diff options
Diffstat (limited to 'intl/icu/source/i18n/collationiterator.cpp')
-rw-r--r-- | intl/icu/source/i18n/collationiterator.cpp | 955 |
1 files changed, 955 insertions, 0 deletions
diff --git a/intl/icu/source/i18n/collationiterator.cpp b/intl/icu/source/i18n/collationiterator.cpp new file mode 100644 index 000000000..e6e8f27e2 --- /dev/null +++ b/intl/icu/source/i18n/collationiterator.cpp @@ -0,0 +1,955 @@ +// Copyright (C) 2016 and later: Unicode, Inc. and others. +// License & terms of use: http://www.unicode.org/copyright.html +/* +******************************************************************************* +* Copyright (C) 2010-2014, International Business Machines +* Corporation and others. All Rights Reserved. +******************************************************************************* +* collationiterator.cpp +* +* created on: 2010oct27 +* created by: Markus W. Scherer +*/ + +#include "utypeinfo.h" // for 'typeid' to work + +#include "unicode/utypes.h" + +#if !UCONFIG_NO_COLLATION + +#include "unicode/ucharstrie.h" +#include "unicode/ustringtrie.h" +#include "charstr.h" +#include "cmemory.h" +#include "collation.h" +#include "collationdata.h" +#include "collationfcd.h" +#include "collationiterator.h" +#include "normalizer2impl.h" +#include "uassert.h" +#include "uvectr32.h" + +U_NAMESPACE_BEGIN + +CollationIterator::CEBuffer::~CEBuffer() {} + +UBool +CollationIterator::CEBuffer::ensureAppendCapacity(int32_t appCap, UErrorCode &errorCode) { + int32_t capacity = buffer.getCapacity(); + if((length + appCap) <= capacity) { return TRUE; } + if(U_FAILURE(errorCode)) { return FALSE; } + do { + if(capacity < 1000) { + capacity *= 4; + } else { + capacity *= 2; + } + } while(capacity < (length + appCap)); + int64_t *p = buffer.resize(capacity, length); + if(p == NULL) { + errorCode = U_MEMORY_ALLOCATION_ERROR; + return FALSE; + } + return TRUE; +} + +// State of combining marks skipped in discontiguous contraction. +// We create a state object on first use and keep it around deactivated between uses. +class SkippedState : public UMemory { +public: + // Born active but empty. + SkippedState() : pos(0), skipLengthAtMatch(0) {} + void clear() { + oldBuffer.remove(); + pos = 0; + // The newBuffer is reset by setFirstSkipped(). + } + + UBool isEmpty() const { return oldBuffer.isEmpty(); } + + UBool hasNext() const { return pos < oldBuffer.length(); } + + // Requires hasNext(). + UChar32 next() { + UChar32 c = oldBuffer.char32At(pos); + pos += U16_LENGTH(c); + return c; + } + + // Accounts for one more input code point read beyond the end of the marks buffer. + void incBeyond() { + U_ASSERT(!hasNext()); + ++pos; + } + + // Goes backward through the skipped-marks buffer. + // Returns the number of code points read beyond the skipped marks + // that need to be backtracked through normal input. + int32_t backwardNumCodePoints(int32_t n) { + int32_t length = oldBuffer.length(); + int32_t beyond = pos - length; + if(beyond > 0) { + if(beyond >= n) { + // Not back far enough to re-enter the oldBuffer. + pos -= n; + return n; + } else { + // Back out all beyond-oldBuffer code points and re-enter the buffer. + pos = oldBuffer.moveIndex32(length, beyond - n); + return beyond; + } + } else { + // Go backwards from inside the oldBuffer. + pos = oldBuffer.moveIndex32(pos, -n); + return 0; + } + } + + void setFirstSkipped(UChar32 c) { + skipLengthAtMatch = 0; + newBuffer.setTo(c); + } + + void skip(UChar32 c) { + newBuffer.append(c); + } + + void recordMatch() { skipLengthAtMatch = newBuffer.length(); } + + // Replaces the characters we consumed with the newly skipped ones. + void replaceMatch() { + // Note: UnicodeString.replace() pins pos to at most length(). + oldBuffer.replace(0, pos, newBuffer, 0, skipLengthAtMatch); + pos = 0; + } + + void saveTrieState(const UCharsTrie &trie) { trie.saveState(state); } + void resetToTrieState(UCharsTrie &trie) const { trie.resetToState(state); } + +private: + // Combining marks skipped in previous discontiguous-contraction matching. + // After that discontiguous contraction was completed, we start reading them from here. + UnicodeString oldBuffer; + // Combining marks newly skipped in current discontiguous-contraction matching. + // These might have been read from the normal text or from the oldBuffer. + UnicodeString newBuffer; + // Reading index in oldBuffer, + // or counter for how many code points have been read beyond oldBuffer (pos-oldBuffer.length()). + int32_t pos; + // newBuffer.length() at the time of the last matching character. + // When a partial match fails, we back out skipped and partial-matching input characters. + int32_t skipLengthAtMatch; + // We save the trie state before we attempt to match a character, + // so that we can skip it and try the next one. + UCharsTrie::State state; +}; + +CollationIterator::CollationIterator(const CollationIterator &other) + : UObject(other), + trie(other.trie), + data(other.data), + cesIndex(other.cesIndex), + skipped(NULL), + numCpFwd(other.numCpFwd), + isNumeric(other.isNumeric) { + UErrorCode errorCode = U_ZERO_ERROR; + int32_t length = other.ceBuffer.length; + if(length > 0 && ceBuffer.ensureAppendCapacity(length, errorCode)) { + for(int32_t i = 0; i < length; ++i) { + ceBuffer.set(i, other.ceBuffer.get(i)); + } + ceBuffer.length = length; + } else { + cesIndex = 0; + } +} + +CollationIterator::~CollationIterator() { + delete skipped; +} + +UBool +CollationIterator::operator==(const CollationIterator &other) const { + // Subclasses: Call this method and then add more specific checks. + // Compare the iterator state but not the collation data (trie & data fields): + // Assume that the caller compares the data. + // Ignore skipped since that should be unused between calls to nextCE(). + // (It only stays around to avoid another memory allocation.) + if(!(typeid(*this) == typeid(other) && + ceBuffer.length == other.ceBuffer.length && + cesIndex == other.cesIndex && + numCpFwd == other.numCpFwd && + isNumeric == other.isNumeric)) { + return FALSE; + } + for(int32_t i = 0; i < ceBuffer.length; ++i) { + if(ceBuffer.get(i) != other.ceBuffer.get(i)) { return FALSE; } + } + return TRUE; +} + +void +CollationIterator::reset() { + cesIndex = ceBuffer.length = 0; + if(skipped != NULL) { skipped->clear(); } +} + +int32_t +CollationIterator::fetchCEs(UErrorCode &errorCode) { + while(U_SUCCESS(errorCode) && nextCE(errorCode) != Collation::NO_CE) { + // No need to loop for each expansion CE. + cesIndex = ceBuffer.length; + } + return ceBuffer.length; +} + +uint32_t +CollationIterator::handleNextCE32(UChar32 &c, UErrorCode &errorCode) { + c = nextCodePoint(errorCode); + return (c < 0) ? Collation::FALLBACK_CE32 : data->getCE32(c); +} + +UChar +CollationIterator::handleGetTrailSurrogate() { + return 0; +} + +UBool +CollationIterator::foundNULTerminator() { + return FALSE; +} + +UBool +CollationIterator::forbidSurrogateCodePoints() const { + return FALSE; +} + +uint32_t +CollationIterator::getDataCE32(UChar32 c) const { + return data->getCE32(c); +} + +uint32_t +CollationIterator::getCE32FromBuilderData(uint32_t /*ce32*/, UErrorCode &errorCode) { + if(U_SUCCESS(errorCode)) { errorCode = U_INTERNAL_PROGRAM_ERROR; } + return 0; +} + +int64_t +CollationIterator::nextCEFromCE32(const CollationData *d, UChar32 c, uint32_t ce32, + UErrorCode &errorCode) { + --ceBuffer.length; // Undo ceBuffer.incLength(). + appendCEsFromCE32(d, c, ce32, TRUE, errorCode); + if(U_SUCCESS(errorCode)) { + return ceBuffer.get(cesIndex++); + } else { + return Collation::NO_CE_PRIMARY; + } +} + +void +CollationIterator::appendCEsFromCE32(const CollationData *d, UChar32 c, uint32_t ce32, + UBool forward, UErrorCode &errorCode) { + while(Collation::isSpecialCE32(ce32)) { + switch(Collation::tagFromCE32(ce32)) { + case Collation::FALLBACK_TAG: + case Collation::RESERVED_TAG_3: + if(U_SUCCESS(errorCode)) { errorCode = U_INTERNAL_PROGRAM_ERROR; } + return; + case Collation::LONG_PRIMARY_TAG: + ceBuffer.append(Collation::ceFromLongPrimaryCE32(ce32), errorCode); + return; + case Collation::LONG_SECONDARY_TAG: + ceBuffer.append(Collation::ceFromLongSecondaryCE32(ce32), errorCode); + return; + case Collation::LATIN_EXPANSION_TAG: + if(ceBuffer.ensureAppendCapacity(2, errorCode)) { + ceBuffer.set(ceBuffer.length, Collation::latinCE0FromCE32(ce32)); + ceBuffer.set(ceBuffer.length + 1, Collation::latinCE1FromCE32(ce32)); + ceBuffer.length += 2; + } + return; + case Collation::EXPANSION32_TAG: { + const uint32_t *ce32s = d->ce32s + Collation::indexFromCE32(ce32); + int32_t length = Collation::lengthFromCE32(ce32); + if(ceBuffer.ensureAppendCapacity(length, errorCode)) { + do { + ceBuffer.appendUnsafe(Collation::ceFromCE32(*ce32s++)); + } while(--length > 0); + } + return; + } + case Collation::EXPANSION_TAG: { + const int64_t *ces = d->ces + Collation::indexFromCE32(ce32); + int32_t length = Collation::lengthFromCE32(ce32); + if(ceBuffer.ensureAppendCapacity(length, errorCode)) { + do { + ceBuffer.appendUnsafe(*ces++); + } while(--length > 0); + } + return; + } + case Collation::BUILDER_DATA_TAG: + ce32 = getCE32FromBuilderData(ce32, errorCode); + if(U_FAILURE(errorCode)) { return; } + if(ce32 == Collation::FALLBACK_CE32) { + d = data->base; + ce32 = d->getCE32(c); + } + break; + case Collation::PREFIX_TAG: + if(forward) { backwardNumCodePoints(1, errorCode); } + ce32 = getCE32FromPrefix(d, ce32, errorCode); + if(forward) { forwardNumCodePoints(1, errorCode); } + break; + case Collation::CONTRACTION_TAG: { + const UChar *p = d->contexts + Collation::indexFromCE32(ce32); + uint32_t defaultCE32 = CollationData::readCE32(p); // Default if no suffix match. + if(!forward) { + // Backward contractions are handled by previousCEUnsafe(). + // c has contractions but they were not found. + ce32 = defaultCE32; + break; + } + UChar32 nextCp; + if(skipped == NULL && numCpFwd < 0) { + // Some portion of nextCE32FromContraction() pulled out here as an ASCII fast path, + // avoiding the function call and the nextSkippedCodePoint() overhead. + nextCp = nextCodePoint(errorCode); + if(nextCp < 0) { + // No more text. + ce32 = defaultCE32; + break; + } else if((ce32 & Collation::CONTRACT_NEXT_CCC) != 0 && + !CollationFCD::mayHaveLccc(nextCp)) { + // All contraction suffixes start with characters with lccc!=0 + // but the next code point has lccc==0. + backwardNumCodePoints(1, errorCode); + ce32 = defaultCE32; + break; + } + } else { + nextCp = nextSkippedCodePoint(errorCode); + if(nextCp < 0) { + // No more text. + ce32 = defaultCE32; + break; + } else if((ce32 & Collation::CONTRACT_NEXT_CCC) != 0 && + !CollationFCD::mayHaveLccc(nextCp)) { + // All contraction suffixes start with characters with lccc!=0 + // but the next code point has lccc==0. + backwardNumSkipped(1, errorCode); + ce32 = defaultCE32; + break; + } + } + ce32 = nextCE32FromContraction(d, ce32, p + 2, defaultCE32, nextCp, errorCode); + if(ce32 == Collation::NO_CE32) { + // CEs from a discontiguous contraction plus the skipped combining marks + // have been appended already. + return; + } + break; + } + case Collation::DIGIT_TAG: + if(isNumeric) { + appendNumericCEs(ce32, forward, errorCode); + return; + } else { + // Fetch the non-numeric-collation CE32 and continue. + ce32 = d->ce32s[Collation::indexFromCE32(ce32)]; + break; + } + case Collation::U0000_TAG: + U_ASSERT(c == 0); + if(forward && foundNULTerminator()) { + // Handle NUL-termination. (Not needed in Java.) + ceBuffer.append(Collation::NO_CE, errorCode); + return; + } else { + // Fetch the normal ce32 for U+0000 and continue. + ce32 = d->ce32s[0]; + break; + } + case Collation::HANGUL_TAG: { + const uint32_t *jamoCE32s = d->jamoCE32s; + c -= Hangul::HANGUL_BASE; + UChar32 t = c % Hangul::JAMO_T_COUNT; + c /= Hangul::JAMO_T_COUNT; + UChar32 v = c % Hangul::JAMO_V_COUNT; + c /= Hangul::JAMO_V_COUNT; + if((ce32 & Collation::HANGUL_NO_SPECIAL_JAMO) != 0) { + // None of the Jamo CE32s are isSpecialCE32(). + // Avoid recursive function calls and per-Jamo tests. + if(ceBuffer.ensureAppendCapacity(t == 0 ? 2 : 3, errorCode)) { + ceBuffer.set(ceBuffer.length, Collation::ceFromCE32(jamoCE32s[c])); + ceBuffer.set(ceBuffer.length + 1, Collation::ceFromCE32(jamoCE32s[19 + v])); + ceBuffer.length += 2; + if(t != 0) { + ceBuffer.appendUnsafe(Collation::ceFromCE32(jamoCE32s[39 + t])); + } + } + return; + } else { + // We should not need to compute each Jamo code point. + // In particular, there should be no offset or implicit ce32. + appendCEsFromCE32(d, U_SENTINEL, jamoCE32s[c], forward, errorCode); + appendCEsFromCE32(d, U_SENTINEL, jamoCE32s[19 + v], forward, errorCode); + if(t == 0) { return; } + // offset 39 = 19 + 21 - 1: + // 19 = JAMO_L_COUNT + // 21 = JAMO_T_COUNT + // -1 = omit t==0 + ce32 = jamoCE32s[39 + t]; + c = U_SENTINEL; + break; + } + } + case Collation::LEAD_SURROGATE_TAG: { + U_ASSERT(forward); // Backward iteration should never see lead surrogate code _unit_ data. + U_ASSERT(U16_IS_LEAD(c)); + UChar trail; + if(U16_IS_TRAIL(trail = handleGetTrailSurrogate())) { + c = U16_GET_SUPPLEMENTARY(c, trail); + ce32 &= Collation::LEAD_TYPE_MASK; + if(ce32 == Collation::LEAD_ALL_UNASSIGNED) { + ce32 = Collation::UNASSIGNED_CE32; // unassigned-implicit + } else if(ce32 == Collation::LEAD_ALL_FALLBACK || + (ce32 = d->getCE32FromSupplementary(c)) == Collation::FALLBACK_CE32) { + // fall back to the base data + d = d->base; + ce32 = d->getCE32FromSupplementary(c); + } + } else { + // c is an unpaired surrogate. + ce32 = Collation::UNASSIGNED_CE32; + } + break; + } + case Collation::OFFSET_TAG: + U_ASSERT(c >= 0); + ceBuffer.append(d->getCEFromOffsetCE32(c, ce32), errorCode); + return; + case Collation::IMPLICIT_TAG: + U_ASSERT(c >= 0); + if(U_IS_SURROGATE(c) && forbidSurrogateCodePoints()) { + ce32 = Collation::FFFD_CE32; + break; + } else { + ceBuffer.append(Collation::unassignedCEFromCodePoint(c), errorCode); + return; + } + } + } + ceBuffer.append(Collation::ceFromSimpleCE32(ce32), errorCode); +} + +uint32_t +CollationIterator::getCE32FromPrefix(const CollationData *d, uint32_t ce32, + UErrorCode &errorCode) { + const UChar *p = d->contexts + Collation::indexFromCE32(ce32); + ce32 = CollationData::readCE32(p); // Default if no prefix match. + p += 2; + // Number of code points read before the original code point. + int32_t lookBehind = 0; + UCharsTrie prefixes(p); + for(;;) { + UChar32 c = previousCodePoint(errorCode); + if(c < 0) { break; } + ++lookBehind; + UStringTrieResult match = prefixes.nextForCodePoint(c); + if(USTRINGTRIE_HAS_VALUE(match)) { + ce32 = (uint32_t)prefixes.getValue(); + } + if(!USTRINGTRIE_HAS_NEXT(match)) { break; } + } + forwardNumCodePoints(lookBehind, errorCode); + return ce32; +} + +UChar32 +CollationIterator::nextSkippedCodePoint(UErrorCode &errorCode) { + if(skipped != NULL && skipped->hasNext()) { return skipped->next(); } + if(numCpFwd == 0) { return U_SENTINEL; } + UChar32 c = nextCodePoint(errorCode); + if(skipped != NULL && !skipped->isEmpty() && c >= 0) { skipped->incBeyond(); } + if(numCpFwd > 0 && c >= 0) { --numCpFwd; } + return c; +} + +void +CollationIterator::backwardNumSkipped(int32_t n, UErrorCode &errorCode) { + if(skipped != NULL && !skipped->isEmpty()) { + n = skipped->backwardNumCodePoints(n); + } + backwardNumCodePoints(n, errorCode); + if(numCpFwd >= 0) { numCpFwd += n; } +} + +uint32_t +CollationIterator::nextCE32FromContraction(const CollationData *d, uint32_t contractionCE32, + const UChar *p, uint32_t ce32, UChar32 c, + UErrorCode &errorCode) { + // c: next code point after the original one + + // Number of code points read beyond the original code point. + // Needed for discontiguous contraction matching. + int32_t lookAhead = 1; + // Number of code points read since the last match (initially only c). + int32_t sinceMatch = 1; + // Normally we only need a contiguous match, + // and therefore need not remember the suffixes state from before a mismatch for retrying. + // If we are already processing skipped combining marks, then we do track the state. + UCharsTrie suffixes(p); + if(skipped != NULL && !skipped->isEmpty()) { skipped->saveTrieState(suffixes); } + UStringTrieResult match = suffixes.firstForCodePoint(c); + for(;;) { + UChar32 nextCp; + if(USTRINGTRIE_HAS_VALUE(match)) { + ce32 = (uint32_t)suffixes.getValue(); + if(!USTRINGTRIE_HAS_NEXT(match) || (c = nextSkippedCodePoint(errorCode)) < 0) { + return ce32; + } + if(skipped != NULL && !skipped->isEmpty()) { skipped->saveTrieState(suffixes); } + sinceMatch = 1; + } else if(match == USTRINGTRIE_NO_MATCH || (nextCp = nextSkippedCodePoint(errorCode)) < 0) { + // No match for c, or partial match (USTRINGTRIE_NO_VALUE) and no further text. + // Back up if necessary, and try a discontiguous contraction. + if((contractionCE32 & Collation::CONTRACT_TRAILING_CCC) != 0 && + // Discontiguous contraction matching extends an existing match. + // If there is no match yet, then there is nothing to do. + ((contractionCE32 & Collation::CONTRACT_SINGLE_CP_NO_MATCH) == 0 || + sinceMatch < lookAhead)) { + // The last character of at least one suffix has lccc!=0, + // allowing for discontiguous contractions. + // UCA S2.1.1 only processes non-starters immediately following + // "a match in the table" (sinceMatch=1). + if(sinceMatch > 1) { + // Return to the state after the last match. + // (Return to sinceMatch=0 and re-fetch the first partially-matched character.) + backwardNumSkipped(sinceMatch, errorCode); + c = nextSkippedCodePoint(errorCode); + lookAhead -= sinceMatch - 1; + sinceMatch = 1; + } + if(d->getFCD16(c) > 0xff) { + return nextCE32FromDiscontiguousContraction( + d, suffixes, ce32, lookAhead, c, errorCode); + } + } + break; + } else { + // Continue after partial match (USTRINGTRIE_NO_VALUE) for c. + // It does not have a result value, therefore it is not itself "a match in the table". + // If a partially-matched c has ccc!=0 then + // it might be skipped in discontiguous contraction. + c = nextCp; + ++sinceMatch; + } + ++lookAhead; + match = suffixes.nextForCodePoint(c); + } + backwardNumSkipped(sinceMatch, errorCode); + return ce32; +} + +uint32_t +CollationIterator::nextCE32FromDiscontiguousContraction( + const CollationData *d, UCharsTrie &suffixes, uint32_t ce32, + int32_t lookAhead, UChar32 c, + UErrorCode &errorCode) { + if(U_FAILURE(errorCode)) { return 0; } + + // UCA section 3.3.2 Contractions: + // Contractions that end with non-starter characters + // are known as discontiguous contractions. + // ... discontiguous contractions must be detected in input text + // whenever the final sequence of non-starter characters could be rearranged + // so as to make a contiguous matching sequence that is canonically equivalent. + + // UCA: http://www.unicode.org/reports/tr10/#S2.1 + // S2.1 Find the longest initial substring S at each point that has a match in the table. + // S2.1.1 If there are any non-starters following S, process each non-starter C. + // S2.1.2 If C is not blocked from S, find if S + C has a match in the table. + // Note: A non-starter in a string is called blocked + // if there is another non-starter of the same canonical combining class or zero + // between it and the last character of canonical combining class 0. + // S2.1.3 If there is a match, replace S by S + C, and remove C. + + // First: Is a discontiguous contraction even possible? + uint16_t fcd16 = d->getFCD16(c); + U_ASSERT(fcd16 > 0xff); // The caller checked this already, as a shortcut. + UChar32 nextCp = nextSkippedCodePoint(errorCode); + if(nextCp < 0) { + // No further text. + backwardNumSkipped(1, errorCode); + return ce32; + } + ++lookAhead; + uint8_t prevCC = (uint8_t)fcd16; + fcd16 = d->getFCD16(nextCp); + if(fcd16 <= 0xff) { + // The next code point after c is a starter (S2.1.1 "process each non-starter"). + backwardNumSkipped(2, errorCode); + return ce32; + } + + // We have read and matched (lookAhead-2) code points, + // read non-matching c and peeked ahead at nextCp. + // Return to the state before the mismatch and continue matching with nextCp. + if(skipped == NULL || skipped->isEmpty()) { + if(skipped == NULL) { + skipped = new SkippedState(); + if(skipped == NULL) { + errorCode = U_MEMORY_ALLOCATION_ERROR; + return 0; + } + } + suffixes.reset(); + if(lookAhead > 2) { + // Replay the partial match so far. + backwardNumCodePoints(lookAhead, errorCode); + suffixes.firstForCodePoint(nextCodePoint(errorCode)); + for(int32_t i = 3; i < lookAhead; ++i) { + suffixes.nextForCodePoint(nextCodePoint(errorCode)); + } + // Skip c (which did not match) and nextCp (which we will try now). + forwardNumCodePoints(2, errorCode); + } + skipped->saveTrieState(suffixes); + } else { + // Reset to the trie state before the failed match of c. + skipped->resetToTrieState(suffixes); + } + + skipped->setFirstSkipped(c); + // Number of code points read since the last match (at this point: c and nextCp). + int32_t sinceMatch = 2; + c = nextCp; + for(;;) { + UStringTrieResult match; + // "If C is not blocked from S, find if S + C has a match in the table." (S2.1.2) + if(prevCC < (fcd16 >> 8) && USTRINGTRIE_HAS_VALUE(match = suffixes.nextForCodePoint(c))) { + // "If there is a match, replace S by S + C, and remove C." (S2.1.3) + // Keep prevCC unchanged. + ce32 = (uint32_t)suffixes.getValue(); + sinceMatch = 0; + skipped->recordMatch(); + if(!USTRINGTRIE_HAS_NEXT(match)) { break; } + skipped->saveTrieState(suffixes); + } else { + // No match for "S + C", skip C. + skipped->skip(c); + skipped->resetToTrieState(suffixes); + prevCC = (uint8_t)fcd16; + } + if((c = nextSkippedCodePoint(errorCode)) < 0) { break; } + ++sinceMatch; + fcd16 = d->getFCD16(c); + if(fcd16 <= 0xff) { + // The next code point after c is a starter (S2.1.1 "process each non-starter"). + break; + } + } + backwardNumSkipped(sinceMatch, errorCode); + UBool isTopDiscontiguous = skipped->isEmpty(); + skipped->replaceMatch(); + if(isTopDiscontiguous && !skipped->isEmpty()) { + // We did get a match after skipping one or more combining marks, + // and we are not in a recursive discontiguous contraction. + // Append CEs from the contraction ce32 + // and then from the combining marks that we skipped before the match. + c = U_SENTINEL; + for(;;) { + appendCEsFromCE32(d, c, ce32, TRUE, errorCode); + // Fetch CE32s for skipped combining marks from the normal data, with fallback, + // rather than from the CollationData where we found the contraction. + if(!skipped->hasNext()) { break; } + c = skipped->next(); + ce32 = getDataCE32(c); + if(ce32 == Collation::FALLBACK_CE32) { + d = data->base; + ce32 = d->getCE32(c); + } else { + d = data; + } + // Note: A nested discontiguous-contraction match + // replaces consumed combining marks with newly skipped ones + // and resets the reading position to the beginning. + } + skipped->clear(); + ce32 = Collation::NO_CE32; // Signal to the caller that the result is in the ceBuffer. + } + return ce32; +} + +void +CollationIterator::appendNumericCEs(uint32_t ce32, UBool forward, UErrorCode &errorCode) { + // Collect digits. + CharString digits; + if(forward) { + for(;;) { + char digit = Collation::digitFromCE32(ce32); + digits.append(digit, errorCode); + if(numCpFwd == 0) { break; } + UChar32 c = nextCodePoint(errorCode); + if(c < 0) { break; } + ce32 = data->getCE32(c); + if(ce32 == Collation::FALLBACK_CE32) { + ce32 = data->base->getCE32(c); + } + if(!Collation::hasCE32Tag(ce32, Collation::DIGIT_TAG)) { + backwardNumCodePoints(1, errorCode); + break; + } + if(numCpFwd > 0) { --numCpFwd; } + } + } else { + for(;;) { + char digit = Collation::digitFromCE32(ce32); + digits.append(digit, errorCode); + UChar32 c = previousCodePoint(errorCode); + if(c < 0) { break; } + ce32 = data->getCE32(c); + if(ce32 == Collation::FALLBACK_CE32) { + ce32 = data->base->getCE32(c); + } + if(!Collation::hasCE32Tag(ce32, Collation::DIGIT_TAG)) { + forwardNumCodePoints(1, errorCode); + break; + } + } + // Reverse the digit string. + char *p = digits.data(); + char *q = p + digits.length() - 1; + while(p < q) { + char digit = *p; + *p++ = *q; + *q-- = digit; + } + } + if(U_FAILURE(errorCode)) { return; } + int32_t pos = 0; + do { + // Skip leading zeros. + while(pos < (digits.length() - 1) && digits[pos] == 0) { ++pos; } + // Write a sequence of CEs for at most 254 digits at a time. + int32_t segmentLength = digits.length() - pos; + if(segmentLength > 254) { segmentLength = 254; } + appendNumericSegmentCEs(digits.data() + pos, segmentLength, errorCode); + pos += segmentLength; + } while(U_SUCCESS(errorCode) && pos < digits.length()); +} + +void +CollationIterator::appendNumericSegmentCEs(const char *digits, int32_t length, UErrorCode &errorCode) { + U_ASSERT(1 <= length && length <= 254); + U_ASSERT(length == 1 || digits[0] != 0); + uint32_t numericPrimary = data->numericPrimary; + // Note: We use primary byte values 2..255: digits are not compressible. + if(length <= 7) { + // Very dense encoding for small numbers. + int32_t value = digits[0]; + for(int32_t i = 1; i < length; ++i) { + value = value * 10 + digits[i]; + } + // Primary weight second byte values: + // 74 byte values 2.. 75 for small numbers in two-byte primary weights. + // 40 byte values 76..115 for medium numbers in three-byte primary weights. + // 16 byte values 116..131 for large numbers in four-byte primary weights. + // 124 byte values 132..255 for very large numbers with 4..127 digit pairs. + int32_t firstByte = 2; + int32_t numBytes = 74; + if(value < numBytes) { + // Two-byte primary for 0..73, good for day & month numbers etc. + uint32_t primary = numericPrimary | ((firstByte + value) << 16); + ceBuffer.append(Collation::makeCE(primary), errorCode); + return; + } + value -= numBytes; + firstByte += numBytes; + numBytes = 40; + if(value < numBytes * 254) { + // Three-byte primary for 74..10233=74+40*254-1, good for year numbers and more. + uint32_t primary = numericPrimary | + ((firstByte + value / 254) << 16) | ((2 + value % 254) << 8); + ceBuffer.append(Collation::makeCE(primary), errorCode); + return; + } + value -= numBytes * 254; + firstByte += numBytes; + numBytes = 16; + if(value < numBytes * 254 * 254) { + // Four-byte primary for 10234..1042489=10234+16*254*254-1. + uint32_t primary = numericPrimary | (2 + value % 254); + value /= 254; + primary |= (2 + value % 254) << 8; + value /= 254; + primary |= (firstByte + value % 254) << 16; + ceBuffer.append(Collation::makeCE(primary), errorCode); + return; + } + // original value > 1042489 + } + U_ASSERT(length >= 7); + + // The second primary byte value 132..255 indicates the number of digit pairs (4..127), + // then we generate primary bytes with those pairs. + // Omit trailing 00 pairs. + // Decrement the value for the last pair. + + // Set the exponent. 4 pairs->132, 5 pairs->133, ..., 127 pairs->255. + int32_t numPairs = (length + 1) / 2; + uint32_t primary = numericPrimary | ((132 - 4 + numPairs) << 16); + // Find the length without trailing 00 pairs. + while(digits[length - 1] == 0 && digits[length - 2] == 0) { + length -= 2; + } + // Read the first pair. + uint32_t pair; + int32_t pos; + if(length & 1) { + // Only "half a pair" if we have an odd number of digits. + pair = digits[0]; + pos = 1; + } else { + pair = digits[0] * 10 + digits[1]; + pos = 2; + } + pair = 11 + 2 * pair; + // Add the pairs of digits between pos and length. + int32_t shift = 8; + while(pos < length) { + if(shift == 0) { + // Every three pairs/bytes we need to store a 4-byte-primary CE + // and start with a new CE with the '0' primary lead byte. + primary |= pair; + ceBuffer.append(Collation::makeCE(primary), errorCode); + primary = numericPrimary; + shift = 16; + } else { + primary |= pair << shift; + shift -= 8; + } + pair = 11 + 2 * (digits[pos] * 10 + digits[pos + 1]); + pos += 2; + } + primary |= (pair - 1) << shift; + ceBuffer.append(Collation::makeCE(primary), errorCode); +} + +int64_t +CollationIterator::previousCE(UVector32 &offsets, UErrorCode &errorCode) { + if(ceBuffer.length > 0) { + // Return the previous buffered CE. + return ceBuffer.get(--ceBuffer.length); + } + offsets.removeAllElements(); + int32_t limitOffset = getOffset(); + UChar32 c = previousCodePoint(errorCode); + if(c < 0) { return Collation::NO_CE; } + if(data->isUnsafeBackward(c, isNumeric)) { + return previousCEUnsafe(c, offsets, errorCode); + } + // Simple, safe-backwards iteration: + // Get a CE going backwards, handle prefixes but no contractions. + uint32_t ce32 = data->getCE32(c); + const CollationData *d; + if(ce32 == Collation::FALLBACK_CE32) { + d = data->base; + ce32 = d->getCE32(c); + } else { + d = data; + } + if(Collation::isSimpleOrLongCE32(ce32)) { + return Collation::ceFromCE32(ce32); + } + appendCEsFromCE32(d, c, ce32, FALSE, errorCode); + if(U_SUCCESS(errorCode)) { + if(ceBuffer.length > 1) { + offsets.addElement(getOffset(), errorCode); + // For an expansion, the offset of each non-initial CE is the limit offset, + // consistent with forward iteration. + while(offsets.size() <= ceBuffer.length) { + offsets.addElement(limitOffset, errorCode); + }; + } + return ceBuffer.get(--ceBuffer.length); + } else { + return Collation::NO_CE_PRIMARY; + } +} + +int64_t +CollationIterator::previousCEUnsafe(UChar32 c, UVector32 &offsets, UErrorCode &errorCode) { + // We just move through the input counting safe and unsafe code points + // without collecting the unsafe-backward substring into a buffer and + // switching to it. + // This is to keep the logic simple. Otherwise we would have to handle + // prefix matching going before the backward buffer, switching + // to iteration and back, etc. + // In the most important case of iterating over a normal string, + // reading from the string itself is already maximally fast. + // The only drawback there is that after getting the CEs we always + // skip backward to the safe character rather than switching out + // of a backwardBuffer. + // But this should not be the common case for previousCE(), + // and correctness and maintainability are more important than + // complex optimizations. + // Find the first safe character before c. + int32_t numBackward = 1; + while((c = previousCodePoint(errorCode)) >= 0) { + ++numBackward; + if(!data->isUnsafeBackward(c, isNumeric)) { + break; + } + } + // Set the forward iteration limit. + // Note: This counts code points. + // We cannot enforce a limit in the middle of a surrogate pair or similar. + numCpFwd = numBackward; + // Reset the forward iterator. + cesIndex = 0; + U_ASSERT(ceBuffer.length == 0); + // Go forward and collect the CEs. + int32_t offset = getOffset(); + while(numCpFwd > 0) { + // nextCE() normally reads one code point. + // Contraction matching and digit specials read more and check numCpFwd. + --numCpFwd; + // Append one or more CEs to the ceBuffer. + (void)nextCE(errorCode); + U_ASSERT(U_FAILURE(errorCode) || ceBuffer.get(ceBuffer.length - 1) != Collation::NO_CE); + // No need to loop for getting each expansion CE from nextCE(). + cesIndex = ceBuffer.length; + // However, we need to write an offset for each CE. + // This is for CollationElementIterator::getOffset() to return + // intermediate offsets from the unsafe-backwards segment. + U_ASSERT(offsets.size() < ceBuffer.length); + offsets.addElement(offset, errorCode); + // For an expansion, the offset of each non-initial CE is the limit offset, + // consistent with forward iteration. + offset = getOffset(); + while(offsets.size() < ceBuffer.length) { + offsets.addElement(offset, errorCode); + }; + } + U_ASSERT(offsets.size() == ceBuffer.length); + // End offset corresponding to just after the unsafe-backwards segment. + offsets.addElement(offset, errorCode); + // Reset the forward iteration limit + // and move backward to before the segment for which we fetched CEs. + numCpFwd = -1; + backwardNumCodePoints(numBackward, errorCode); + // Use the collected CEs and return the last one. + cesIndex = 0; // Avoid cesIndex > ceBuffer.length when that gets decremented. + if(U_SUCCESS(errorCode)) { + return ceBuffer.get(--ceBuffer.length); + } else { + return Collation::NO_CE_PRIMARY; + } +} + +U_NAMESPACE_END + +#endif // !UCONFIG_NO_COLLATION |