes fTickCounter + } + fp->fPatIdx = savePatIdx; + return (REStackFrame *)newFP; +} + +#if defined(REGEX_DEBUG) +namespace { +UnicodeString StringFromUText(UText *ut) { + UnicodeString result; + for (UChar32 c = utext_next32From(ut, 0); c != U_SENTINEL; c = UTEXT_NEXT32(ut)) { + result.append(c); + } + return result; +} +} +#endif // REGEX_DEBUG + + +//-------------------------------------------------------------------------------- +// +// MatchAt This is the actual matching engine. +// +// startIdx: begin matching a this index. +// toEnd: if true, match must extend to end of the input region +// +//-------------------------------------------------------------------------------- +void RegexMatcher::MatchAt(int64_t startIdx, UBool toEnd, UErrorCode &status) { + UBool isMatch = FALSE; // True if the we have a match. + + int64_t backSearchIndex = U_INT64_MAX; // used after greedy single-character matches for searching backwards + + int32_t op; // Operation from the compiled pattern, split into + int32_t opType; // the opcode + int32_t opValue; // and the operand value. + +#ifdef REGEX_RUN_DEBUG + if (fTraceDebug) { + printf("MatchAt(startIdx=%ld)\n", startIdx); + printf("Original Pattern: \"%s\"\n", CStr(StringFromUText(fPattern->fPattern))()); + printf("Input String: \"%s\"\n\n", CStr(StringFromUText(fInputText))()); + } +#endif + + if (U_FAILURE(status)) { + return; + } + + // Cache frequently referenced items from the compiled pattern + // + int64_t *pat = fPattern->fCompiledPat->getBuffer(); + + const UChar *litText = fPattern->fLiteralText.getBuffer(); + UVector *sets = fPattern->fSets; + + fFrameSize = fPattern->fFrameSize; + REStackFrame *fp = resetStack(); + if (U_FAILURE(fDeferredStatus)) { + status = fDeferredStatus; + return; + } + + fp->fPatIdx = 0; + fp->fInputIdx = startIdx; + + // Zero out the pattern's static data + int32_t i; + for (i = 0; i<fPattern->fDataSize; i++) { + fData[i] = 0; + } + + // + // Main loop for interpreting the compiled pattern. + // One iteration of the loop per pattern operation performed. + // + for (;;) { + op = (int32_t)pat[fp->fPatIdx]; + opType = URX_TYPE(op); + opValue = URX_VAL(op); +#ifdef REGEX_RUN_DEBUG + if (fTraceDebug) { + UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); + printf("inputIdx=%ld inputChar=%x sp=%3ld activeLimit=%ld ", fp->fInputIdx, + UTEXT_CURRENT32(fInputText), (int64_t *)fp-fStack->getBuffer(), fActiveLimit); + fPattern->dumpOp(fp->fPatIdx); + } +#endif + fp->fPatIdx++; + + switch (opType) { + + + case URX_NOP: + break; + + + case URX_BACKTRACK: + // Force a backtrack. In some circumstances, the pattern compiler + // will notice that the pattern can't possibly match anything, and will + // emit one of these at that point. + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + break; + + + case URX_ONECHAR: + if (fp->fInputIdx < fActiveLimit) { + UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); + UChar32 c = UTEXT_NEXT32(fInputText); + if (c == opValue) { + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); + break; + } + } else { + fHitEnd = TRUE; + } + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + break; + + + case URX_STRING: + { + // Test input against a literal string. + // Strings require two slots in the compiled pattern, one for the + // offset to the string text, and one for the length. + + int32_t stringStartIdx = opValue; + op = (int32_t)pat[fp->fPatIdx]; // Fetch the second operand + fp->fPatIdx++; + opType = URX_TYPE(op); + int32_t stringLen = URX_VAL(op); + U_ASSERT(opType == URX_STRING_LEN); + U_ASSERT(stringLen >= 2); + + const UChar *patternString = litText+stringStartIdx; + int32_t patternStringIndex = 0; + UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); + UChar32 inputChar; + UChar32 patternChar; + UBool success = TRUE; + while (patternStringIndex < stringLen) { + if (UTEXT_GETNATIVEINDEX(fInputText) >= fActiveLimit) { + success = FALSE; + fHitEnd = TRUE; + break; + } + inputChar = UTEXT_NEXT32(fInputText); + U16_NEXT(patternString, patternStringIndex, stringLen, patternChar); + if (patternChar != inputChar) { + success = FALSE; + break; + } + } + + if (success) { + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); + } else { + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + } + } + break; + + + case URX_STATE_SAVE: + fp = StateSave(fp, opValue, status); + break; + + + case URX_END: + // The match loop will exit via this path on a successful match, + // when we reach the end of the pattern. + if (toEnd && fp->fInputIdx != fActiveLimit) { + // The pattern matched, but not to the end of input. Try some more. + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + break; + } + isMatch = TRUE; + goto breakFromLoop; + + // Start and End Capture stack frame variables are laid out out like this: + // fp->fExtra[opValue] - The start of a completed capture group + // opValue+1 - The end of a completed capture group + // opValue+2 - the start of a capture group whose end + // has not yet been reached (and might not ever be). + case URX_START_CAPTURE: + U_ASSERT(opValue >= 0 && opValue < fFrameSize-3); + fp->fExtra[opValue+2] = fp->fInputIdx; + break; + + + case URX_END_CAPTURE: + U_ASSERT(opValue >= 0 && opValue < fFrameSize-3); + U_ASSERT(fp->fExtra[opValue+2] >= 0); // Start pos for this group must be set. + fp->fExtra[opValue] = fp->fExtra[opValue+2]; // Tentative start becomes real. + fp->fExtra[opValue+1] = fp->fInputIdx; // End position + U_ASSERT(fp->fExtra[opValue] <= fp->fExtra[opValue+1]); + break; + + + case URX_DOLLAR: // $, test for End of line + // or for position before new line at end of input + { + if (fp->fInputIdx >= fAnchorLimit) { + // We really are at the end of input. Success. + fHitEnd = TRUE; + fRequireEnd = TRUE; + break; + } + + UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); + + // If we are positioned just before a new-line that is located at the + // end of input, succeed. + UChar32 c = UTEXT_NEXT32(fInputText); + if (UTEXT_GETNATIVEINDEX(fInputText) >= fAnchorLimit) { + if (isLineTerminator(c)) { + // If not in the middle of a CR/LF sequence + if ( !(c==0x0a && fp->fInputIdx>fAnchorStart && ((void)UTEXT_PREVIOUS32(fInputText), UTEXT_PREVIOUS32(fInputText))==0x0d)) { + // At new-line at end of input. Success + fHitEnd = TRUE; + fRequireEnd = TRUE; + + break; + } + } + } else { + UChar32 nextC = UTEXT_NEXT32(fInputText); + if (c == 0x0d && nextC == 0x0a && UTEXT_GETNATIVEINDEX(fInputText) >= fAnchorLimit) { + fHitEnd = TRUE; + fRequireEnd = TRUE; + break; // At CR/LF at end of input. Success + } + } + + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + } + break; + + + case URX_DOLLAR_D: // $, test for End of Line, in UNIX_LINES mode. + if (fp->fInputIdx >= fAnchorLimit) { + // Off the end of input. Success. + fHitEnd = TRUE; + fRequireEnd = TRUE; + break; + } else { + UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); + UChar32 c = UTEXT_NEXT32(fInputText); + // Either at the last character of input, or off the end. + if (c == 0x0a && UTEXT_GETNATIVEINDEX(fInputText) == fAnchorLimit) { + fHitEnd = TRUE; + fRequireEnd = TRUE; + break; + } + } + + // Not at end of input. Back-track out. + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + break; + + + case URX_DOLLAR_M: // $, test for End of line in multi-line mode + { + if (fp->fInputIdx >= fAnchorLimit) { + // We really are at the end of input. Success. + fHitEnd = TRUE; + fRequireEnd = TRUE; + break; + } + // If we are positioned just before a new-line, succeed. + // It makes no difference where the new-line is within the input. + UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); + UChar32 c = UTEXT_CURRENT32(fInputText); + if (isLineTerminator(c)) { + // At a line end, except for the odd chance of being in the middle of a CR/LF sequence + // In multi-line mode, hitting a new-line just before the end of input does not + // set the hitEnd or requireEnd flags + if ( !(c==0x0a && fp->fInputIdx>fAnchorStart && UTEXT_PREVIOUS32(fInputText)==0x0d)) { + break; + } + } + // not at a new line. Fail. + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + } + break; + + + case URX_DOLLAR_MD: // $, test for End of line in multi-line and UNIX_LINES mode + { + if (fp->fInputIdx >= fAnchorLimit) { + // We really are at the end of input. Success. + fHitEnd = TRUE; + fRequireEnd = TRUE; // Java set requireEnd in this case, even though + break; // adding a new-line would not lose the match. + } + // If we are not positioned just before a new-line, the test fails; backtrack out. + // It makes no difference where the new-line is within the input. + UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); + if (UTEXT_CURRENT32(fInputText) != 0x0a) { + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + } + } + break; + + + case URX_CARET: // ^, test for start of line + if (fp->fInputIdx != fAnchorStart) { + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + } + break; + + + case URX_CARET_M: // ^, test for start of line in mulit-line mode + { + if (fp->fInputIdx == fAnchorStart) { + // We are at the start input. Success. + break; + } + // Check whether character just before the current pos is a new-line + // unless we are at the end of input + UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); + UChar32 c = UTEXT_PREVIOUS32(fInputText); + if ((fp->fInputIdx < fAnchorLimit) && isLineTerminator(c)) { + // It's a new-line. ^ is true. Success. + // TODO: what should be done with positions between a CR and LF? + break; + } + // Not at the start of a line. Fail. + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + } + break; + + + case URX_CARET_M_UNIX: // ^, test for start of line in mulit-line + Unix-line mode + { + U_ASSERT(fp->fInputIdx >= fAnchorStart); + if (fp->fInputIdx <= fAnchorStart) { + // We are at the start input. Success. + break; + } + // Check whether character just before the current pos is a new-line + U_ASSERT(fp->fInputIdx <= fAnchorLimit); + UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); + UChar32 c = UTEXT_PREVIOUS32(fInputText); + if (c != 0x0a) { + // Not at the start of a line. Back-track out. + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + } + } + break; + + case URX_BACKSLASH_B: // Test for word boundaries + { + UBool success = isWordBoundary(fp->fInputIdx); + success ^= (UBool)(opValue != 0); // flip sense for \B + if (!success) { + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + } + } + break; + + + case URX_BACKSLASH_BU: // Test for word boundaries, Unicode-style + { + UBool success = isUWordBoundary(fp->fInputIdx); + success ^= (UBool)(opValue != 0); // flip sense for \B + if (!success) { + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + } + } + break; + + + case URX_BACKSLASH_D: // Test for decimal digit + { + if (fp->fInputIdx >= fActiveLimit) { + fHitEnd = TRUE; + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + break; + } + + UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); + + UChar32 c = UTEXT_NEXT32(fInputText); + int8_t ctype = u_charType(c); // TODO: make a unicode set for this. Will be faster. + UBool success = (ctype == U_DECIMAL_DIGIT_NUMBER); + success ^= (UBool)(opValue != 0); // flip sense for \D + if (success) { + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); + } else { + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + } + } + break; + + + case URX_BACKSLASH_G: // Test for position at end of previous match + if (!((fMatch && fp->fInputIdx==fMatchEnd) || (fMatch==FALSE && fp->fInputIdx==fActiveStart))) { + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + } + break; + + + case URX_BACKSLASH_H: // Test for \h, horizontal white space. + { + if (fp->fInputIdx >= fActiveLimit) { + fHitEnd = TRUE; + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + break; + } + UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); + UChar32 c = UTEXT_NEXT32(fInputText); + int8_t ctype = u_charType(c); + UBool success = (ctype == U_SPACE_SEPARATOR || c == 9); // SPACE_SEPARATOR || TAB + success ^= (UBool)(opValue != 0); // flip sense for \H + if (success) { + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); + } else { + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + } + } + break; + + + case URX_BACKSLASH_R: // Test for \R, any line break sequence. + { + if (fp->fInputIdx >= fActiveLimit) { + fHitEnd = TRUE; + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + break; + } + UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); + UChar32 c = UTEXT_NEXT32(fInputText); + if (isLineTerminator(c)) { + if (c == 0x0d && utext_current32(fInputText) == 0x0a) { + utext_next32(fInputText); + } + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); + } else { + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + } + } + break; + + + case URX_BACKSLASH_V: // \v, any single line ending character. + { + if (fp->fInputIdx >= fActiveLimit) { + fHitEnd = TRUE; + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + break; + } + UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); + UChar32 c = UTEXT_NEXT32(fInputText); + UBool success = isLineTerminator(c); + success ^= (UBool)(opValue != 0); // flip sense for \V + if (success) { + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); + } else { + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + } + } + break; + + + case URX_BACKSLASH_X: + // Match a Grapheme, as defined by Unicode TR 29. + // Differs slightly from Perl, which consumes combining marks independently + // of context. + { + + // Fail if at end of input + if (fp->fInputIdx >= fActiveLimit) { + fHitEnd = TRUE; + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + break; + } + + UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); + + // Examine (and consume) the current char. + // Dispatch into a little state machine, based on the char. + UChar32 c; + c = UTEXT_NEXT32(fInputText); + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); + UnicodeSet **sets = fPattern->fStaticSets; + if (sets[URX_GC_NORMAL]->contains(c)) goto GC_Extend; + if (sets[URX_GC_CONTROL]->contains(c)) goto GC_Control; + if (sets[URX_GC_L]->contains(c)) goto GC_L; + if (sets[URX_GC_LV]->contains(c)) goto GC_V; + if (sets[URX_GC_LVT]->contains(c)) goto GC_T; + if (sets[URX_GC_V]->contains(c)) goto GC_V; + if (sets[URX_GC_T]->contains(c)) goto GC_T; + goto GC_Extend; + + + +GC_L: + if (fp->fInputIdx >= fActiveLimit) goto GC_Done; + c = UTEXT_NEXT32(fInputText); + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); + if (sets[URX_GC_L]->contains(c)) goto GC_L; + if (sets[URX_GC_LV]->contains(c)) goto GC_V; + if (sets[URX_GC_LVT]->contains(c)) goto GC_T; + if (sets[URX_GC_V]->contains(c)) goto GC_V; + (void)UTEXT_PREVIOUS32(fInputText); + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); + goto GC_Extend; + +GC_V: + if (fp->fInputIdx >= fActiveLimit) goto GC_Done; + c = UTEXT_NEXT32(fInputText); + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); + if (sets[URX_GC_V]->contains(c)) goto GC_V; + if (sets[URX_GC_T]->contains(c)) goto GC_T; + (void)UTEXT_PREVIOUS32(fInputText); + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); + goto GC_Extend; + +GC_T: + if (fp->fInputIdx >= fActiveLimit) goto GC_Done; + c = UTEXT_NEXT32(fInputText); + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); + if (sets[URX_GC_T]->contains(c)) goto GC_T; + (void)UTEXT_PREVIOUS32(fInputText); + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); + goto GC_Extend; + +GC_Extend: + // Combining characters are consumed here + for (;;) { + if (fp->fInputIdx >= fActiveLimit) { + break; + } + c = UTEXT_CURRENT32(fInputText); + if (sets[URX_GC_EXTEND]->contains(c) == FALSE) { + break; + } + (void)UTEXT_NEXT32(fInputText); + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); + } + goto GC_Done; + +GC_Control: + // Most control chars stand alone (don't combine with combining chars), + // except for that CR/LF sequence is a single grapheme cluster. + if (c == 0x0d && fp->fInputIdx < fActiveLimit && UTEXT_CURRENT32(fInputText) == 0x0a) { + c = UTEXT_NEXT32(fInputText); + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); + } + +GC_Done: + if (fp->fInputIdx >= fActiveLimit) { + fHitEnd = TRUE; + } + break; + } + + + + + case URX_BACKSLASH_Z: // Test for end of Input + if (fp->fInputIdx < fAnchorLimit) { + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + } else { + fHitEnd = TRUE; + fRequireEnd = TRUE; + } + break; + + + + case URX_STATIC_SETREF: + { + // Test input character against one of the predefined sets + // (Word Characters, for example) + // The high bit of the op value is a flag for the match polarity. + // 0: success if input char is in set. + // 1: success if input char is not in set. + if (fp->fInputIdx >= fActiveLimit) { + fHitEnd = TRUE; + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + break; + } + + UBool success = ((opValue & URX_NEG_SET) == URX_NEG_SET); + opValue &= ~URX_NEG_SET; + U_ASSERT(opValue > 0 && opValue < URX_LAST_SET); + + UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); + UChar32 c = UTEXT_NEXT32(fInputText); + if (c < 256) { + Regex8BitSet *s8 = &fPattern->fStaticSets8[opValue]; + if (s8->contains(c)) { + success = !success; + } + } else { + const UnicodeSet *s = fPattern->fStaticSets[opValue]; + if (s->contains(c)) { + success = !success; + } + } + if (success) { + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); + } else { + // the character wasn't in the set. + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + } + } + break; + + + case URX_STAT_SETREF_N: + { + // Test input character for NOT being a member of one of + // the predefined sets (Word Characters, for example) + if (fp->fInputIdx >= fActiveLimit) { + fHitEnd = TRUE; + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + break; + } + + U_ASSERT(opValue > 0 && opValue < URX_LAST_SET); + + UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); + + UChar32 c = UTEXT_NEXT32(fInputText); + if (c < 256) { + Regex8BitSet *s8 = &fPattern->fStaticSets8[opValue]; + if (s8->contains(c) == FALSE) { + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); + break; + } + } else { + const UnicodeSet *s = fPattern->fStaticSets[opValue]; + if (s->contains(c) == FALSE) { + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); + break; + } + } + // the character wasn't in the set. + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + } + break; + + + case URX_SETREF: + if (fp->fInputIdx >= fActiveLimit) { + fHitEnd = TRUE; + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + break; + } else { + UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); + + // There is input left. Pick up one char and test it for set membership. + UChar32 c = UTEXT_NEXT32(fInputText); + U_ASSERT(opValue > 0 && opValue < sets->size()); + if (c<256) { + Regex8BitSet *s8 = &fPattern->fSets8[opValue]; + if (s8->contains(c)) { + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); + break; + } + } else { + UnicodeSet *s = (UnicodeSet *)sets->elementAt(opValue); + if (s->contains(c)) { + // The character is in the set. A Match. + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); + break; + } + } + + // the character wasn't in the set. + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + } + break; + + + case URX_DOTANY: + { + // . matches anything, but stops at end-of-line. + if (fp->fInputIdx >= fActiveLimit) { + // At end of input. Match failed. Backtrack out. + fHitEnd = TRUE; + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + break; + } + + UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); + + // There is input left. Advance over one char, unless we've hit end-of-line + UChar32 c = UTEXT_NEXT32(fInputText); + if (isLineTerminator(c)) { + // End of line in normal mode. . does not match. + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + break; + } + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); + } + break; + + + case URX_DOTANY_ALL: + { + // ., in dot-matches-all (including new lines) mode + if (fp->fInputIdx >= fActiveLimit) { + // At end of input. Match failed. Backtrack out. + fHitEnd = TRUE; + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + break; + } + + UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); + + // There is input left. Advance over one char, except if we are + // at a cr/lf, advance over both of them. + UChar32 c; + c = UTEXT_NEXT32(fInputText); + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); + if (c==0x0d && fp->fInputIdx < fActiveLimit) { + // In the case of a CR/LF, we need to advance over both. + UChar32 nextc = UTEXT_CURRENT32(fInputText); + if (nextc == 0x0a) { + (void)UTEXT_NEXT32(fInputText); + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); + } + } + } + break; + + + case URX_DOTANY_UNIX: + { + // '.' operator, matches all, but stops at end-of-line. + // UNIX_LINES mode, so 0x0a is the only recognized line ending. + if (fp->fInputIdx >= fActiveLimit) { + // At end of input. Match failed. Backtrack out. + fHitEnd = TRUE; + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + break; + } + + UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); + + // There is input left. Advance over one char, unless we've hit end-of-line + UChar32 c = UTEXT_NEXT32(fInputText); + if (c == 0x0a) { + // End of line in normal mode. '.' does not match the \n + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + } else { + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); + } + } + break; + + + case URX_JMP: + fp->fPatIdx = opValue; + break; + + case URX_FAIL: + isMatch = FALSE; + goto breakFromLoop; + + case URX_JMP_SAV: + U_ASSERT(opValue < fPattern->fCompiledPat->size()); + fp = StateSave(fp, fp->fPatIdx, status); // State save to loc following current + fp->fPatIdx = opValue; // Then JMP. + break; + + case URX_JMP_SAV_X: + // This opcode is used with (x)+, when x can match a zero length string. + // Same as JMP_SAV, except conditional on the match having made forward progress. + // Destination of the JMP must be a URX_STO_INP_LOC, from which we get the + // data address of the input position at the start of the loop. + { + U_ASSERT(opValue > 0 && opValue < fPattern->fCompiledPat->size()); + int32_t stoOp = (int32_t)pat[opValue-1]; + U_ASSERT(URX_TYPE(stoOp) == URX_STO_INP_LOC); + int32_t frameLoc = URX_VAL(stoOp); + U_ASSERT(frameLoc >= 0 && frameLoc < fFrameSize); + int64_t prevInputIdx = fp->fExtra[frameLoc]; + U_ASSERT(prevInputIdx <= fp->fInputIdx); + if (prevInputIdx < fp->fInputIdx) { + // The match did make progress. Repeat the loop. + fp = StateSave(fp, fp->fPatIdx, status); // State save to loc following current + fp->fPatIdx = opValue; + fp->fExtra[frameLoc] = fp->fInputIdx; + } + // If the input position did not advance, we do nothing here, + // execution will fall out of the loop. + } + break; + + case URX_CTR_INIT: + { + U_ASSERT(opValue >= 0 && opValue < fFrameSize-2); + fp->fExtra[opValue] = 0; // Set the loop counter variable to zero + + // Pick up the three extra operands that CTR_INIT has, and + // skip the pattern location counter past + int32_t instrOperandLoc = (int32_t)fp->fPatIdx; + fp->fPatIdx += 3; + int32_t loopLoc = URX_VAL(pat[instrOperandLoc]); + int32_t minCount = (int32_t)pat[instrOperandLoc+1]; + int32_t maxCount = (int32_t)pat[instrOperandLoc+2]; + U_ASSERT(minCount>=0); + U_ASSERT(maxCount>=minCount || maxCount==-1); + U_ASSERT(loopLoc>=fp->fPatIdx); + + if (minCount == 0) { + fp = StateSave(fp, loopLoc+1, status); + } + if (maxCount == -1) { + fp->fExtra[opValue+1] = fp->fInputIdx; // For loop breaking. + } else if (maxCount == 0) { + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + } + } + break; + + case URX_CTR_LOOP: + { + U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2); + int32_t initOp = (int32_t)pat[opValue]; + U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT); + int64_t *pCounter = &fp->fExtra[URX_VAL(initOp)]; + int32_t minCount = (int32_t)pat[opValue+2]; + int32_t maxCount = (int32_t)pat[opValue+3]; + (*pCounter)++; + if ((uint64_t)*pCounter >= (uint32_t)maxCount && maxCount != -1) { + U_ASSERT(*pCounter == maxCount); + break; + } + if (*pCounter >= minCount) { + if (maxCount == -1) { + // Loop has no hard upper bound. + // Check that it is progressing through the input, break if it is not. + int64_t *pLastInputIdx = &fp->fExtra[URX_VAL(initOp) + 1]; + if (fp->fInputIdx == *pLastInputIdx) { + break; + } else { + *pLastInputIdx = fp->fInputIdx; + } + } + fp = StateSave(fp, fp->fPatIdx, status); + } + fp->fPatIdx = opValue + 4; // Loop back. + } + break; + + case URX_CTR_INIT_NG: + { + // Initialize a non-greedy loop + U_ASSERT(opValue >= 0 && opValue < fFrameSize-2); + fp->fExtra[opValue] = 0; // Set the loop counter variable to zero + + // Pick up the three extra operands that CTR_INIT_NG has, and + // skip the pattern location counter past + int32_t instrOperandLoc = (int32_t)fp->fPatIdx; + fp->fPatIdx += 3; + int32_t loopLoc = URX_VAL(pat[instrOperandLoc]); + int32_t minCount = (int32_t)pat[instrOperandLoc+1]; + int32_t maxCount = (int32_t)pat[instrOperandLoc+2]; + U_ASSERT(minCount>=0); + U_ASSERT(maxCount>=minCount || maxCount==-1); + U_ASSERT(loopLoc>fp->fPatIdx); + if (maxCount == -1) { + fp->fExtra[opValue+1] = fp->fInputIdx; // Save initial input index for loop breaking. + } + + if (minCount == 0) { + if (maxCount != 0) { + fp = StateSave(fp, fp->fPatIdx, status); + } + fp->fPatIdx = loopLoc+1; // Continue with stuff after repeated block + } + } + break; + + case URX_CTR_LOOP_NG: + { + // Non-greedy {min, max} loops + U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2); + int32_t initOp = (int32_t)pat[opValue]; + U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT_NG); + int64_t *pCounter = &fp->fExtra[URX_VAL(initOp)]; + int32_t minCount = (int32_t)pat[opValue+2]; + int32_t maxCount = (int32_t)pat[opValue+3]; + + (*pCounter)++; + if ((uint64_t)*pCounter >= (uint32_t)maxCount && maxCount != -1) { + // The loop has matched the maximum permitted number of times. + // Break out of here with no action. Matching will + // continue with the following pattern. + U_ASSERT(*pCounter == maxCount); + break; + } + + if (*pCounter < minCount) { + // We haven't met the minimum number of matches yet. + // Loop back for another one. + fp->fPatIdx = opValue + 4; // Loop back. + } else { + // We do have the minimum number of matches. + + // If there is no upper bound on the loop iterations, check that the input index + // is progressing, and stop the loop if it is not. + if (maxCount == -1) { + int64_t *pLastInputIdx = &fp->fExtra[URX_VAL(initOp) + 1]; + if (fp->fInputIdx == *pLastInputIdx) { + break; + } + *pLastInputIdx = fp->fInputIdx; + } + + // Loop Continuation: we will fall into the pattern following the loop + // (non-greedy, don't execute loop body first), but first do + // a state save to the top of the loop, so that a match failure + // in the following pattern will try another iteration of the loop. + fp = StateSave(fp, opValue + 4, status); + } + } + break; + + case URX_STO_SP: + U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize); + fData[opValue] = fStack->size(); + break; + + case URX_LD_SP: + { + U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize); + int32_t newStackSize = (int32_t)fData[opValue]; + U_ASSERT(newStackSize <= fStack->size()); + int64_t *newFP = fStack->getBuffer() + newStackSize - fFrameSize; + if (newFP == (int64_t *)fp) { + break; + } + int32_t i; + for (i=0; i<fFrameSize; i++) { + newFP[i] = ((int64_t *)fp)[i]; + } + fp = (REStackFrame *)newFP; + fStack->setSize(newStackSize); + } + break; + + case URX_BACKREF: + { + U_ASSERT(opValue < fFrameSize); + int64_t groupStartIdx = fp->fExtra[opValue]; + int64_t groupEndIdx = fp->fExtra[opValue+1]; + U_ASSERT(groupStartIdx <= groupEndIdx); + if (groupStartIdx < 0) { + // This capture group has not participated in the match thus far, + fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no match. + break; + } + UTEXT_SETNATIVEINDEX(fAltInputText, groupStartIdx); + UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); + + // Note: if the capture group match was of an empty string the backref + // match succeeds. Verified by testing: Perl matches succeed + // in this case, so we do too. + + UBool success = TRUE; + for (;;) { + if (utext_getNativeIndex(fAltInputText) >= groupEndIdx) { + success = TRUE; + break; + } + if (utext_getNativeIndex(fInputText) >= fActiveLimit) { + success = FALSE; + fHitEnd = TRUE; + break; + } + UChar32 captureGroupChar = utext_next32(fAltInputText); + UChar32 inputChar = utext_next32(fInputText); + if (inputChar != captureGroupChar) { + success = FALSE; + break; + } + } + + if (success) { + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); + } else { + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + } + } + break; + + + + case URX_BACKREF_I: + { + U_ASSERT(opValue < fFrameSize); + int64_t groupStartIdx = fp->fExtra[opValue]; + int64_t groupEndIdx = fp->fExtra[opValue+1]; + U_ASSERT(groupStartIdx <= groupEndIdx); + if (groupStartIdx < 0) { + // This capture group has not participated in the match thus far, + fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no match. + break; + } + utext_setNativeIndex(fAltInputText, groupStartIdx); + utext_setNativeIndex(fInputText, fp->fInputIdx); + CaseFoldingUTextIterator captureGroupItr(*fAltInputText); + CaseFoldingUTextIterator inputItr(*fInputText); + + // Note: if the capture group match was of an empty string the backref + // match succeeds. Verified by testing: Perl matches succeed + // in this case, so we do too. + + UBool success = TRUE; + for (;;) { + if (!captureGroupItr.inExpansion() && utext_getNativeIndex(fAltInputText) >= groupEndIdx) { + success = TRUE; + break; + } + if (!inputItr.inExpansion() && utext_getNativeIndex(fInputText) >= fActiveLimit) { + success = FALSE; + fHitEnd = TRUE; + break; + } + UChar32 captureGroupChar = captureGroupItr.next(); + UChar32 inputChar = inputItr.next(); + if (inputChar != captureGroupChar) { + success = FALSE; + break; + } + } + + if (success && inputItr.inExpansion()) { + // We otained a match by consuming part of a string obtained from + // case-folding a single code point of the input text. + // This does not count as an overall match. + success = FALSE; + } + + if (success) { + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); + } else { + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + } + + } + break; + + case URX_STO_INP_LOC: + { + U_ASSERT(opValue >= 0 && opValue < fFrameSize); + fp->fExtra[opValue] = fp->fInputIdx; + } + break; + + case URX_JMPX: + { + int32_t instrOperandLoc = (int32_t)fp->fPatIdx; + fp->fPatIdx += 1; + int32_t dataLoc = URX_VAL(pat[instrOperandLoc]); + U_ASSERT(dataLoc >= 0 && dataLoc < fFrameSize); + int64_t savedInputIdx = fp->fExtra[dataLoc]; + U_ASSERT(savedInputIdx <= fp->fInputIdx); + if (savedInputIdx < fp->fInputIdx) { + fp->fPatIdx = opValue; // JMP + } else { + fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no progress in loop. + } + } + break; + + case URX_LA_START: + { + // Entering a lookahead block. + // Save Stack Ptr, Input Pos. + U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); + fData[opValue] = fStack->size(); + fData[opValue+1] = fp->fInputIdx; + fActiveStart = fLookStart; // Set the match region change for + fActiveLimit = fLookLimit; // transparent bounds. + } + break; + + case URX_LA_END: + { + // Leaving a look-ahead block. + // restore Stack Ptr, Input Pos to positions they had on entry to block. + U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); + int32_t stackSize = fStack->size(); + int32_t newStackSize =(int32_t)fData[opValue]; + U_ASSERT(stackSize >= newStackSize); + if (stackSize > newStackSize) { + // Copy the current top frame back to the new (cut back) top frame. + // This makes the capture groups from within the look-ahead + // expression available. + int64_t *newFP = fStack->getBuffer() + newStackSize - fFrameSize; + int32_t i; + for (i=0; i<fFrameSize; i++) { + newFP[i] = ((int64_t *)fp)[i]; + } + fp = (REStackFrame *)newFP; + fStack->setSize(newStackSize); + } + fp->fInputIdx = fData[opValue+1]; + + // Restore the active region bounds in the input string; they may have + // been changed because of transparent bounds on a Region. + fActiveStart = fRegionStart; + fActiveLimit = fRegionLimit; + } + break; + + case URX_ONECHAR_I: + // Case insensitive one char. The char from the pattern is already case folded. + // Input text is not, but case folding the input can not reduce two or more code + // points to one. + if (fp->fInputIdx < fActiveLimit) { + UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); + + UChar32 c = UTEXT_NEXT32(fInputText); + if (u_foldCase(c, U_FOLD_CASE_DEFAULT) == opValue) { + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); + break; + } + } else { + fHitEnd = TRUE; + } + + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + break; + + case URX_STRING_I: + { + // Case-insensitive test input against a literal string. + // Strings require two slots in the compiled pattern, one for the + // offset to the string text, and one for the length. + // The compiled string has already been case folded. + { + const UChar *patternString = litText + opValue; + int32_t patternStringIdx = 0; + + op = (int32_t)pat[fp->fPatIdx]; + fp->fPatIdx++; + opType = URX_TYPE(op); + opValue = URX_VAL(op); + U_ASSERT(opType == URX_STRING_LEN); + int32_t patternStringLen = opValue; // Length of the string from the pattern. + + + UChar32 cPattern; + UChar32 cText; + UBool success = TRUE; + + UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); + CaseFoldingUTextIterator inputIterator(*fInputText); + while (patternStringIdx < patternStringLen) { + if (!inputIterator.inExpansion() && UTEXT_GETNATIVEINDEX(fInputText) >= fActiveLimit) { + success = FALSE; + fHitEnd = TRUE; + break; + } + U16_NEXT(patternString, patternStringIdx, patternStringLen, cPattern); + cText = inputIterator.next(); + if (cText != cPattern) { + success = FALSE; + break; + } + } + if (inputIterator.inExpansion()) { + success = FALSE; + } + + if (success) { + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); + } else { + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + } + } + } + break; + + case URX_LB_START: + { + // Entering a look-behind block. + // Save Stack Ptr, Input Pos. + // TODO: implement transparent bounds. Ticket #6067 + U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); + fData[opValue] = fStack->size(); + fData[opValue+1] = fp->fInputIdx; + // Init the variable containing the start index for attempted matches. + fData[opValue+2] = -1; + // Save input string length, then reset to pin any matches to end at + // the current position. + fData[opValue+3] = fActiveLimit; + fActiveLimit = fp->fInputIdx; + } + break; + + + case URX_LB_CONT: + { + // Positive Look-Behind, at top of loop checking for matches of LB expression + // at all possible input starting positions. + + // Fetch the min and max possible match lengths. They are the operands + // of this op in the pattern. + int32_t minML = (int32_t)pat[fp->fPatIdx++]; + int32_t maxML = (int32_t)pat[fp->fPatIdx++]; + if (!UTEXT_USES_U16(fInputText)) { + // utf-8 fix to maximum match length. The pattern compiler assumes utf-16. + // The max length need not be exact; it just needs to be >= actual maximum. + maxML *= 3; + } + U_ASSERT(minML <= maxML); + U_ASSERT(minML >= 0); + + // Fetch (from data) the last input index where a match was attempted. + U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); + int64_t &lbStartIdx = fData[opValue+2]; + if (lbStartIdx < 0) { + // First time through loop. + lbStartIdx = fp->fInputIdx - minML; + if (lbStartIdx > 0) { + // move index to a code point boudary, if it's not on one already. + UTEXT_SETNATIVEINDEX(fInputText, lbStartIdx); + lbStartIdx = UTEXT_GETNATIVEINDEX(fInputText); + } + } else { + // 2nd through nth time through the loop. + // Back up start position for match by one. + if (lbStartIdx == 0) { + (lbStartIdx)--; + } else { + UTEXT_SETNATIVEINDEX(fInputText, lbStartIdx); + (void)UTEXT_PREVIOUS32(fInputText); + lbStartIdx = UTEXT_GETNATIVEINDEX(fInputText); + } + } + + if (lbStartIdx < 0 || lbStartIdx < fp->fInputIdx - maxML) { + // We have tried all potential match starting points without + // getting a match. Backtrack out, and out of the + // Look Behind altogether. + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + int64_t restoreInputLen = fData[opValue+3]; + U_ASSERT(restoreInputLen >= fActiveLimit); + U_ASSERT(restoreInputLen <= fInputLength); + fActiveLimit = restoreInputLen; + break; + } + + // Save state to this URX_LB_CONT op, so failure to match will repeat the loop. + // (successful match will fall off the end of the loop.) + fp = StateSave(fp, fp->fPatIdx-3, status); + fp->fInputIdx = lbStartIdx; + } + break; + + case URX_LB_END: + // End of a look-behind block, after a successful match. + { + U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); + if (fp->fInputIdx != fActiveLimit) { + // The look-behind expression matched, but the match did not + // extend all the way to the point that we are looking behind from. + // FAIL out of here, which will take us back to the LB_CONT, which + // will retry the match starting at another position or fail + // the look-behind altogether, whichever is appropriate. + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + break; + } + + // Look-behind match is good. Restore the orignal input string length, + // which had been truncated to pin the end of the lookbehind match to the + // position being looked-behind. + int64_t originalInputLen = fData[opValue+3]; + U_ASSERT(originalInputLen >= fActiveLimit); + U_ASSERT(originalInputLen <= fInputLength); + fActiveLimit = originalInputLen; + } + break; + + + case URX_LBN_CONT: + { + // Negative Look-Behind, at top of loop checking for matches of LB expression + // at all possible input starting positions. + + // Fetch the extra parameters of this op. + int32_t minML = (int32_t)pat[fp->fPatIdx++]; + int32_t maxML = (int32_t)pat[fp->fPatIdx++]; + if (!UTEXT_USES_U16(fInputText)) { + // utf-8 fix to maximum match length. The pattern compiler assumes utf-16. + // The max length need not be exact; it just needs to be >= actual maximum. + maxML *= 3; + } + int32_t continueLoc = (int32_t)pat[fp->fPatIdx++]; + continueLoc = URX_VAL(continueLoc); + U_ASSERT(minML <= maxML); + U_ASSERT(minML >= 0); + U_ASSERT(continueLoc > fp->fPatIdx); + + // Fetch (from data) the last input index where a match was attempted. + U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); + int64_t &lbStartIdx = fData[opValue+2]; + if (lbStartIdx < 0) { + // First time through loop. + lbStartIdx = fp->fInputIdx - minML; + if (lbStartIdx > 0) { + // move index to a code point boudary, if it's not on one already. + UTEXT_SETNATIVEINDEX(fInputText, lbStartIdx); + lbStartIdx = UTEXT_GETNATIVEINDEX(fInputText); + } + } else { + // 2nd through nth time through the loop. + // Back up start position for match by one. + if (lbStartIdx == 0) { + (lbStartIdx)--; + } else { + UTEXT_SETNATIVEINDEX(fInputText, lbStartIdx); + (void)UTEXT_PREVIOUS32(fInputText); + lbStartIdx = UTEXT_GETNATIVEINDEX(fInputText); + } + } + + if (lbStartIdx < 0 || lbStartIdx < fp->fInputIdx - maxML) { + // We have tried all potential match starting points without + // getting a match, which means that the negative lookbehind as + // a whole has succeeded. Jump forward to the continue location + int64_t restoreInputLen = fData[opValue+3]; + U_ASSERT(restoreInputLen >= fActiveLimit); + U_ASSERT(restoreInputLen <= fInputLength); + fActiveLimit = restoreInputLen; + fp->fPatIdx = continueLoc; + break; + } + + // Save state to this URX_LB_CONT op, so failure to match will repeat the loop. + // (successful match will cause a FAIL out of the loop altogether.) + fp = StateSave(fp, fp->fPatIdx-4, status); + fp->fInputIdx = lbStartIdx; + } + break; + + case URX_LBN_END: + // End of a negative look-behind block, after a successful match. + { + U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); + if (fp->fInputIdx != fActiveLimit) { + // The look-behind expression matched, but the match did not + // extend all the way to the point that we are looking behind from. + // FAIL out of here, which will take us back to the LB_CONT, which + // will retry the match starting at another position or succeed + // the look-behind altogether, whichever is appropriate. + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + break; + } + + // Look-behind expression matched, which means look-behind test as + // a whole Fails + + // Restore the orignal input string length, which had been truncated + // inorder to pin the end of the lookbehind match + // to the position being looked-behind. + int64_t originalInputLen = fData[opValue+3]; + U_ASSERT(originalInputLen >= fActiveLimit); + U_ASSERT(originalInputLen <= fInputLength); + fActiveLimit = originalInputLen; + + // Restore original stack position, discarding any state saved + // by the successful pattern match. + U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); + int32_t newStackSize = (int32_t)fData[opValue]; + U_ASSERT(fStack->size() > newStackSize); + fStack->setSize(newStackSize); + + // FAIL, which will take control back to someplace + // prior to entering the look-behind test. + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + } + break; + + + case URX_LOOP_SR_I: + // Loop Initialization for the optimized implementation of + // [some character set]* + // This op scans through all matching input. + // The following LOOP_C op emulates stack unwinding if the following pattern fails. + { + U_ASSERT(opValue > 0 && opValue < sets->size()); + Regex8BitSet *s8 = &fPattern->fSets8[opValue]; + UnicodeSet *s = (UnicodeSet *)sets->elementAt(opValue); + + // Loop through input, until either the input is exhausted or + // we reach a character that is not a member of the set. + int64_t ix = fp->fInputIdx; + UTEXT_SETNATIVEINDEX(fInputText, ix); + for (;;) { + if (ix >= fActiveLimit) { + fHitEnd = TRUE; + break; + } + UChar32 c = UTEXT_NEXT32(fInputText); + if (c<256) { + if (s8->contains(c) == FALSE) { + break; + } + } else { + if (s->contains(c) == FALSE) { + break; + } + } + ix = UTEXT_GETNATIVEINDEX(fInputText); + } + + // If there were no matching characters, skip over the loop altogether. + // The loop doesn't run at all, a * op always succeeds. + if (ix == fp->fInputIdx) { + fp->fPatIdx++; // skip the URX_LOOP_C op. + break; + } + + // Peek ahead in the compiled pattern, to the URX_LOOP_C that + // must follow. It's operand is the stack location + // that holds the starting input index for the match of this [set]* + int32_t loopcOp = (int32_t)pat[fp->fPatIdx]; + U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C); + int32_t stackLoc = URX_VAL(loopcOp); + U_ASSERT(stackLoc >= 0 && stackLoc < fFrameSize); + fp->fExtra[stackLoc] = fp->fInputIdx; + fp->fInputIdx = ix; + + // Save State to the URX_LOOP_C op that follows this one, + // so that match failures in the following code will return to there. + // Then bump the pattern idx so the LOOP_C is skipped on the way out of here. + fp = StateSave(fp, fp->fPatIdx, status); + fp->fPatIdx++; + } + break; + + + case URX_LOOP_DOT_I: + // Loop Initialization for the optimized implementation of .* + // This op scans through all remaining input. + // The following LOOP_C op emulates stack unwinding if the following pattern fails. + { + // Loop through input until the input is exhausted (we reach an end-of-line) + // In DOTALL mode, we can just go straight to the end of the input. + int64_t ix; + if ((opValue & 1) == 1) { + // Dot-matches-All mode. Jump straight to the end of the string. + ix = fActiveLimit; + fHitEnd = TRUE; + } else { + // NOT DOT ALL mode. Line endings do not match '.' + // Scan forward until a line ending or end of input. + ix = fp->fInputIdx; + UTEXT_SETNATIVEINDEX(fInputText, ix); + for (;;) { + if (ix >= fActiveLimit) { + fHitEnd = TRUE; + break; + } + UChar32 c = UTEXT_NEXT32(fInputText); + if ((c & 0x7f) <= 0x29) { // Fast filter of non-new-line-s + if ((c == 0x0a) || // 0x0a is newline in both modes. + (((opValue & 2) == 0) && // IF not UNIX_LINES mode + isLineTerminator(c))) { + // char is a line ending. Exit the scanning loop. + break; + } + } + ix = UTEXT_GETNATIVEINDEX(fInputText); + } + } + + // If there were no matching characters, skip over the loop altogether. + // The loop doesn't run at all, a * op always succeeds. + if (ix == fp->fInputIdx) { + fp->fPatIdx++; // skip the URX_LOOP_C op. + break; + } + + // Peek ahead in the compiled pattern, to the URX_LOOP_C that + // must follow. It's operand is the stack location + // that holds the starting input index for the match of this .* + int32_t loopcOp = (int32_t)pat[fp->fPatIdx]; + U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C); + int32_t stackLoc = URX_VAL(loopcOp); + U_ASSERT(stackLoc >= 0 && stackLoc < fFrameSize); + fp->fExtra[stackLoc] = fp->fInputIdx; + fp->fInputIdx = ix; + + // Save State to the URX_LOOP_C op that follows this one, + // so that match failures in the following code will return to there. + // Then bump the pattern idx so the LOOP_C is skipped on the way out of here. + fp = StateSave(fp, fp->fPatIdx, status); + fp->fPatIdx++; + } + break; + + + case URX_LOOP_C: + { + U_ASSERT(opValue>=0 && opValue<fFrameSize); + backSearchIndex = fp->fExtra[opValue]; + U_ASSERT(backSearchIndex <= fp->fInputIdx); + if (backSearchIndex == fp->fInputIdx) { + // We've backed up the input idx to the point that the loop started. + // The loop is done. Leave here without saving state. + // Subsequent failures won't come back here. + break; + } + // Set up for the next iteration of the loop, with input index + // backed up by one from the last time through, + // and a state save to this instruction in case the following code fails again. + // (We're going backwards because this loop emulates stack unwinding, not + // the initial scan forward.) + U_ASSERT(fp->fInputIdx > 0); + UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); + UChar32 prevC = UTEXT_PREVIOUS32(fInputText); + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); + + UChar32 twoPrevC = UTEXT_PREVIOUS32(fInputText); + if (prevC == 0x0a && + fp->fInputIdx > backSearchIndex && + twoPrevC == 0x0d) { + int32_t prevOp = (int32_t)pat[fp->fPatIdx-2]; + if (URX_TYPE(prevOp) == URX_LOOP_DOT_I) { + // .*, stepping back over CRLF pair. + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); + } + } + + + fp = StateSave(fp, fp->fPatIdx-1, status); + } + break; + + + + default: + // Trouble. The compiled pattern contains an entry with an + // unrecognized type tag. + U_ASSERT(FALSE); + } + + if (U_FAILURE(status)) { + isMatch = FALSE; + break; + } + } + +breakFromLoop: + fMatch = isMatch; + if (isMatch) { + fLastMatchEnd = fMatchEnd; + fMatchStart = startIdx; + fMatchEnd = fp->fInputIdx; + } + +#ifdef REGEX_RUN_DEBUG + if (fTraceDebug) { + if (isMatch) { + printf("Match. start=%ld end=%ld\n\n", fMatchStart, fMatchEnd); + } else { + printf("No match\n\n"); + } + } +#endif + + fFrame = fp; // The active stack frame when the engine stopped. + // Contains the capture group results that we need to + // access later. + return; +} + + +//-------------------------------------------------------------------------------- +// +// MatchChunkAt This is the actual matching engine. Like MatchAt, but with the +// assumption that the entire string is available in the UText's +// chunk buffer. For now, that means we can use int32_t indexes, +// except for anything that needs to be saved (like group starts +// and ends). +// +// startIdx: begin matching a this index. +// toEnd: if true, match must extend to end of the input region +// +//-------------------------------------------------------------------------------- +void RegexMatcher::MatchChunkAt(int32_t startIdx, UBool toEnd, UErrorCode &status) { + UBool isMatch = FALSE; // True if the we have a match. + + int32_t backSearchIndex = INT32_MAX; // used after greedy single-character matches for searching backwards + + int32_t op; // Operation from the compiled pattern, split into + int32_t opType; // the opcode + int32_t opValue; // and the operand value. + +#ifdef REGEX_RUN_DEBUG + if (fTraceDebug) { + printf("MatchAt(startIdx=%d)\n", startIdx); + printf("Original Pattern: \"%s\"\n", CStr(StringFromUText(fPattern->fPattern))()); + printf("Input String: \"%s\"\n\n", CStr(StringFromUText(fInputText))()); + } +#endif + + if (U_FAILURE(status)) { + return; + } + + // Cache frequently referenced items from the compiled pattern + // + int64_t *pat = fPattern->fCompiledPat->getBuffer(); + + const UChar *litText = fPattern->fLiteralText.getBuffer(); + UVector *sets = fPattern->fSets; + + const UChar *inputBuf = fInputText->chunkContents; + + fFrameSize = fPattern->fFrameSize; + REStackFrame *fp = resetStack(); + if (U_FAILURE(fDeferredStatus)) { + status = fDeferredStatus; + return; + } + + fp->fPatIdx = 0; + fp->fInputIdx = startIdx; + + // Zero out the pattern's static data + int32_t i; + for (i = 0; i<fPattern->fDataSize; i++) { + fData[i] = 0; + } + + // + // Main loop for interpreting the compiled pattern. + // One iteration of the loop per pattern operation performed. + // + for (;;) { + op = (int32_t)pat[fp->fPatIdx]; + opType = URX_TYPE(op); + opValue = URX_VAL(op); +#ifdef REGEX_RUN_DEBUG + if (fTraceDebug) { + UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); + printf("inputIdx=%ld inputChar=%x sp=%3ld activeLimit=%ld ", fp->fInputIdx, + UTEXT_CURRENT32(fInputText), (int64_t *)fp-fStack->getBuffer(), fActiveLimit); + fPattern->dumpOp(fp->fPatIdx); + } +#endif + fp->fPatIdx++; + + switch (opType) { + + + case URX_NOP: + break; + + + case URX_BACKTRACK: + // Force a backtrack. In some circumstances, the pattern compiler + // will notice that the pattern can't possibly match anything, and will + // emit one of these at that point. + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + break; + + + case URX_ONECHAR: + if (fp->fInputIdx < fActiveLimit) { + UChar32 c; + U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); + if (c == opValue) { + break; + } + } else { + fHitEnd = TRUE; + } + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + break; + + + case URX_STRING: + { + // Test input against a literal string. + // Strings require two slots in the compiled pattern, one for the + // offset to the string text, and one for the length. + int32_t stringStartIdx = opValue; + int32_t stringLen; + + op = (int32_t)pat[fp->fPatIdx]; // Fetch the second operand + fp->fPatIdx++; + opType = URX_TYPE(op); + stringLen = URX_VAL(op); + U_ASSERT(opType == URX_STRING_LEN); + U_ASSERT(stringLen >= 2); + + const UChar * pInp = inputBuf + fp->fInputIdx; + const UChar * pInpLimit = inputBuf + fActiveLimit; + const UChar * pPat = litText+stringStartIdx; + const UChar * pEnd = pInp + stringLen; + UBool success = TRUE; + while (pInp < pEnd) { + if (pInp >= pInpLimit) { + fHitEnd = TRUE; + success = FALSE; + break; + } + if (*pInp++ != *pPat++) { + success = FALSE; + break; + } + } + + if (success) { + fp->fInputIdx += stringLen; + } else { + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + } + } + break; + + + case URX_STATE_SAVE: + fp = StateSave(fp, opValue, status); + break; + + + case URX_END: + // The match loop will exit via this path on a successful match, + // when we reach the end of the pattern. + if (toEnd && fp->fInputIdx != fActiveLimit) { + // The pattern matched, but not to the end of input. Try some more. + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + break; + } + isMatch = TRUE; + goto breakFromLoop; + + // Start and End Capture stack frame variables are laid out out like this: + // fp->fExtra[opValue] - The start of a completed capture group + // opValue+1 - The end of a completed capture group + // opValue+2 - the start of a capture group whose end + // has not yet been reached (and might not ever be). + case URX_START_CAPTURE: + U_ASSERT(opValue >= 0 && opValue < fFrameSize-3); + fp->fExtra[opValue+2] = fp->fInputIdx; + break; + + + case URX_END_CAPTURE: + U_ASSERT(opValue >= 0 && opValue < fFrameSize-3); + U_ASSERT(fp->fExtra[opValue+2] >= 0); // Start pos for this group must be set. + fp->fExtra[opValue] = fp->fExtra[opValue+2]; // Tentative start becomes real. + fp->fExtra[opValue+1] = fp->fInputIdx; // End position + U_ASSERT(fp->fExtra[opValue] <= fp->fExtra[opValue+1]); + break; + + + case URX_DOLLAR: // $, test for End of line + // or for position before new line at end of input + if (fp->fInputIdx < fAnchorLimit-2) { + // We are no where near the end of input. Fail. + // This is the common case. Keep it first. + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + break; + } + if (fp->fInputIdx >= fAnchorLimit) { + // We really are at the end of input. Success. + fHitEnd = TRUE; + fRequireEnd = TRUE; + break; + } + + // If we are positioned just before a new-line that is located at the + // end of input, succeed. + if (fp->fInputIdx == fAnchorLimit-1) { + UChar32 c; + U16_GET(inputBuf, fAnchorStart, fp->fInputIdx, fAnchorLimit, c); + + if (isLineTerminator(c)) { + if ( !(c==0x0a && fp->fInputIdx>fAnchorStart && inputBuf[fp->fInputIdx-1]==0x0d)) { + // At new-line at end of input. Success + fHitEnd = TRUE; + fRequireEnd = TRUE; + break; + } + } + } else if (fp->fInputIdx == fAnchorLimit-2 && + inputBuf[fp->fInputIdx]==0x0d && inputBuf[fp->fInputIdx+1]==0x0a) { + fHitEnd = TRUE; + fRequireEnd = TRUE; + break; // At CR/LF at end of input. Success + } + + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + + break; + + + case URX_DOLLAR_D: // $, test for End of Line, in UNIX_LINES mode. + if (fp->fInputIdx >= fAnchorLimit-1) { + // Either at the last character of input, or off the end. + if (fp->fInputIdx == fAnchorLimit-1) { + // At last char of input. Success if it's a new line. + if (inputBuf[fp->fInputIdx] == 0x0a) { + fHitEnd = TRUE; + fRequireEnd = TRUE; + break; + } + } else { + // Off the end of input. Success. + fHitEnd = TRUE; + fRequireEnd = TRUE; + break; + } + } + + // Not at end of input. Back-track out. + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + break; + + + case URX_DOLLAR_M: // $, test for End of line in multi-line mode + { + if (fp->fInputIdx >= fAnchorLimit) { + // We really are at the end of input. Success. + fHitEnd = TRUE; + fRequireEnd = TRUE; + break; + } + // If we are positioned just before a new-line, succeed. + // It makes no difference where the new-line is within the input. + UChar32 c = inputBuf[fp->fInputIdx]; + if (isLineTerminator(c)) { + // At a line end, except for the odd chance of being in the middle of a CR/LF sequence + // In multi-line mode, hitting a new-line just before the end of input does not + // set the hitEnd or requireEnd flags + if ( !(c==0x0a && fp->fInputIdx>fAnchorStart && inputBuf[fp->fInputIdx-1]==0x0d)) { + break; + } + } + // not at a new line. Fail. + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + } + break; + + + case URX_DOLLAR_MD: // $, test for End of line in multi-line and UNIX_LINES mode + { + if (fp->fInputIdx >= fAnchorLimit) { + // We really are at the end of input. Success. + fHitEnd = TRUE; + fRequireEnd = TRUE; // Java set requireEnd in this case, even though + break; // adding a new-line would not lose the match. + } + // If we are not positioned just before a new-line, the test fails; backtrack out. + // It makes no difference where the new-line is within the input. + if (inputBuf[fp->fInputIdx] != 0x0a) { + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + } + } + break; + + + case URX_CARET: // ^, test for start of line + if (fp->fInputIdx != fAnchorStart) { + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + } + break; + + + case URX_CARET_M: // ^, test for start of line in mulit-line mode + { + if (fp->fInputIdx == fAnchorStart) { + // We are at the start input. Success. + break; + } + // Check whether character just before the current pos is a new-line + // unless we are at the end of input + UChar c = inputBuf[fp->fInputIdx - 1]; + if ((fp->fInputIdx < fAnchorLimit) && + isLineTerminator(c)) { + // It's a new-line. ^ is true. Success. + // TODO: what should be done with positions between a CR and LF? + break; + } + // Not at the start of a line. Fail. + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + } + break; + + + case URX_CARET_M_UNIX: // ^, test for start of line in mulit-line + Unix-line mode + { + U_ASSERT(fp->fInputIdx >= fAnchorStart); + if (fp->fInputIdx <= fAnchorStart) { + // We are at the start input. Success. + break; + } + // Check whether character just before the current pos is a new-line + U_ASSERT(fp->fInputIdx <= fAnchorLimit); + UChar c = inputBuf[fp->fInputIdx - 1]; + if (c != 0x0a) { + // Not at the start of a line. Back-track out. + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + } + } + break; + + case URX_BACKSLASH_B: // Test for word boundaries + { + UBool success = isChunkWordBoundary((int32_t)fp->fInputIdx); + success ^= (UBool)(opValue != 0); // flip sense for \B + if (!success) { + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + } + } + break; + + + case URX_BACKSLASH_BU: // Test for word boundaries, Unicode-style + { + UBool success = isUWordBoundary(fp->fInputIdx); + success ^= (UBool)(opValue != 0); // flip sense for \B + if (!success) { + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + } + } + break; + + + case URX_BACKSLASH_D: // Test for decimal digit + { + if (fp->fInputIdx >= fActiveLimit) { + fHitEnd = TRUE; + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + break; + } + + UChar32 c; + U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); + int8_t ctype = u_charType(c); // TODO: make a unicode set for this. Will be faster. + UBool success = (ctype == U_DECIMAL_DIGIT_NUMBER); + success ^= (UBool)(opValue != 0); // flip sense for \D + if (!success) { + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + } + } + break; + + + case URX_BACKSLASH_G: // Test for position at end of previous match + if (!((fMatch && fp->fInputIdx==fMatchEnd) || (fMatch==FALSE && fp->fInputIdx==fActiveStart))) { + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + } + break; + + + case URX_BACKSLASH_H: // Test for \h, horizontal white space. + { + if (fp->fInputIdx >= fActiveLimit) { + fHitEnd = TRUE; + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + break; + } + UChar32 c; + U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); + int8_t ctype = u_charType(c); + UBool success = (ctype == U_SPACE_SEPARATOR || c == 9); // SPACE_SEPARATOR || TAB + success ^= (UBool)(opValue != 0); // flip sense for \H + if (!success) { + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + } + } + break; + + + case URX_BACKSLASH_R: // Test for \R, any line break sequence. + { + if (fp->fInputIdx >= fActiveLimit) { + fHitEnd = TRUE; + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + break; + } + UChar32 c; + U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); + if (isLineTerminator(c)) { + if (c == 0x0d && fp->fInputIdx < fActiveLimit) { + // Check for CR/LF sequence. Consume both together when found. + UChar c2; + U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c2); + if (c2 != 0x0a) { + U16_PREV(inputBuf, 0, fp->fInputIdx, c2); + } + } + } else { + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + } + } + break; + + + case URX_BACKSLASH_V: // Any single code point line ending. + { + if (fp->fInputIdx >= fActiveLimit) { + fHitEnd = TRUE; + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + break; + } + UChar32 c; + U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); + UBool success = isLineTerminator(c); + success ^= (UBool)(opValue != 0); // flip sense for \V + if (!success) { + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + } + } + break; + + + + case URX_BACKSLASH_X: + // Match a Grapheme, as defined by Unicode TR 29. + // Differs slightly from Perl, which consumes combining marks independently + // of context. + { + + // Fail if at end of input + if (fp->fInputIdx >= fActiveLimit) { + fHitEnd = TRUE; + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + break; + } + + // Examine (and consume) the current char. + // Dispatch into a little state machine, based on the char. + UChar32 c; + U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); + UnicodeSet **sets = fPattern->fStaticSets; + if (sets[URX_GC_NORMAL]->contains(c)) goto GC_Extend; + if (sets[URX_GC_CONTROL]->contains(c)) goto GC_Control; + if (sets[URX_GC_L]->contains(c)) goto GC_L; + if (sets[URX_GC_LV]->contains(c)) goto GC_V; + if (sets[URX_GC_LVT]->contains(c)) goto GC_T; + if (sets[URX_GC_V]->contains(c)) goto GC_V; + if (sets[URX_GC_T]->contains(c)) goto GC_T; + goto GC_Extend; + + + +GC_L: + if (fp->fInputIdx >= fActiveLimit) goto GC_Done; + U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); + if (sets[URX_GC_L]->contains(c)) goto GC_L; + if (sets[URX_GC_LV]->contains(c)) goto GC_V; + if (sets[URX_GC_LVT]->contains(c)) goto GC_T; + if (sets[URX_GC_V]->contains(c)) goto GC_V; + U16_PREV(inputBuf, 0, fp->fInputIdx, c); + goto GC_Extend; + +GC_V: + if (fp->fInputIdx >= fActiveLimit) goto GC_Done; + U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); + if (sets[URX_GC_V]->contains(c)) goto GC_V; + if (sets[URX_GC_T]->contains(c)) goto GC_T; + U16_PREV(inputBuf, 0, fp->fInputIdx, c); + goto GC_Extend; + +GC_T: + if (fp->fInputIdx >= fActiveLimit) goto GC_Done; + U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); + if (sets[URX_GC_T]->contains(c)) goto GC_T; + U16_PREV(inputBuf, 0, fp->fInputIdx, c); + goto GC_Extend; + +GC_Extend: + // Combining characters are consumed here + for (;;) { + if (fp->fInputIdx >= fActiveLimit) { + break; + } + U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); + if (sets[URX_GC_EXTEND]->contains(c) == FALSE) { + U16_BACK_1(inputBuf, 0, fp->fInputIdx); + break; + } + } + goto GC_Done; + +GC_Control: + // Most control chars stand alone (don't combine with combining chars), + // except for that CR/LF sequence is a single grapheme cluster. + if (c == 0x0d && fp->fInputIdx < fActiveLimit && inputBuf[fp->fInputIdx] == 0x0a) { + fp->fInputIdx++; + } + +GC_Done: + if (fp->fInputIdx >= fActiveLimit) { + fHitEnd = TRUE; + } + break; + } + + + + + case URX_BACKSLASH_Z: // Test for end of Input + if (fp->fInputIdx < fAnchorLimit) { + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + } else { + fHitEnd = TRUE; + fRequireEnd = TRUE; + } + break; + + + + case URX_STATIC_SETREF: + { + // Test input character against one of the predefined sets + // (Word Characters, for example) + // The high bit of the op value is a flag for the match polarity. + // 0: success if input char is in set. + // 1: success if input char is not in set. + if (fp->fInputIdx >= fActiveLimit) { + fHitEnd = TRUE; + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + break; + } + + UBool success = ((opValue & URX_NEG_SET) == URX_NEG_SET); + opValue &= ~URX_NEG_SET; + U_ASSERT(opValue > 0 && opValue < URX_LAST_SET); + + UChar32 c; + U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); + if (c < 256) { + Regex8BitSet *s8 = &fPattern->fStaticSets8[opValue]; + if (s8->contains(c)) { + success = !success; + } + } else { + const UnicodeSet *s = fPattern->fStaticSets[opValue]; + if (s->contains(c)) { + success = !success; + } + } + if (!success) { + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + } + } + break; + + + case URX_STAT_SETREF_N: + { + // Test input character for NOT being a member of one of + // the predefined sets (Word Characters, for example) + if (fp->fInputIdx >= fActiveLimit) { + fHitEnd = TRUE; + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + break; + } + + U_ASSERT(opValue > 0 && opValue < URX_LAST_SET); + + UChar32 c; + U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); + if (c < 256) { + Regex8BitSet *s8 = &fPattern->fStaticSets8[opValue]; + if (s8->contains(c) == FALSE) { + break; + } + } else { + const UnicodeSet *s = fPattern->fStaticSets[opValue]; + if (s->contains(c) == FALSE) { + break; + } + } + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + } + break; + + + case URX_SETREF: + { + if (fp->fInputIdx >= fActiveLimit) { + fHitEnd = TRUE; + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + break; + } + + U_ASSERT(opValue > 0 && opValue < sets->size()); + + // There is input left. Pick up one char and test it for set membership. + UChar32 c; + U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); + if (c<256) { + Regex8BitSet *s8 = &fPattern->fSets8[opValue]; + if (s8->contains(c)) { + // The character is in the set. A Match. + break; + } + } else { + UnicodeSet *s = (UnicodeSet *)sets->elementAt(opValue); + if (s->contains(c)) { + // The character is in the set. A Match. + break; + } + } + + // the character wasn't in the set. + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + } + break; + + + case URX_DOTANY: + { + // . matches anything, but stops at end-of-line. + if (fp->fInputIdx >= fActiveLimit) { + // At end of input. Match failed. Backtrack out. + fHitEnd = TRUE; + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + break; + } + + // There is input left. Advance over one char, unless we've hit end-of-line + UChar32 c; + U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); + if (isLineTerminator(c)) { + // End of line in normal mode. . does not match. + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + break; + } + } + break; + + + case URX_DOTANY_ALL: + { + // . in dot-matches-all (including new lines) mode + if (fp->fInputIdx >= fActiveLimit) { + // At end of input. Match failed. Backtrack out. + fHitEnd = TRUE; + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + break; + } + + // There is input left. Advance over one char, except if we are + // at a cr/lf, advance over both of them. + UChar32 c; + U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); + if (c==0x0d && fp->fInputIdx < fActiveLimit) { + // In the case of a CR/LF, we need to advance over both. + if (inputBuf[fp->fInputIdx] == 0x0a) { + U16_FWD_1(inputBuf, fp->fInputIdx, fActiveLimit); + } + } + } + break; + + + case URX_DOTANY_UNIX: + { + // '.' operator, matches all, but stops at end-of-line. + // UNIX_LINES mode, so 0x0a is the only recognized line ending. + if (fp->fInputIdx >= fActiveLimit) { + // At end of input. Match failed. Backtrack out. + fHitEnd = TRUE; + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + break; + } + + // There is input left. Advance over one char, unless we've hit end-of-line + UChar32 c; + U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); + if (c == 0x0a) { + // End of line in normal mode. '.' does not match the \n + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + } + } + break; + + + case URX_JMP: + fp->fPatIdx = opValue; + break; + + case URX_FAIL: + isMatch = FALSE; + goto breakFromLoop; + + case URX_JMP_SAV: + U_ASSERT(opValue < fPattern->fCompiledPat->size()); + fp = StateSave(fp, fp->fPatIdx, status); // State save to loc following current + fp->fPatIdx = opValue; // Then JMP. + break; + + case URX_JMP_SAV_X: + // This opcode is used with (x)+, when x can match a zero length string. + // Same as JMP_SAV, except conditional on the match having made forward progress. + // Destination of the JMP must be a URX_STO_INP_LOC, from which we get the + // data address of the input position at the start of the loop. + { + U_ASSERT(opValue > 0 && opValue < fPattern->fCompiledPat->size()); + int32_t stoOp = (int32_t)pat[opValue-1]; + U_ASSERT(URX_TYPE(stoOp) == URX_STO_INP_LOC); + int32_t frameLoc = URX_VAL(stoOp); + U_ASSERT(frameLoc >= 0 && frameLoc < fFrameSize); + int32_t prevInputIdx = (int32_t)fp->fExtra[frameLoc]; + U_ASSERT(prevInputIdx <= fp->fInputIdx); + if (prevInputIdx < fp->fInputIdx) { + // The match did make progress. Repeat the loop. + fp = StateSave(fp, fp->fPatIdx, status); // State save to loc following current + fp->fPatIdx = opValue; + fp->fExtra[frameLoc] = fp->fInputIdx; + } + // If the input position did not advance, we do nothing here, + // execution will fall out of the loop. + } + break; + + case URX_CTR_INIT: + { + U_ASSERT(opValue >= 0 && opValue < fFrameSize-2); + fp->fExtra[opValue] = 0; // Set the loop counter variable to zero + + // Pick up the three extra operands that CTR_INIT has, and + // skip the pattern location counter past + int32_t instrOperandLoc = (int32_t)fp->fPatIdx; + fp->fPatIdx += 3; + int32_t loopLoc = URX_VAL(pat[instrOperandLoc]); + int32_t minCount = (int32_t)pat[instrOperandLoc+1]; + int32_t maxCount = (int32_t)pat[instrOperandLoc+2]; + U_ASSERT(minCount>=0); + U_ASSERT(maxCount>=minCount || maxCount==-1); + U_ASSERT(loopLoc>=fp->fPatIdx); + + if (minCount == 0) { + fp = StateSave(fp, loopLoc+1, status); + } + if (maxCount == -1) { + fp->fExtra[opValue+1] = fp->fInputIdx; // For loop breaking. + } else if (maxCount == 0) { + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + } + } + break; + + case URX_CTR_LOOP: + { + U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2); + int32_t initOp = (int32_t)pat[opValue]; + U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT); + int64_t *pCounter = &fp->fExtra[URX_VAL(initOp)]; + int32_t minCount = (int32_t)pat[opValue+2]; + int32_t maxCount = (int32_t)pat[opValue+3]; + (*pCounter)++; + if ((uint64_t)*pCounter >= (uint32_t)maxCount && maxCount != -1) { + U_ASSERT(*pCounter == maxCount); + break; + } + if (*pCounter >= minCount) { + if (maxCount == -1) { + // Loop has no hard upper bound. + // Check that it is progressing through the input, break if it is not. + int64_t *pLastInputIdx = &fp->fExtra[URX_VAL(initOp) + 1]; + if (fp->fInputIdx == *pLastInputIdx) { + break; + } else { + *pLastInputIdx = fp->fInputIdx; + } + } + fp = StateSave(fp, fp->fPatIdx, status); + } + fp->fPatIdx = opValue + 4; // Loop back. + } + break; + + case URX_CTR_INIT_NG: + { + // Initialize a non-greedy loop + U_ASSERT(opValue >= 0 && opValue < fFrameSize-2); + fp->fExtra[opValue] = 0; // Set the loop counter variable to zero + + // Pick up the three extra operands that CTR_INIT_NG has, and + // skip the pattern location counter past + int32_t instrOperandLoc = (int32_t)fp->fPatIdx; + fp->fPatIdx += 3; + int32_t loopLoc = URX_VAL(pat[instrOperandLoc]); + int32_t minCount = (int32_t)pat[instrOperandLoc+1]; + int32_t maxCount = (int32_t)pat[instrOperandLoc+2]; + U_ASSERT(minCount>=0); + U_ASSERT(maxCount>=minCount || maxCount==-1); + U_ASSERT(loopLoc>fp->fPatIdx); + if (maxCount == -1) { + fp->fExtra[opValue+1] = fp->fInputIdx; // Save initial input index for loop breaking. + } + + if (minCount == 0) { + if (maxCount != 0) { + fp = StateSave(fp, fp->fPatIdx, status); + } + fp->fPatIdx = loopLoc+1; // Continue with stuff after repeated block + } + } + break; + + case URX_CTR_LOOP_NG: + { + // Non-greedy {min, max} loops + U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2); + int32_t initOp = (int32_t)pat[opValue]; + U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT_NG); + int64_t *pCounter = &fp->fExtra[URX_VAL(initOp)]; + int32_t minCount = (int32_t)pat[opValue+2]; + int32_t maxCount = (int32_t)pat[opValue+3]; + + (*pCounter)++; + if ((uint64_t)*pCounter >= (uint32_t)maxCount && maxCount != -1) { + // The loop has matched the maximum permitted number of times. + // Break out of here with no action. Matching will + // continue with the following pattern. + U_ASSERT(*pCounter == maxCount); + break; + } + + if (*pCounter < minCount) { + // We haven't met the minimum number of matches yet. + // Loop back for another one. + fp->fPatIdx = opValue + 4; // Loop back. + } else { + // We do have the minimum number of matches. + + // If there is no upper bound on the loop iterations, check that the input index + // is progressing, and stop the loop if it is not. + if (maxCount == -1) { + int64_t *pLastInputIdx = &fp->fExtra[URX_VAL(initOp) + 1]; + if (fp->fInputIdx == *pLastInputIdx) { + break; + } + *pLastInputIdx = fp->fInputIdx; + } + + // Loop Continuation: we will fall into the pattern following the loop + // (non-greedy, don't execute loop body first), but first do + // a state save to the top of the loop, so that a match failure + // in the following pattern will try another iteration of the loop. + fp = StateSave(fp, opValue + 4, status); + } + } + break; + + case URX_STO_SP: + U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize); + fData[opValue] = fStack->size(); + break; + + case URX_LD_SP: + { + U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize); + int32_t newStackSize = (int32_t)fData[opValue]; + U_ASSERT(newStackSize <= fStack->size()); + int64_t *newFP = fStack->getBuffer() + newStackSize - fFrameSize; + if (newFP == (int64_t *)fp) { + break; + } + int32_t i; + for (i=0; i<fFrameSize; i++) { + newFP[i] = ((int64_t *)fp)[i]; + } + fp = (REStackFrame *)newFP; + fStack->setSize(newStackSize); + } + break; + + case URX_BACKREF: + { + U_ASSERT(opValue < fFrameSize); + int64_t groupStartIdx = fp->fExtra[opValue]; + int64_t groupEndIdx = fp->fExtra[opValue+1]; + U_ASSERT(groupStartIdx <= groupEndIdx); + int64_t inputIndex = fp->fInputIdx; + if (groupStartIdx < 0) { + // This capture group has not participated in the match thus far, + fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no match. + break; + } + UBool success = TRUE; + for (int64_t groupIndex = groupStartIdx; groupIndex < groupEndIdx; ++groupIndex,++inputIndex) { + if (inputIndex >= fActiveLimit) { + success = FALSE; + fHitEnd = TRUE; + break; + } + if (inputBuf[groupIndex] != inputBuf[inputIndex]) { + success = FALSE; + break; + } + } + if (success && groupStartIdx < groupEndIdx && U16_IS_LEAD(inputBuf[groupEndIdx-1]) && + inputIndex < fActiveLimit && U16_IS_TRAIL(inputBuf[inputIndex])) { + // Capture group ended with an unpaired lead surrogate. + // Back reference is not permitted to match lead only of a surrogatge pair. + success = FALSE; + } + if (success) { + fp->fInputIdx = inputIndex; + } else { + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + } + } + break; + + case URX_BACKREF_I: + { + U_ASSERT(opValue < fFrameSize); + int64_t groupStartIdx = fp->fExtra[opValue]; + int64_t groupEndIdx = fp->fExtra[opValue+1]; + U_ASSERT(groupStartIdx <= groupEndIdx); + if (groupStartIdx < 0) { + // This capture group has not participated in the match thus far, + fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no match. + break; + } + CaseFoldingUCharIterator captureGroupItr(inputBuf, groupStartIdx, groupEndIdx); + CaseFoldingUCharIterator inputItr(inputBuf, fp->fInputIdx, fActiveLimit); + + // Note: if the capture group match was of an empty string the backref + // match succeeds. Verified by testing: Perl matches succeed + // in this case, so we do too. + + UBool success = TRUE; + for (;;) { + UChar32 captureGroupChar = captureGroupItr.next(); + if (captureGroupChar == U_SENTINEL) { + success = TRUE; + break; + } + UChar32 inputChar = inputItr.next(); + if (inputChar == U_SENTINEL) { + success = FALSE; + fHitEnd = TRUE; + break; + } + if (inputChar != captureGroupChar) { + success = FALSE; + break; + } + } + + if (success && inputItr.inExpansion()) { + // We otained a match by consuming part of a string obtained from + // case-folding a single code point of the input text. + // This does not count as an overall match. + success = FALSE; + } + + if (success) { + fp->fInputIdx = inputItr.getIndex(); + } else { + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + } + } + break; + + case URX_STO_INP_LOC: + { + U_ASSERT(opValue >= 0 && opValue < fFrameSize); + fp->fExtra[opValue] = fp->fInputIdx; + } + break; + + case URX_JMPX: + { + int32_t instrOperandLoc = (int32_t)fp->fPatIdx; + fp->fPatIdx += 1; + int32_t dataLoc = URX_VAL(pat[instrOperandLoc]); + U_ASSERT(dataLoc >= 0 && dataLoc < fFrameSize); + int32_t savedInputIdx = (int32_t)fp->fExtra[dataLoc]; + U_ASSERT(savedInputIdx <= fp->fInputIdx); + if (savedInputIdx < fp->fInputIdx) { + fp->fPatIdx = opValue; // JMP + } else { + fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no progress in loop. + } + } + break; + + case URX_LA_START: + { + // Entering a lookahead block. + // Save Stack Ptr, Input Pos. + U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); + fData[opValue] = fStack->size(); + fData[opValue+1] = fp->fInputIdx; + fActiveStart = fLookStart; // Set the match region change for + fActiveLimit = fLookLimit; // transparent bounds. + } + break; + + case URX_LA_END: + { + // Leaving a look-ahead block. + // restore Stack Ptr, Input Pos to positions they had on entry to block. + U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); + int32_t stackSize = fStack->size(); + int32_t newStackSize = (int32_t)fData[opValue]; + U_ASSERT(stackSize >= newStackSize); + if (stackSize > newStackSize) { + // Copy the current top frame back to the new (cut back) top frame. + // This makes the capture groups from within the look-ahead + // expression available. + int64_t *newFP = fStack->getBuffer() + newStackSize - fFrameSize; + int32_t i; + for (i=0; i<fFrameSize; i++) { + newFP[i] = ((int64_t *)fp)[i]; + } + fp = (REStackFrame *)newFP; + fStack->setSize(newStackSize); + } + fp->fInputIdx = fData[opValue+1]; + + // Restore the active region bounds in the input string; they may have + // been changed because of transparent bounds on a Region. + fActiveStart = fRegionStart; + fActiveLimit = fRegionLimit; + } + break; + + case URX_ONECHAR_I: + if (fp->fInputIdx < fActiveLimit) { + UChar32 c; + U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); + if (u_foldCase(c, U_FOLD_CASE_DEFAULT) == opValue) { + break; + } + } else { + fHitEnd = TRUE; + } + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + break; + + case URX_STRING_I: + // Case-insensitive test input against a literal string. + // Strings require two slots in the compiled pattern, one for the + // offset to the string text, and one for the length. + // The compiled string has already been case folded. + { + const UChar *patternString = litText + opValue; + + op = (int32_t)pat[fp->fPatIdx]; + fp->fPatIdx++; + opType = URX_TYPE(op); + opValue = URX_VAL(op); + U_ASSERT(opType == URX_STRING_LEN); + int32_t patternStringLen = opValue; // Length of the string from the pattern. + + UChar32 cText; + UChar32 cPattern; + UBool success = TRUE; + int32_t patternStringIdx = 0; + CaseFoldingUCharIterator inputIterator(inputBuf, fp->fInputIdx, fActiveLimit); + while (patternStringIdx < patternStringLen) { + U16_NEXT(patternString, patternStringIdx, patternStringLen, cPattern); + cText = inputIterator.next(); + if (cText != cPattern) { + success = FALSE; + if (cText == U_SENTINEL) { + fHitEnd = TRUE; + } + break; + } + } + if (inputIterator.inExpansion()) { + success = FALSE; + } + + if (success) { + fp->fInputIdx = inputIterator.getIndex(); + } else { + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + } + } + break; + + case URX_LB_START: + { + // Entering a look-behind block. + // Save Stack Ptr, Input Pos. + // TODO: implement transparent bounds. Ticket #6067 + U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); + fData[opValue] = fStack->size(); + fData[opValue+1] = fp->fInputIdx; + // Init the variable containing the start index for attempted matches. + fData[opValue+2] = -1; + // Save input string length, then reset to pin any matches to end at + // the current position. + fData[opValue+3] = fActiveLimit; + fActiveLimit = fp->fInputIdx; + } + break; + + + case URX_LB_CONT: + { + // Positive Look-Behind, at top of loop checking for matches of LB expression + // at all possible input starting positions. + + // Fetch the min and max possible match lengths. They are the operands + // of this op in the pattern. + int32_t minML = (int32_t)pat[fp->fPatIdx++]; + int32_t maxML = (int32_t)pat[fp->fPatIdx++]; + U_ASSERT(minML <= maxML); + U_ASSERT(minML >= 0); + + // Fetch (from data) the last input index where a match was attempted. + U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); + int64_t &lbStartIdx = fData[opValue+2]; + if (lbStartIdx < 0) { + // First time through loop. + lbStartIdx = fp->fInputIdx - minML; + if (lbStartIdx > 0) { + U16_SET_CP_START(inputBuf, 0, lbStartIdx); + } + } else { + // 2nd through nth time through the loop. + // Back up start position for match by one. + if (lbStartIdx == 0) { + lbStartIdx--; + } else { + U16_BACK_1(inputBuf, 0, lbStartIdx); + } + } + + if (lbStartIdx < 0 || lbStartIdx < fp->fInputIdx - maxML) { + // We have tried all potential match starting points without + // getting a match. Backtrack out, and out of the + // Look Behind altogether. + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + int64_t restoreInputLen = fData[opValue+3]; + U_ASSERT(restoreInputLen >= fActiveLimit); + U_ASSERT(restoreInputLen <= fInputLength); + fActiveLimit = restoreInputLen; + break; + } + + // Save state to this URX_LB_CONT op, so failure to match will repeat the loop. + // (successful match will fall off the end of the loop.) + fp = StateSave(fp, fp->fPatIdx-3, status); + fp->fInputIdx = lbStartIdx; + } + break; + + case URX_LB_END: + // End of a look-behind block, after a successful match. + { + U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); + if (fp->fInputIdx != fActiveLimit) { + // The look-behind expression matched, but the match did not + // extend all the way to the point that we are looking behind from. + // FAIL out of here, which will take us back to the LB_CONT, which + // will retry the match starting at another position or fail + // the look-behind altogether, whichever is appropriate. + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + break; + } + + // Look-behind match is good. Restore the orignal input string length, + // which had been truncated to pin the end of the lookbehind match to the + // position being looked-behind. + int64_t originalInputLen = fData[opValue+3]; + U_ASSERT(originalInputLen >= fActiveLimit); + U_ASSERT(originalInputLen <= fInputLength); + fActiveLimit = originalInputLen; + } + break; + + + case URX_LBN_CONT: + { + // Negative Look-Behind, at top of loop checking for matches of LB expression + // at all possible input starting positions. + + // Fetch the extra parameters of this op. + int32_t minML = (int32_t)pat[fp->fPatIdx++]; + int32_t maxML = (int32_t)pat[fp->fPatIdx++]; + int32_t continueLoc = (int32_t)pat[fp->fPatIdx++]; + continueLoc = URX_VAL(continueLoc); + U_ASSERT(minML <= maxML); + U_ASSERT(minML >= 0); + U_ASSERT(continueLoc > fp->fPatIdx); + + // Fetch (from data) the last input index where a match was attempted. + U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); + int64_t &lbStartIdx = fData[opValue+2]; + if (lbStartIdx < 0) { + // First time through loop. + lbStartIdx = fp->fInputIdx - minML; + if (lbStartIdx > 0) { + U16_SET_CP_START(inputBuf, 0, lbStartIdx); + } + } else { + // 2nd through nth time through the loop. + // Back up start position for match by one. + if (lbStartIdx == 0) { + lbStartIdx--; // Because U16_BACK is unsafe starting at 0. + } else { + U16_BACK_1(inputBuf, 0, lbStartIdx); + } + } + + if (lbStartIdx < 0 || lbStartIdx < fp->fInputIdx - maxML) { + // We have tried all potential match starting points without + // getting a match, which means that the negative lookbehind as + // a whole has succeeded. Jump forward to the continue location + int64_t restoreInputLen = fData[opValue+3]; + U_ASSERT(restoreInputLen >= fActiveLimit); + U_ASSERT(restoreInputLen <= fInputLength); + fActiveLimit = restoreInputLen; + fp->fPatIdx = continueLoc; + break; + } + + // Save state to this URX_LB_CONT op, so failure to match will repeat the loop. + // (successful match will cause a FAIL out of the loop altogether.) + fp = StateSave(fp, fp->fPatIdx-4, status); + fp->fInputIdx = lbStartIdx; + } + break; + + case URX_LBN_END: + // End of a negative look-behind block, after a successful match. + { + U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); + if (fp->fInputIdx != fActiveLimit) { + // The look-behind expression matched, but the match did not + // extend all the way to the point that we are looking behind from. + // FAIL out of here, which will take us back to the LB_CONT, which + // will retry the match starting at another position or succeed + // the look-behind altogether, whichever is appropriate. + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + break; + } + + // Look-behind expression matched, which means look-behind test as + // a whole Fails + + // Restore the orignal input string length, which had been truncated + // inorder to pin the end of the lookbehind match + // to the position being looked-behind. + int64_t originalInputLen = fData[opValue+3]; + U_ASSERT(originalInputLen >= fActiveLimit); + U_ASSERT(originalInputLen <= fInputLength); + fActiveLimit = originalInputLen; + + // Restore original stack position, discarding any state saved + // by the successful pattern match. + U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); + int32_t newStackSize = (int32_t)fData[opValue]; + U_ASSERT(fStack->size() > newStackSize); + fStack->setSize(newStackSize); + + // FAIL, which will take control back to someplace + // prior to entering the look-behind test. + fp = (REStackFrame *)fStack->popFrame(fFrameSize); + } + break; + + + case URX_LOOP_SR_I: + // Loop Initialization for the optimized implementation of + // [some character set]* + // This op scans through all matching input. + // The following LOOP_C op emulates stack unwinding if the following pattern fails. + { + U_ASSERT(opValue > 0 && opValue < sets->size()); + Regex8BitSet *s8 = &fPattern->fSets8[opValue]; + UnicodeSet *s = (UnicodeSet *)sets->elementAt(opValue); + + // Loop through input, until either the input is exhausted or + // we reach a character that is not a member of the set. + int32_t ix = (int32_t)fp->fInputIdx; + for (;;) { + if (ix >= fActiveLimit) { + fHitEnd = TRUE; + break; + } + UChar32 c; + U16_NEXT(inputBuf, ix, fActiveLimit, c); + if (c<256) { + if (s8->contains(c) == FALSE) { + U16_BACK_1(inputBuf, 0, ix); + break; + } + } else { + if (s->contains(c) == FALSE) { + U16_BACK_1(inputBuf, 0, ix); + break; + } + } + } + + // If there were no matching characters, skip over the loop altogether. + // The loop doesn't run at all, a * op always succeeds. + if (ix == fp->fInputIdx) { + fp->fPatIdx++; // skip the URX_LOOP_C op. + break; + } + + // Peek ahead in the compiled pattern, to the URX_LOOP_C that + // must follow. It's operand is the stack location + // that holds the starting input index for the match of this [set]* + int32_t loopcOp = (int32_t)pat[fp->fPatIdx]; + U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C); + int32_t stackLoc = URX_VAL(loopcOp); + U_ASSERT(stackLoc >= 0 && stackLoc < fFrameSize); + fp->fExtra[stackLoc] = fp->fInputIdx; + fp->fInputIdx = ix; + + // Save State to the URX_LOOP_C op that follows this one, + // so that match failures in the following code will return to there. + // Then bump the pattern idx so the LOOP_C is skipped on the way out of here. + fp = StateSave(fp, fp->fPatIdx, status); + fp->fPatIdx++; + } + break; + + + case URX_LOOP_DOT_I: + // Loop Initialization for the optimized implementation of .* + // This op scans through all remaining input. + // The following LOOP_C op emulates stack unwinding if the following pattern fails. + { + // Loop through input until the input is exhausted (we reach an end-of-line) + // In DOTALL mode, we can just go straight to the end of the input. + int32_t ix; + if ((opValue & 1) == 1) { + // Dot-matches-All mode. Jump straight to the end of the string. + ix = (int32_t)fActiveLimit; + fHitEnd = TRUE; + } else { + // NOT DOT ALL mode. Line endings do not match '.' + // Scan forward until a line ending or end of input. + ix = (int32_t)fp->fInputIdx; + for (;;) { + if (ix >= fActiveLimit) { + fHitEnd = TRUE; + break; + } + UChar32 c; + U16_NEXT(inputBuf, ix, fActiveLimit, c); // c = inputBuf[ix++] + if ((c & 0x7f) <= 0x29) { // Fast filter of non-new-line-s + if ((c == 0x0a) || // 0x0a is newline in both modes. + (((opValue & 2) == 0) && // IF not UNIX_LINES mode + isLineTerminator(c))) { + // char is a line ending. Put the input pos back to the + // line ending char, and exit the scanning loop. + U16_BACK_1(inputBuf, 0, ix); + break; + } + } + } + } + + // If there were no matching characters, skip over the loop altogether. + // The loop doesn't run at all, a * op always succeeds. + if (ix == fp->fInputIdx) { + fp->fPatIdx++; // skip the URX_LOOP_C op. + break; + } + + // Peek ahead in the compiled pattern, to the URX_LOOP_C that + // must follow. It's operand is the stack location + // that holds the starting input index for the match of this .* + int32_t loopcOp = (int32_t)pat[fp->fPatIdx]; + U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C); + int32_t stackLoc = URX_VAL(loopcOp); + U_ASSERT(stackLoc >= 0 && stackLoc < fFrameSize); + fp->fExtra[stackLoc] = fp->fInputIdx; + fp->fInputIdx = ix; + + // Save State to the URX_LOOP_C op that follows this one, + // so that match failures in the following code will return to there. + // Then bump the pattern idx so the LOOP_C is skipped on the way out of here. + fp = StateSave(fp, fp->fPatIdx, status); + fp->fPatIdx++; + } + break; + + + case URX_LOOP_C: + { + U_ASSERT(opValue>=0 && opValue<fFrameSize); + backSearchIndex = (int32_t)fp->fExtra[opValue]; + U_ASSERT(backSearchIndex <= fp->fInputIdx); + if (backSearchIndex == fp->fInputIdx) { + // We've backed up the input idx to the point that the loop started. + // The loop is done. Leave here without saving state. + // Subsequent failures won't come back here. + break; + } + // Set up for the next iteration of the loop, with input index + // backed up by one from the last time through, + // and a state save to this instruction in case the following code fails again. + // (We're going backwards because this loop emulates stack unwinding, not + // the initial scan forward.) + U_ASSERT(fp->fInputIdx > 0); + UChar32 prevC; + U16_PREV(inputBuf, 0, fp->fInputIdx, prevC); // !!!: should this 0 be one of f*Limit? + + if (prevC == 0x0a && + fp->fInputIdx > backSearchIndex && + inputBuf[fp->fInputIdx-1] == 0x0d) { + int32_t prevOp = (int32_t)pat[fp->fPatIdx-2]; + if (URX_TYPE(prevOp) == URX_LOOP_DOT_I) { + // .*, stepping back over CRLF pair. + U16_BACK_1(inputBuf, 0, fp->fInputIdx); + } + } + + + fp = StateSave(fp, fp->fPatIdx-1, status); + } + break; + + + + default: + // Trouble. The compiled pattern contains an entry with an + // unrecognized type tag. + U_ASSERT(FALSE); + } + + if (U_FAILURE(status)) { + isMatch = FALSE; + break; + } + } + +breakFromLoop: + fMatch = isMatch; + if (isMatch) { + fLastMatchEnd = fMatchEnd; + fMatchStart = startIdx; + fMatchEnd = fp->fInputIdx; + } + +#ifdef REGEX_RUN_DEBUG + if (fTraceDebug) { + if (isMatch) { + printf("Match. start=%ld end=%ld\n\n", fMatchStart, fMatchEnd); + } else { + printf("No match\n\n"); + } + } +#endif + + fFrame = fp; // The active stack frame when the engine stopped. + // Contains the capture group results that we need to + // access later. + + return; +} + + +UOBJECT_DEFINE_RTTI_IMPLEMENTATION(RegexMatcher) + +U_NAMESPACE_END + +#endif // !UCONFIG_NO_REGULAR_EXPRESSIONS |