summaryrefslogtreecommitdiffstats
path: root/intl/icu/source/i18n/collationbuilder.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'intl/icu/source/i18n/collationbuilder.cpp')
-rw-r--r--intl/icu/source/i18n/collationbuilder.cpp1718
1 files changed, 1718 insertions, 0 deletions
diff --git a/intl/icu/source/i18n/collationbuilder.cpp b/intl/icu/source/i18n/collationbuilder.cpp
new file mode 100644
index 000000000..0025cfc34
--- /dev/null
+++ b/intl/icu/source/i18n/collationbuilder.cpp
@@ -0,0 +1,1718 @@
+// Copyright (C) 2016 and later: Unicode, Inc. and others.
+// License & terms of use: http://www.unicode.org/copyright.html
+/*
+*******************************************************************************
+* Copyright (C) 2013-2014, International Business Machines
+* Corporation and others. All Rights Reserved.
+*******************************************************************************
+* collationbuilder.cpp
+*
+* (replaced the former ucol_bld.cpp)
+*
+* created on: 2013may06
+* created by: Markus W. Scherer
+*/
+
+#ifdef DEBUG_COLLATION_BUILDER
+#include <stdio.h>
+#endif
+
+#include "unicode/utypes.h"
+
+#if !UCONFIG_NO_COLLATION
+
+#include "unicode/caniter.h"
+#include "unicode/normalizer2.h"
+#include "unicode/tblcoll.h"
+#include "unicode/parseerr.h"
+#include "unicode/uchar.h"
+#include "unicode/ucol.h"
+#include "unicode/unistr.h"
+#include "unicode/usetiter.h"
+#include "unicode/utf16.h"
+#include "unicode/uversion.h"
+#include "cmemory.h"
+#include "collation.h"
+#include "collationbuilder.h"
+#include "collationdata.h"
+#include "collationdatabuilder.h"
+#include "collationfastlatin.h"
+#include "collationroot.h"
+#include "collationrootelements.h"
+#include "collationruleparser.h"
+#include "collationsettings.h"
+#include "collationtailoring.h"
+#include "collationweights.h"
+#include "normalizer2impl.h"
+#include "uassert.h"
+#include "ucol_imp.h"
+#include "utf16collationiterator.h"
+
+U_NAMESPACE_BEGIN
+
+namespace {
+
+class BundleImporter : public CollationRuleParser::Importer {
+public:
+ BundleImporter() {}
+ virtual ~BundleImporter();
+ virtual void getRules(
+ const char *localeID, const char *collationType,
+ UnicodeString &rules,
+ const char *&errorReason, UErrorCode &errorCode);
+};
+
+BundleImporter::~BundleImporter() {}
+
+void
+BundleImporter::getRules(
+ const char *localeID, const char *collationType,
+ UnicodeString &rules,
+ const char *& /*errorReason*/, UErrorCode &errorCode) {
+ CollationLoader::loadRules(localeID, collationType, rules, errorCode);
+}
+
+} // namespace
+
+// RuleBasedCollator implementation ---------------------------------------- ***
+
+// These methods are here, rather than in rulebasedcollator.cpp,
+// for modularization:
+// Most code using Collator does not need to build a Collator from rules.
+// By moving these constructors and helper methods to a separate file,
+// most code will not have a static dependency on the builder code.
+
+RuleBasedCollator::RuleBasedCollator()
+ : data(NULL),
+ settings(NULL),
+ tailoring(NULL),
+ cacheEntry(NULL),
+ validLocale(""),
+ explicitlySetAttributes(0),
+ actualLocaleIsSameAsValid(FALSE) {
+}
+
+RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules, UErrorCode &errorCode)
+ : data(NULL),
+ settings(NULL),
+ tailoring(NULL),
+ cacheEntry(NULL),
+ validLocale(""),
+ explicitlySetAttributes(0),
+ actualLocaleIsSameAsValid(FALSE) {
+ internalBuildTailoring(rules, UCOL_DEFAULT, UCOL_DEFAULT, NULL, NULL, errorCode);
+}
+
+RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules, ECollationStrength strength,
+ UErrorCode &errorCode)
+ : data(NULL),
+ settings(NULL),
+ tailoring(NULL),
+ cacheEntry(NULL),
+ validLocale(""),
+ explicitlySetAttributes(0),
+ actualLocaleIsSameAsValid(FALSE) {
+ internalBuildTailoring(rules, strength, UCOL_DEFAULT, NULL, NULL, errorCode);
+}
+
+RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules,
+ UColAttributeValue decompositionMode,
+ UErrorCode &errorCode)
+ : data(NULL),
+ settings(NULL),
+ tailoring(NULL),
+ cacheEntry(NULL),
+ validLocale(""),
+ explicitlySetAttributes(0),
+ actualLocaleIsSameAsValid(FALSE) {
+ internalBuildTailoring(rules, UCOL_DEFAULT, decompositionMode, NULL, NULL, errorCode);
+}
+
+RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules,
+ ECollationStrength strength,
+ UColAttributeValue decompositionMode,
+ UErrorCode &errorCode)
+ : data(NULL),
+ settings(NULL),
+ tailoring(NULL),
+ cacheEntry(NULL),
+ validLocale(""),
+ explicitlySetAttributes(0),
+ actualLocaleIsSameAsValid(FALSE) {
+ internalBuildTailoring(rules, strength, decompositionMode, NULL, NULL, errorCode);
+}
+
+RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules,
+ UParseError &parseError, UnicodeString &reason,
+ UErrorCode &errorCode)
+ : data(NULL),
+ settings(NULL),
+ tailoring(NULL),
+ cacheEntry(NULL),
+ validLocale(""),
+ explicitlySetAttributes(0),
+ actualLocaleIsSameAsValid(FALSE) {
+ internalBuildTailoring(rules, UCOL_DEFAULT, UCOL_DEFAULT, &parseError, &reason, errorCode);
+}
+
+void
+RuleBasedCollator::internalBuildTailoring(const UnicodeString &rules,
+ int32_t strength,
+ UColAttributeValue decompositionMode,
+ UParseError *outParseError, UnicodeString *outReason,
+ UErrorCode &errorCode) {
+ const CollationTailoring *base = CollationRoot::getRoot(errorCode);
+ if(U_FAILURE(errorCode)) { return; }
+ if(outReason != NULL) { outReason->remove(); }
+ CollationBuilder builder(base, errorCode);
+ UVersionInfo noVersion = { 0, 0, 0, 0 };
+ BundleImporter importer;
+ LocalPointer<CollationTailoring> t(builder.parseAndBuild(rules, noVersion,
+ &importer,
+ outParseError, errorCode));
+ if(U_FAILURE(errorCode)) {
+ const char *reason = builder.getErrorReason();
+ if(reason != NULL && outReason != NULL) {
+ *outReason = UnicodeString(reason, -1, US_INV);
+ }
+ return;
+ }
+ t->actualLocale.setToBogus();
+ adoptTailoring(t.orphan(), errorCode);
+ // Set attributes after building the collator,
+ // to keep the default settings consistent with the rule string.
+ if(strength != UCOL_DEFAULT) {
+ setAttribute(UCOL_STRENGTH, (UColAttributeValue)strength, errorCode);
+ }
+ if(decompositionMode != UCOL_DEFAULT) {
+ setAttribute(UCOL_NORMALIZATION_MODE, decompositionMode, errorCode);
+ }
+}
+
+// CollationBuilder implementation ----------------------------------------- ***
+
+// Some compilers don't care if constants are defined in the .cpp file.
+// MS Visual C++ does not like it, but gcc requires it. clang does not care.
+#ifndef _MSC_VER
+const int32_t CollationBuilder::HAS_BEFORE2;
+const int32_t CollationBuilder::HAS_BEFORE3;
+#endif
+
+CollationBuilder::CollationBuilder(const CollationTailoring *b, UErrorCode &errorCode)
+ : nfd(*Normalizer2::getNFDInstance(errorCode)),
+ fcd(*Normalizer2Factory::getFCDInstance(errorCode)),
+ nfcImpl(*Normalizer2Factory::getNFCImpl(errorCode)),
+ base(b),
+ baseData(b->data),
+ rootElements(b->data->rootElements, b->data->rootElementsLength),
+ variableTop(0),
+ dataBuilder(new CollationDataBuilder(errorCode)), fastLatinEnabled(TRUE),
+ errorReason(NULL),
+ cesLength(0),
+ rootPrimaryIndexes(errorCode), nodes(errorCode) {
+ nfcImpl.ensureCanonIterData(errorCode);
+ if(U_FAILURE(errorCode)) {
+ errorReason = "CollationBuilder fields initialization failed";
+ return;
+ }
+ if(dataBuilder == NULL) {
+ errorCode = U_MEMORY_ALLOCATION_ERROR;
+ return;
+ }
+ dataBuilder->initForTailoring(baseData, errorCode);
+ if(U_FAILURE(errorCode)) {
+ errorReason = "CollationBuilder initialization failed";
+ }
+}
+
+CollationBuilder::~CollationBuilder() {
+ delete dataBuilder;
+}
+
+CollationTailoring *
+CollationBuilder::parseAndBuild(const UnicodeString &ruleString,
+ const UVersionInfo rulesVersion,
+ CollationRuleParser::Importer *importer,
+ UParseError *outParseError,
+ UErrorCode &errorCode) {
+ if(U_FAILURE(errorCode)) { return NULL; }
+ if(baseData->rootElements == NULL) {
+ errorCode = U_MISSING_RESOURCE_ERROR;
+ errorReason = "missing root elements data, tailoring not supported";
+ return NULL;
+ }
+ LocalPointer<CollationTailoring> tailoring(new CollationTailoring(base->settings));
+ if(tailoring.isNull() || tailoring->isBogus()) {
+ errorCode = U_MEMORY_ALLOCATION_ERROR;
+ return NULL;
+ }
+ CollationRuleParser parser(baseData, errorCode);
+ if(U_FAILURE(errorCode)) { return NULL; }
+ // Note: This always bases &[last variable] and &[first regular]
+ // on the root collator's maxVariable/variableTop.
+ // If we wanted this to change after [maxVariable x], then we would keep
+ // the tailoring.settings pointer here and read its variableTop when we need it.
+ // See http://unicode.org/cldr/trac/ticket/6070
+ variableTop = base->settings->variableTop;
+ parser.setSink(this);
+ parser.setImporter(importer);
+ CollationSettings &ownedSettings = *SharedObject::copyOnWrite(tailoring->settings);
+ parser.parse(ruleString, ownedSettings, outParseError, errorCode);
+ errorReason = parser.getErrorReason();
+ if(U_FAILURE(errorCode)) { return NULL; }
+ if(dataBuilder->hasMappings()) {
+ makeTailoredCEs(errorCode);
+ closeOverComposites(errorCode);
+ finalizeCEs(errorCode);
+ // Copy all of ASCII, and Latin-1 letters, into each tailoring.
+ optimizeSet.add(0, 0x7f);
+ optimizeSet.add(0xc0, 0xff);
+ // Hangul is decomposed on the fly during collation,
+ // and the tailoring data is always built with HANGUL_TAG specials.
+ optimizeSet.remove(Hangul::HANGUL_BASE, Hangul::HANGUL_END);
+ dataBuilder->optimize(optimizeSet, errorCode);
+ tailoring->ensureOwnedData(errorCode);
+ if(U_FAILURE(errorCode)) { return NULL; }
+ if(fastLatinEnabled) { dataBuilder->enableFastLatin(); }
+ dataBuilder->build(*tailoring->ownedData, errorCode);
+ tailoring->builder = dataBuilder;
+ dataBuilder = NULL;
+ } else {
+ tailoring->data = baseData;
+ }
+ if(U_FAILURE(errorCode)) { return NULL; }
+ ownedSettings.fastLatinOptions = CollationFastLatin::getOptions(
+ tailoring->data, ownedSettings,
+ ownedSettings.fastLatinPrimaries, UPRV_LENGTHOF(ownedSettings.fastLatinPrimaries));
+ tailoring->rules = ruleString;
+ tailoring->rules.getTerminatedBuffer(); // ensure NUL-termination
+ tailoring->setVersion(base->version, rulesVersion);
+ return tailoring.orphan();
+}
+
+void
+CollationBuilder::addReset(int32_t strength, const UnicodeString &str,
+ const char *&parserErrorReason, UErrorCode &errorCode) {
+ if(U_FAILURE(errorCode)) { return; }
+ U_ASSERT(!str.isEmpty());
+ if(str.charAt(0) == CollationRuleParser::POS_LEAD) {
+ ces[0] = getSpecialResetPosition(str, parserErrorReason, errorCode);
+ cesLength = 1;
+ if(U_FAILURE(errorCode)) { return; }
+ U_ASSERT((ces[0] & Collation::CASE_AND_QUATERNARY_MASK) == 0);
+ } else {
+ // normal reset to a character or string
+ UnicodeString nfdString = nfd.normalize(str, errorCode);
+ if(U_FAILURE(errorCode)) {
+ parserErrorReason = "normalizing the reset position";
+ return;
+ }
+ cesLength = dataBuilder->getCEs(nfdString, ces, 0);
+ if(cesLength > Collation::MAX_EXPANSION_LENGTH) {
+ errorCode = U_ILLEGAL_ARGUMENT_ERROR;
+ parserErrorReason = "reset position maps to too many collation elements (more than 31)";
+ return;
+ }
+ }
+ if(strength == UCOL_IDENTICAL) { return; } // simple reset-at-position
+
+ // &[before strength]position
+ U_ASSERT(UCOL_PRIMARY <= strength && strength <= UCOL_TERTIARY);
+ int32_t index = findOrInsertNodeForCEs(strength, parserErrorReason, errorCode);
+ if(U_FAILURE(errorCode)) { return; }
+
+ int64_t node = nodes.elementAti(index);
+ // If the index is for a "weaker" node,
+ // then skip backwards over this and further "weaker" nodes.
+ while(strengthFromNode(node) > strength) {
+ index = previousIndexFromNode(node);
+ node = nodes.elementAti(index);
+ }
+
+ // Find or insert a node whose index we will put into a temporary CE.
+ if(strengthFromNode(node) == strength && isTailoredNode(node)) {
+ // Reset to just before this same-strength tailored node.
+ index = previousIndexFromNode(node);
+ } else if(strength == UCOL_PRIMARY) {
+ // root primary node (has no previous index)
+ uint32_t p = weight32FromNode(node);
+ if(p == 0) {
+ errorCode = U_UNSUPPORTED_ERROR;
+ parserErrorReason = "reset primary-before ignorable not possible";
+ return;
+ }
+ if(p <= rootElements.getFirstPrimary()) {
+ // There is no primary gap between ignorables and the space-first-primary.
+ errorCode = U_UNSUPPORTED_ERROR;
+ parserErrorReason = "reset primary-before first non-ignorable not supported";
+ return;
+ }
+ if(p == Collation::FIRST_TRAILING_PRIMARY) {
+ // We do not support tailoring to an unassigned-implicit CE.
+ errorCode = U_UNSUPPORTED_ERROR;
+ parserErrorReason = "reset primary-before [first trailing] not supported";
+ return;
+ }
+ p = rootElements.getPrimaryBefore(p, baseData->isCompressiblePrimary(p));
+ index = findOrInsertNodeForPrimary(p, errorCode);
+ // Go to the last node in this list:
+ // Tailor after the last node between adjacent root nodes.
+ for(;;) {
+ node = nodes.elementAti(index);
+ int32_t nextIndex = nextIndexFromNode(node);
+ if(nextIndex == 0) { break; }
+ index = nextIndex;
+ }
+ } else {
+ // &[before 2] or &[before 3]
+ index = findCommonNode(index, UCOL_SECONDARY);
+ if(strength >= UCOL_TERTIARY) {
+ index = findCommonNode(index, UCOL_TERTIARY);
+ }
+ // findCommonNode() stayed on the stronger node or moved to
+ // an explicit common-weight node of the reset-before strength.
+ node = nodes.elementAti(index);
+ if(strengthFromNode(node) == strength) {
+ // Found a same-strength node with an explicit weight.
+ uint32_t weight16 = weight16FromNode(node);
+ if(weight16 == 0) {
+ errorCode = U_UNSUPPORTED_ERROR;
+ if(strength == UCOL_SECONDARY) {
+ parserErrorReason = "reset secondary-before secondary ignorable not possible";
+ } else {
+ parserErrorReason = "reset tertiary-before completely ignorable not possible";
+ }
+ return;
+ }
+ U_ASSERT(weight16 > Collation::BEFORE_WEIGHT16);
+ // Reset to just before this node.
+ // Insert the preceding same-level explicit weight if it is not there already.
+ // Which explicit weight immediately precedes this one?
+ weight16 = getWeight16Before(index, node, strength);
+ // Does this preceding weight have a node?
+ uint32_t previousWeight16;
+ int32_t previousIndex = previousIndexFromNode(node);
+ for(int32_t i = previousIndex;; i = previousIndexFromNode(node)) {
+ node = nodes.elementAti(i);
+ int32_t previousStrength = strengthFromNode(node);
+ if(previousStrength < strength) {
+ U_ASSERT(weight16 >= Collation::COMMON_WEIGHT16 || i == previousIndex);
+ // Either the reset element has an above-common weight and
+ // the parent node provides the implied common weight,
+ // or the reset element has a weight<=common in the node
+ // right after the parent, and we need to insert the preceding weight.
+ previousWeight16 = Collation::COMMON_WEIGHT16;
+ break;
+ } else if(previousStrength == strength && !isTailoredNode(node)) {
+ previousWeight16 = weight16FromNode(node);
+ break;
+ }
+ // Skip weaker nodes and same-level tailored nodes.
+ }
+ if(previousWeight16 == weight16) {
+ // The preceding weight has a node,
+ // maybe with following weaker or tailored nodes.
+ // Reset to the last of them.
+ index = previousIndex;
+ } else {
+ // Insert a node with the preceding weight, reset to that.
+ node = nodeFromWeight16(weight16) | nodeFromStrength(strength);
+ index = insertNodeBetween(previousIndex, index, node, errorCode);
+ }
+ } else {
+ // Found a stronger node with implied strength-common weight.
+ uint32_t weight16 = getWeight16Before(index, node, strength);
+ index = findOrInsertWeakNode(index, weight16, strength, errorCode);
+ }
+ // Strength of the temporary CE = strength of its reset position.
+ // Code above raises an error if the before-strength is stronger.
+ strength = ceStrength(ces[cesLength - 1]);
+ }
+ if(U_FAILURE(errorCode)) {
+ parserErrorReason = "inserting reset position for &[before n]";
+ return;
+ }
+ ces[cesLength - 1] = tempCEFromIndexAndStrength(index, strength);
+}
+
+uint32_t
+CollationBuilder::getWeight16Before(int32_t index, int64_t node, int32_t level) {
+ U_ASSERT(strengthFromNode(node) < level || !isTailoredNode(node));
+ // Collect the root CE weights if this node is for a root CE.
+ // If it is not, then return the low non-primary boundary for a tailored CE.
+ uint32_t t;
+ if(strengthFromNode(node) == UCOL_TERTIARY) {
+ t = weight16FromNode(node);
+ } else {
+ t = Collation::COMMON_WEIGHT16; // Stronger node with implied common weight.
+ }
+ while(strengthFromNode(node) > UCOL_SECONDARY) {
+ index = previousIndexFromNode(node);
+ node = nodes.elementAti(index);
+ }
+ if(isTailoredNode(node)) {
+ return Collation::BEFORE_WEIGHT16;
+ }
+ uint32_t s;
+ if(strengthFromNode(node) == UCOL_SECONDARY) {
+ s = weight16FromNode(node);
+ } else {
+ s = Collation::COMMON_WEIGHT16; // Stronger node with implied common weight.
+ }
+ while(strengthFromNode(node) > UCOL_PRIMARY) {
+ index = previousIndexFromNode(node);
+ node = nodes.elementAti(index);
+ }
+ if(isTailoredNode(node)) {
+ return Collation::BEFORE_WEIGHT16;
+ }
+ // [p, s, t] is a root CE. Return the preceding weight for the requested level.
+ uint32_t p = weight32FromNode(node);
+ uint32_t weight16;
+ if(level == UCOL_SECONDARY) {
+ weight16 = rootElements.getSecondaryBefore(p, s);
+ } else {
+ weight16 = rootElements.getTertiaryBefore(p, s, t);
+ U_ASSERT((weight16 & ~Collation::ONLY_TERTIARY_MASK) == 0);
+ }
+ return weight16;
+}
+
+int64_t
+CollationBuilder::getSpecialResetPosition(const UnicodeString &str,
+ const char *&parserErrorReason, UErrorCode &errorCode) {
+ U_ASSERT(str.length() == 2);
+ int64_t ce;
+ int32_t strength = UCOL_PRIMARY;
+ UBool isBoundary = FALSE;
+ UChar32 pos = str.charAt(1) - CollationRuleParser::POS_BASE;
+ U_ASSERT(0 <= pos && pos <= CollationRuleParser::LAST_TRAILING);
+ switch(pos) {
+ case CollationRuleParser::FIRST_TERTIARY_IGNORABLE:
+ // Quaternary CEs are not supported.
+ // Non-zero quaternary weights are possible only on tertiary or stronger CEs.
+ return 0;
+ case CollationRuleParser::LAST_TERTIARY_IGNORABLE:
+ return 0;
+ case CollationRuleParser::FIRST_SECONDARY_IGNORABLE: {
+ // Look for a tailored tertiary node after [0, 0, 0].
+ int32_t index = findOrInsertNodeForRootCE(0, UCOL_TERTIARY, errorCode);
+ if(U_FAILURE(errorCode)) { return 0; }
+ int64_t node = nodes.elementAti(index);
+ if((index = nextIndexFromNode(node)) != 0) {
+ node = nodes.elementAti(index);
+ U_ASSERT(strengthFromNode(node) <= UCOL_TERTIARY);
+ if(isTailoredNode(node) && strengthFromNode(node) == UCOL_TERTIARY) {
+ return tempCEFromIndexAndStrength(index, UCOL_TERTIARY);
+ }
+ }
+ return rootElements.getFirstTertiaryCE();
+ // No need to look for nodeHasAnyBefore() on a tertiary node.
+ }
+ case CollationRuleParser::LAST_SECONDARY_IGNORABLE:
+ ce = rootElements.getLastTertiaryCE();
+ strength = UCOL_TERTIARY;
+ break;
+ case CollationRuleParser::FIRST_PRIMARY_IGNORABLE: {
+ // Look for a tailored secondary node after [0, 0, *].
+ int32_t index = findOrInsertNodeForRootCE(0, UCOL_SECONDARY, errorCode);
+ if(U_FAILURE(errorCode)) { return 0; }
+ int64_t node = nodes.elementAti(index);
+ while((index = nextIndexFromNode(node)) != 0) {
+ node = nodes.elementAti(index);
+ strength = strengthFromNode(node);
+ if(strength < UCOL_SECONDARY) { break; }
+ if(strength == UCOL_SECONDARY) {
+ if(isTailoredNode(node)) {
+ if(nodeHasBefore3(node)) {
+ index = nextIndexFromNode(nodes.elementAti(nextIndexFromNode(node)));
+ U_ASSERT(isTailoredNode(nodes.elementAti(index)));
+ }
+ return tempCEFromIndexAndStrength(index, UCOL_SECONDARY);
+ } else {
+ break;
+ }
+ }
+ }
+ ce = rootElements.getFirstSecondaryCE();
+ strength = UCOL_SECONDARY;
+ break;
+ }
+ case CollationRuleParser::LAST_PRIMARY_IGNORABLE:
+ ce = rootElements.getLastSecondaryCE();
+ strength = UCOL_SECONDARY;
+ break;
+ case CollationRuleParser::FIRST_VARIABLE:
+ ce = rootElements.getFirstPrimaryCE();
+ isBoundary = TRUE; // FractionalUCA.txt: FDD1 00A0, SPACE first primary
+ break;
+ case CollationRuleParser::LAST_VARIABLE:
+ ce = rootElements.lastCEWithPrimaryBefore(variableTop + 1);
+ break;
+ case CollationRuleParser::FIRST_REGULAR:
+ ce = rootElements.firstCEWithPrimaryAtLeast(variableTop + 1);
+ isBoundary = TRUE; // FractionalUCA.txt: FDD1 263A, SYMBOL first primary
+ break;
+ case CollationRuleParser::LAST_REGULAR:
+ // Use the Hani-first-primary rather than the actual last "regular" CE before it,
+ // for backward compatibility with behavior before the introduction of
+ // script-first-primary CEs in the root collator.
+ ce = rootElements.firstCEWithPrimaryAtLeast(
+ baseData->getFirstPrimaryForGroup(USCRIPT_HAN));
+ break;
+ case CollationRuleParser::FIRST_IMPLICIT:
+ ce = baseData->getSingleCE(0x4e00, errorCode);
+ break;
+ case CollationRuleParser::LAST_IMPLICIT:
+ // We do not support tailoring to an unassigned-implicit CE.
+ errorCode = U_UNSUPPORTED_ERROR;
+ parserErrorReason = "reset to [last implicit] not supported";
+ return 0;
+ case CollationRuleParser::FIRST_TRAILING:
+ ce = Collation::makeCE(Collation::FIRST_TRAILING_PRIMARY);
+ isBoundary = TRUE; // trailing first primary (there is no mapping for it)
+ break;
+ case CollationRuleParser::LAST_TRAILING:
+ errorCode = U_ILLEGAL_ARGUMENT_ERROR;
+ parserErrorReason = "LDML forbids tailoring to U+FFFF";
+ return 0;
+ default:
+ U_ASSERT(FALSE);
+ return 0;
+ }
+
+ int32_t index = findOrInsertNodeForRootCE(ce, strength, errorCode);
+ if(U_FAILURE(errorCode)) { return 0; }
+ int64_t node = nodes.elementAti(index);
+ if((pos & 1) == 0) {
+ // even pos = [first xyz]
+ if(!nodeHasAnyBefore(node) && isBoundary) {
+ // A <group> first primary boundary is artificially added to FractionalUCA.txt.
+ // It is reachable via its special contraction, but is not normally used.
+ // Find the first character tailored after the boundary CE,
+ // or the first real root CE after it.
+ if((index = nextIndexFromNode(node)) != 0) {
+ // If there is a following node, then it must be tailored
+ // because there are no root CEs with a boundary primary
+ // and non-common secondary/tertiary weights.
+ node = nodes.elementAti(index);
+ U_ASSERT(isTailoredNode(node));
+ ce = tempCEFromIndexAndStrength(index, strength);
+ } else {
+ U_ASSERT(strength == UCOL_PRIMARY);
+ uint32_t p = (uint32_t)(ce >> 32);
+ int32_t pIndex = rootElements.findPrimary(p);
+ UBool isCompressible = baseData->isCompressiblePrimary(p);
+ p = rootElements.getPrimaryAfter(p, pIndex, isCompressible);
+ ce = Collation::makeCE(p);
+ index = findOrInsertNodeForRootCE(ce, UCOL_PRIMARY, errorCode);
+ if(U_FAILURE(errorCode)) { return 0; }
+ node = nodes.elementAti(index);
+ }
+ }
+ if(nodeHasAnyBefore(node)) {
+ // Get the first node that was tailored before this one at a weaker strength.
+ if(nodeHasBefore2(node)) {
+ index = nextIndexFromNode(nodes.elementAti(nextIndexFromNode(node)));
+ node = nodes.elementAti(index);
+ }
+ if(nodeHasBefore3(node)) {
+ index = nextIndexFromNode(nodes.elementAti(nextIndexFromNode(node)));
+ }
+ U_ASSERT(isTailoredNode(nodes.elementAti(index)));
+ ce = tempCEFromIndexAndStrength(index, strength);
+ }
+ } else {
+ // odd pos = [last xyz]
+ // Find the last node that was tailored after the [last xyz]
+ // at a strength no greater than the position's strength.
+ for(;;) {
+ int32_t nextIndex = nextIndexFromNode(node);
+ if(nextIndex == 0) { break; }
+ int64_t nextNode = nodes.elementAti(nextIndex);
+ if(strengthFromNode(nextNode) < strength) { break; }
+ index = nextIndex;
+ node = nextNode;
+ }
+ // Do not make a temporary CE for a root node.
+ // This last node might be the node for the root CE itself,
+ // or a node with a common secondary or tertiary weight.
+ if(isTailoredNode(node)) {
+ ce = tempCEFromIndexAndStrength(index, strength);
+ }
+ }
+ return ce;
+}
+
+void
+CollationBuilder::addRelation(int32_t strength, const UnicodeString &prefix,
+ const UnicodeString &str, const UnicodeString &extension,
+ const char *&parserErrorReason, UErrorCode &errorCode) {
+ if(U_FAILURE(errorCode)) { return; }
+ UnicodeString nfdPrefix;
+ if(!prefix.isEmpty()) {
+ nfd.normalize(prefix, nfdPrefix, errorCode);
+ if(U_FAILURE(errorCode)) {
+ parserErrorReason = "normalizing the relation prefix";
+ return;
+ }
+ }
+ UnicodeString nfdString = nfd.normalize(str, errorCode);
+ if(U_FAILURE(errorCode)) {
+ parserErrorReason = "normalizing the relation string";
+ return;
+ }
+
+ // The runtime code decomposes Hangul syllables on the fly,
+ // with recursive processing but without making the Jamo pieces visible for matching.
+ // It does not work with certain types of contextual mappings.
+ int32_t nfdLength = nfdString.length();
+ if(nfdLength >= 2) {
+ UChar c = nfdString.charAt(0);
+ if(Hangul::isJamoL(c) || Hangul::isJamoV(c)) {
+ // While handling a Hangul syllable, contractions starting with Jamo L or V
+ // would not see the following Jamo of that syllable.
+ errorCode = U_UNSUPPORTED_ERROR;
+ parserErrorReason = "contractions starting with conjoining Jamo L or V not supported";
+ return;
+ }
+ c = nfdString.charAt(nfdLength - 1);
+ if(Hangul::isJamoL(c) ||
+ (Hangul::isJamoV(c) && Hangul::isJamoL(nfdString.charAt(nfdLength - 2)))) {
+ // A contraction ending with Jamo L or L+V would require
+ // generating Hangul syllables in addTailComposites() (588 for a Jamo L),
+ // or decomposing a following Hangul syllable on the fly, during contraction matching.
+ errorCode = U_UNSUPPORTED_ERROR;
+ parserErrorReason = "contractions ending with conjoining Jamo L or L+V not supported";
+ return;
+ }
+ // A Hangul syllable completely inside a contraction is ok.
+ }
+ // Note: If there is a prefix, then the parser checked that
+ // both the prefix and the string beging with NFC boundaries (not Jamo V or T).
+ // Therefore: prefix.isEmpty() || !isJamoVOrT(nfdString.charAt(0))
+ // (While handling a Hangul syllable, prefixes on Jamo V or T
+ // would not see the previous Jamo of that syllable.)
+
+ if(strength != UCOL_IDENTICAL) {
+ // Find the node index after which we insert the new tailored node.
+ int32_t index = findOrInsertNodeForCEs(strength, parserErrorReason, errorCode);
+ U_ASSERT(cesLength > 0);
+ int64_t ce = ces[cesLength - 1];
+ if(strength == UCOL_PRIMARY && !isTempCE(ce) && (uint32_t)(ce >> 32) == 0) {
+ // There is no primary gap between ignorables and the space-first-primary.
+ errorCode = U_UNSUPPORTED_ERROR;
+ parserErrorReason = "tailoring primary after ignorables not supported";
+ return;
+ }
+ if(strength == UCOL_QUATERNARY && ce == 0) {
+ // The CE data structure does not support non-zero quaternary weights
+ // on tertiary ignorables.
+ errorCode = U_UNSUPPORTED_ERROR;
+ parserErrorReason = "tailoring quaternary after tertiary ignorables not supported";
+ return;
+ }
+ // Insert the new tailored node.
+ index = insertTailoredNodeAfter(index, strength, errorCode);
+ if(U_FAILURE(errorCode)) {
+ parserErrorReason = "modifying collation elements";
+ return;
+ }
+ // Strength of the temporary CE:
+ // The new relation may yield a stronger CE but not a weaker one.
+ int32_t tempStrength = ceStrength(ce);
+ if(strength < tempStrength) { tempStrength = strength; }
+ ces[cesLength - 1] = tempCEFromIndexAndStrength(index, tempStrength);
+ }
+
+ setCaseBits(nfdString, parserErrorReason, errorCode);
+ if(U_FAILURE(errorCode)) { return; }
+
+ int32_t cesLengthBeforeExtension = cesLength;
+ if(!extension.isEmpty()) {
+ UnicodeString nfdExtension = nfd.normalize(extension, errorCode);
+ if(U_FAILURE(errorCode)) {
+ parserErrorReason = "normalizing the relation extension";
+ return;
+ }
+ cesLength = dataBuilder->getCEs(nfdExtension, ces, cesLength);
+ if(cesLength > Collation::MAX_EXPANSION_LENGTH) {
+ errorCode = U_ILLEGAL_ARGUMENT_ERROR;
+ parserErrorReason =
+ "extension string adds too many collation elements (more than 31 total)";
+ return;
+ }
+ }
+ uint32_t ce32 = Collation::UNASSIGNED_CE32;
+ if((prefix != nfdPrefix || str != nfdString) &&
+ !ignorePrefix(prefix, errorCode) && !ignoreString(str, errorCode)) {
+ // Map from the original input to the CEs.
+ // We do this in case the canonical closure is incomplete,
+ // so that it is possible to explicitly provide the missing mappings.
+ ce32 = addIfDifferent(prefix, str, ces, cesLength, ce32, errorCode);
+ }
+ addWithClosure(nfdPrefix, nfdString, ces, cesLength, ce32, errorCode);
+ if(U_FAILURE(errorCode)) {
+ parserErrorReason = "writing collation elements";
+ return;
+ }
+ cesLength = cesLengthBeforeExtension;
+}
+
+int32_t
+CollationBuilder::findOrInsertNodeForCEs(int32_t strength, const char *&parserErrorReason,
+ UErrorCode &errorCode) {
+ if(U_FAILURE(errorCode)) { return 0; }
+ U_ASSERT(UCOL_PRIMARY <= strength && strength <= UCOL_QUATERNARY);
+
+ // Find the last CE that is at least as "strong" as the requested difference.
+ // Note: Stronger is smaller (UCOL_PRIMARY=0).
+ int64_t ce;
+ for(;; --cesLength) {
+ if(cesLength == 0) {
+ ce = ces[0] = 0;
+ cesLength = 1;
+ break;
+ } else {
+ ce = ces[cesLength - 1];
+ }
+ if(ceStrength(ce) <= strength) { break; }
+ }
+
+ if(isTempCE(ce)) {
+ // No need to findCommonNode() here for lower levels
+ // because insertTailoredNodeAfter() will do that anyway.
+ return indexFromTempCE(ce);
+ }
+
+ // root CE
+ if((uint8_t)(ce >> 56) == Collation::UNASSIGNED_IMPLICIT_BYTE) {
+ errorCode = U_UNSUPPORTED_ERROR;
+ parserErrorReason = "tailoring relative to an unassigned code point not supported";
+ return 0;
+ }
+ return findOrInsertNodeForRootCE(ce, strength, errorCode);
+}
+
+int32_t
+CollationBuilder::findOrInsertNodeForRootCE(int64_t ce, int32_t strength, UErrorCode &errorCode) {
+ if(U_FAILURE(errorCode)) { return 0; }
+ U_ASSERT((uint8_t)(ce >> 56) != Collation::UNASSIGNED_IMPLICIT_BYTE);
+
+ // Find or insert the node for each of the root CE's weights,
+ // down to the requested level/strength.
+ // Root CEs must have common=zero quaternary weights (for which we never insert any nodes).
+ U_ASSERT((ce & 0xc0) == 0);
+ int32_t index = findOrInsertNodeForPrimary((uint32_t)(ce >> 32), errorCode);
+ if(strength >= UCOL_SECONDARY) {
+ uint32_t lower32 = (uint32_t)ce;
+ index = findOrInsertWeakNode(index, lower32 >> 16, UCOL_SECONDARY, errorCode);
+ if(strength >= UCOL_TERTIARY) {
+ index = findOrInsertWeakNode(index, lower32 & Collation::ONLY_TERTIARY_MASK,
+ UCOL_TERTIARY, errorCode);
+ }
+ }
+ return index;
+}
+
+namespace {
+
+/**
+ * Like Java Collections.binarySearch(List, key, Comparator).
+ *
+ * @return the index>=0 where the item was found,
+ * or the index<0 for inserting the string at ~index in sorted order
+ * (index into rootPrimaryIndexes)
+ */
+int32_t
+binarySearchForRootPrimaryNode(const int32_t *rootPrimaryIndexes, int32_t length,
+ const int64_t *nodes, uint32_t p) {
+ if(length == 0) { return ~0; }
+ int32_t start = 0;
+ int32_t limit = length;
+ for (;;) {
+ int32_t i = (start + limit) / 2;
+ int64_t node = nodes[rootPrimaryIndexes[i]];
+ uint32_t nodePrimary = (uint32_t)(node >> 32); // weight32FromNode(node)
+ if (p == nodePrimary) {
+ return i;
+ } else if (p < nodePrimary) {
+ if (i == start) {
+ return ~start; // insert s before i
+ }
+ limit = i;
+ } else {
+ if (i == start) {
+ return ~(start + 1); // insert s after i
+ }
+ start = i;
+ }
+ }
+}
+
+} // namespace
+
+int32_t
+CollationBuilder::findOrInsertNodeForPrimary(uint32_t p, UErrorCode &errorCode) {
+ if(U_FAILURE(errorCode)) { return 0; }
+
+ int32_t rootIndex = binarySearchForRootPrimaryNode(
+ rootPrimaryIndexes.getBuffer(), rootPrimaryIndexes.size(), nodes.getBuffer(), p);
+ if(rootIndex >= 0) {
+ return rootPrimaryIndexes.elementAti(rootIndex);
+ } else {
+ // Start a new list of nodes with this primary.
+ int32_t index = nodes.size();
+ nodes.addElement(nodeFromWeight32(p), errorCode);
+ rootPrimaryIndexes.insertElementAt(index, ~rootIndex, errorCode);
+ return index;
+ }
+}
+
+int32_t
+CollationBuilder::findOrInsertWeakNode(int32_t index, uint32_t weight16, int32_t level, UErrorCode &errorCode) {
+ if(U_FAILURE(errorCode)) { return 0; }
+ U_ASSERT(0 <= index && index < nodes.size());
+ U_ASSERT(UCOL_SECONDARY <= level && level <= UCOL_TERTIARY);
+
+ if(weight16 == Collation::COMMON_WEIGHT16) {
+ return findCommonNode(index, level);
+ }
+
+ // If this will be the first below-common weight for the parent node,
+ // then we will also need to insert a common weight after it.
+ int64_t node = nodes.elementAti(index);
+ U_ASSERT(strengthFromNode(node) < level); // parent node is stronger
+ if(weight16 != 0 && weight16 < Collation::COMMON_WEIGHT16) {
+ int32_t hasThisLevelBefore = level == UCOL_SECONDARY ? HAS_BEFORE2 : HAS_BEFORE3;
+ if((node & hasThisLevelBefore) == 0) {
+ // The parent node has an implied level-common weight.
+ int64_t commonNode =
+ nodeFromWeight16(Collation::COMMON_WEIGHT16) | nodeFromStrength(level);
+ if(level == UCOL_SECONDARY) {
+ // Move the HAS_BEFORE3 flag from the parent node
+ // to the new secondary common node.
+ commonNode |= node & HAS_BEFORE3;
+ node &= ~(int64_t)HAS_BEFORE3;
+ }
+ nodes.setElementAt(node | hasThisLevelBefore, index);
+ // Insert below-common-weight node.
+ int32_t nextIndex = nextIndexFromNode(node);
+ node = nodeFromWeight16(weight16) | nodeFromStrength(level);
+ index = insertNodeBetween(index, nextIndex, node, errorCode);
+ // Insert common-weight node.
+ insertNodeBetween(index, nextIndex, commonNode, errorCode);
+ // Return index of below-common-weight node.
+ return index;
+ }
+ }
+
+ // Find the root CE's weight for this level.
+ // Postpone insertion if not found:
+ // Insert the new root node before the next stronger node,
+ // or before the next root node with the same strength and a larger weight.
+ int32_t nextIndex;
+ while((nextIndex = nextIndexFromNode(node)) != 0) {
+ node = nodes.elementAti(nextIndex);
+ int32_t nextStrength = strengthFromNode(node);
+ if(nextStrength <= level) {
+ // Insert before a stronger node.
+ if(nextStrength < level) { break; }
+ // nextStrength == level
+ if(!isTailoredNode(node)) {
+ uint32_t nextWeight16 = weight16FromNode(node);
+ if(nextWeight16 == weight16) {
+ // Found the node for the root CE up to this level.
+ return nextIndex;
+ }
+ // Insert before a node with a larger same-strength weight.
+ if(nextWeight16 > weight16) { break; }
+ }
+ }
+ // Skip the next node.
+ index = nextIndex;
+ }
+ node = nodeFromWeight16(weight16) | nodeFromStrength(level);
+ return insertNodeBetween(index, nextIndex, node, errorCode);
+}
+
+int32_t
+CollationBuilder::insertTailoredNodeAfter(int32_t index, int32_t strength, UErrorCode &errorCode) {
+ if(U_FAILURE(errorCode)) { return 0; }
+ U_ASSERT(0 <= index && index < nodes.size());
+ if(strength >= UCOL_SECONDARY) {
+ index = findCommonNode(index, UCOL_SECONDARY);
+ if(strength >= UCOL_TERTIARY) {
+ index = findCommonNode(index, UCOL_TERTIARY);
+ }
+ }
+ // Postpone insertion:
+ // Insert the new node before the next one with a strength at least as strong.
+ int64_t node = nodes.elementAti(index);
+ int32_t nextIndex;
+ while((nextIndex = nextIndexFromNode(node)) != 0) {
+ node = nodes.elementAti(nextIndex);
+ if(strengthFromNode(node) <= strength) { break; }
+ // Skip the next node which has a weaker (larger) strength than the new one.
+ index = nextIndex;
+ }
+ node = IS_TAILORED | nodeFromStrength(strength);
+ return insertNodeBetween(index, nextIndex, node, errorCode);
+}
+
+int32_t
+CollationBuilder::insertNodeBetween(int32_t index, int32_t nextIndex, int64_t node,
+ UErrorCode &errorCode) {
+ if(U_FAILURE(errorCode)) { return 0; }
+ U_ASSERT(previousIndexFromNode(node) == 0);
+ U_ASSERT(nextIndexFromNode(node) == 0);
+ U_ASSERT(nextIndexFromNode(nodes.elementAti(index)) == nextIndex);
+ // Append the new node and link it to the existing nodes.
+ int32_t newIndex = nodes.size();
+ node |= nodeFromPreviousIndex(index) | nodeFromNextIndex(nextIndex);
+ nodes.addElement(node, errorCode);
+ if(U_FAILURE(errorCode)) { return 0; }
+ // nodes[index].nextIndex = newIndex
+ node = nodes.elementAti(index);
+ nodes.setElementAt(changeNodeNextIndex(node, newIndex), index);
+ // nodes[nextIndex].previousIndex = newIndex
+ if(nextIndex != 0) {
+ node = nodes.elementAti(nextIndex);
+ nodes.setElementAt(changeNodePreviousIndex(node, newIndex), nextIndex);
+ }
+ return newIndex;
+}
+
+int32_t
+CollationBuilder::findCommonNode(int32_t index, int32_t strength) const {
+ U_ASSERT(UCOL_SECONDARY <= strength && strength <= UCOL_TERTIARY);
+ int64_t node = nodes.elementAti(index);
+ if(strengthFromNode(node) >= strength) {
+ // The current node is no stronger.
+ return index;
+ }
+ if(strength == UCOL_SECONDARY ? !nodeHasBefore2(node) : !nodeHasBefore3(node)) {
+ // The current node implies the strength-common weight.
+ return index;
+ }
+ index = nextIndexFromNode(node);
+ node = nodes.elementAti(index);
+ U_ASSERT(!isTailoredNode(node) && strengthFromNode(node) == strength &&
+ weight16FromNode(node) < Collation::COMMON_WEIGHT16);
+ // Skip to the explicit common node.
+ do {
+ index = nextIndexFromNode(node);
+ node = nodes.elementAti(index);
+ U_ASSERT(strengthFromNode(node) >= strength);
+ } while(isTailoredNode(node) || strengthFromNode(node) > strength ||
+ weight16FromNode(node) < Collation::COMMON_WEIGHT16);
+ U_ASSERT(weight16FromNode(node) == Collation::COMMON_WEIGHT16);
+ return index;
+}
+
+void
+CollationBuilder::setCaseBits(const UnicodeString &nfdString,
+ const char *&parserErrorReason, UErrorCode &errorCode) {
+ if(U_FAILURE(errorCode)) { return; }
+ int32_t numTailoredPrimaries = 0;
+ for(int32_t i = 0; i < cesLength; ++i) {
+ if(ceStrength(ces[i]) == UCOL_PRIMARY) { ++numTailoredPrimaries; }
+ }
+ // We should not be able to get too many case bits because
+ // cesLength<=31==MAX_EXPANSION_LENGTH.
+ // 31 pairs of case bits fit into an int64_t without setting its sign bit.
+ U_ASSERT(numTailoredPrimaries <= 31);
+
+ int64_t cases = 0;
+ if(numTailoredPrimaries > 0) {
+ const UChar *s = nfdString.getBuffer();
+ UTF16CollationIterator baseCEs(baseData, FALSE, s, s, s + nfdString.length());
+ int32_t baseCEsLength = baseCEs.fetchCEs(errorCode) - 1;
+ if(U_FAILURE(errorCode)) {
+ parserErrorReason = "fetching root CEs for tailored string";
+ return;
+ }
+ U_ASSERT(baseCEsLength >= 0 && baseCEs.getCE(baseCEsLength) == Collation::NO_CE);
+
+ uint32_t lastCase = 0;
+ int32_t numBasePrimaries = 0;
+ for(int32_t i = 0; i < baseCEsLength; ++i) {
+ int64_t ce = baseCEs.getCE(i);
+ if((ce >> 32) != 0) {
+ ++numBasePrimaries;
+ uint32_t c = ((uint32_t)ce >> 14) & 3;
+ U_ASSERT(c == 0 || c == 2); // lowercase or uppercase, no mixed case in any base CE
+ if(numBasePrimaries < numTailoredPrimaries) {
+ cases |= (int64_t)c << ((numBasePrimaries - 1) * 2);
+ } else if(numBasePrimaries == numTailoredPrimaries) {
+ lastCase = c;
+ } else if(c != lastCase) {
+ // There are more base primary CEs than tailored primaries.
+ // Set mixed case if the case bits of the remainder differ.
+ lastCase = 1;
+ // Nothing more can change.
+ break;
+ }
+ }
+ }
+ if(numBasePrimaries >= numTailoredPrimaries) {
+ cases |= (int64_t)lastCase << ((numTailoredPrimaries - 1) * 2);
+ }
+ }
+
+ for(int32_t i = 0; i < cesLength; ++i) {
+ int64_t ce = ces[i] & INT64_C(0xffffffffffff3fff); // clear old case bits
+ int32_t strength = ceStrength(ce);
+ if(strength == UCOL_PRIMARY) {
+ ce |= (cases & 3) << 14;
+ cases >>= 2;
+ } else if(strength == UCOL_TERTIARY) {
+ // Tertiary CEs must have uppercase bits.
+ // See the LDML spec, and comments in class CollationCompare.
+ ce |= 0x8000;
+ }
+ // Tertiary ignorable CEs must have 0 case bits.
+ // We set 0 case bits for secondary CEs too
+ // since currently only U+0345 is cased and maps to a secondary CE,
+ // and it is lowercase. Other secondaries are uncased.
+ // See [[:Cased:]&[:uca1=:]] where uca1 queries the root primary weight.
+ ces[i] = ce;
+ }
+}
+
+void
+CollationBuilder::suppressContractions(const UnicodeSet &set, const char *&parserErrorReason,
+ UErrorCode &errorCode) {
+ if(U_FAILURE(errorCode)) { return; }
+ dataBuilder->suppressContractions(set, errorCode);
+ if(U_FAILURE(errorCode)) {
+ parserErrorReason = "application of [suppressContractions [set]] failed";
+ }
+}
+
+void
+CollationBuilder::optimize(const UnicodeSet &set, const char *& /* parserErrorReason */,
+ UErrorCode &errorCode) {
+ if(U_FAILURE(errorCode)) { return; }
+ optimizeSet.addAll(set);
+}
+
+uint32_t
+CollationBuilder::addWithClosure(const UnicodeString &nfdPrefix, const UnicodeString &nfdString,
+ const int64_t newCEs[], int32_t newCEsLength, uint32_t ce32,
+ UErrorCode &errorCode) {
+ // Map from the NFD input to the CEs.
+ ce32 = addIfDifferent(nfdPrefix, nfdString, newCEs, newCEsLength, ce32, errorCode);
+ ce32 = addOnlyClosure(nfdPrefix, nfdString, newCEs, newCEsLength, ce32, errorCode);
+ addTailComposites(nfdPrefix, nfdString, errorCode);
+ return ce32;
+}
+
+uint32_t
+CollationBuilder::addOnlyClosure(const UnicodeString &nfdPrefix, const UnicodeString &nfdString,
+ const int64_t newCEs[], int32_t newCEsLength, uint32_t ce32,
+ UErrorCode &errorCode) {
+ if(U_FAILURE(errorCode)) { return ce32; }
+
+ // Map from canonically equivalent input to the CEs. (But not from the all-NFD input.)
+ if(nfdPrefix.isEmpty()) {
+ CanonicalIterator stringIter(nfdString, errorCode);
+ if(U_FAILURE(errorCode)) { return ce32; }
+ UnicodeString prefix;
+ for(;;) {
+ UnicodeString str = stringIter.next();
+ if(str.isBogus()) { break; }
+ if(ignoreString(str, errorCode) || str == nfdString) { continue; }
+ ce32 = addIfDifferent(prefix, str, newCEs, newCEsLength, ce32, errorCode);
+ if(U_FAILURE(errorCode)) { return ce32; }
+ }
+ } else {
+ CanonicalIterator prefixIter(nfdPrefix, errorCode);
+ CanonicalIterator stringIter(nfdString, errorCode);
+ if(U_FAILURE(errorCode)) { return ce32; }
+ for(;;) {
+ UnicodeString prefix = prefixIter.next();
+ if(prefix.isBogus()) { break; }
+ if(ignorePrefix(prefix, errorCode)) { continue; }
+ UBool samePrefix = prefix == nfdPrefix;
+ for(;;) {
+ UnicodeString str = stringIter.next();
+ if(str.isBogus()) { break; }
+ if(ignoreString(str, errorCode) || (samePrefix && str == nfdString)) { continue; }
+ ce32 = addIfDifferent(prefix, str, newCEs, newCEsLength, ce32, errorCode);
+ if(U_FAILURE(errorCode)) { return ce32; }
+ }
+ stringIter.reset();
+ }
+ }
+ return ce32;
+}
+
+void
+CollationBuilder::addTailComposites(const UnicodeString &nfdPrefix, const UnicodeString &nfdString,
+ UErrorCode &errorCode) {
+ if(U_FAILURE(errorCode)) { return; }
+
+ // Look for the last starter in the NFD string.
+ UChar32 lastStarter;
+ int32_t indexAfterLastStarter = nfdString.length();
+ for(;;) {
+ if(indexAfterLastStarter == 0) { return; } // no starter at all
+ lastStarter = nfdString.char32At(indexAfterLastStarter - 1);
+ if(nfd.getCombiningClass(lastStarter) == 0) { break; }
+ indexAfterLastStarter -= U16_LENGTH(lastStarter);
+ }
+ // No closure to Hangul syllables since we decompose them on the fly.
+ if(Hangul::isJamoL(lastStarter)) { return; }
+
+ // Are there any composites whose decomposition starts with the lastStarter?
+ // Note: Normalizer2Impl does not currently return start sets for NFC_QC=Maybe characters.
+ // We might find some more equivalent mappings here if it did.
+ UnicodeSet composites;
+ if(!nfcImpl.getCanonStartSet(lastStarter, composites)) { return; }
+
+ UnicodeString decomp;
+ UnicodeString newNFDString, newString;
+ int64_t newCEs[Collation::MAX_EXPANSION_LENGTH];
+ UnicodeSetIterator iter(composites);
+ while(iter.next()) {
+ U_ASSERT(!iter.isString());
+ UChar32 composite = iter.getCodepoint();
+ nfd.getDecomposition(composite, decomp);
+ if(!mergeCompositeIntoString(nfdString, indexAfterLastStarter, composite, decomp,
+ newNFDString, newString, errorCode)) {
+ continue;
+ }
+ int32_t newCEsLength = dataBuilder->getCEs(nfdPrefix, newNFDString, newCEs, 0);
+ if(newCEsLength > Collation::MAX_EXPANSION_LENGTH) {
+ // Ignore mappings that we cannot store.
+ continue;
+ }
+ // Note: It is possible that the newCEs do not make use of the mapping
+ // for which we are adding the tail composites, in which case we might be adding
+ // unnecessary mappings.
+ // For example, when we add tail composites for ae^ (^=combining circumflex),
+ // UCA discontiguous-contraction matching does not find any matches
+ // for ae_^ (_=any combining diacritic below) *unless* there is also
+ // a contraction mapping for ae.
+ // Thus, if there is no ae contraction, then the ae^ mapping is ignored
+ // while fetching the newCEs for ae_^.
+ // TODO: Try to detect this effectively.
+ // (Alternatively, print a warning when prefix contractions are missing.)
+
+ // We do not need an explicit mapping for the NFD strings.
+ // It is fine if the NFD input collates like this via a sequence of mappings.
+ // It also saves a little bit of space, and may reduce the set of characters with contractions.
+ uint32_t ce32 = addIfDifferent(nfdPrefix, newString,
+ newCEs, newCEsLength, Collation::UNASSIGNED_CE32, errorCode);
+ if(ce32 != Collation::UNASSIGNED_CE32) {
+ // was different, was added
+ addOnlyClosure(nfdPrefix, newNFDString, newCEs, newCEsLength, ce32, errorCode);
+ }
+ }
+}
+
+UBool
+CollationBuilder::mergeCompositeIntoString(const UnicodeString &nfdString,
+ int32_t indexAfterLastStarter,
+ UChar32 composite, const UnicodeString &decomp,
+ UnicodeString &newNFDString, UnicodeString &newString,
+ UErrorCode &errorCode) const {
+ if(U_FAILURE(errorCode)) { return FALSE; }
+ U_ASSERT(nfdString.char32At(indexAfterLastStarter - 1) == decomp.char32At(0));
+ int32_t lastStarterLength = decomp.moveIndex32(0, 1);
+ if(lastStarterLength == decomp.length()) {
+ // Singleton decompositions should be found by addWithClosure()
+ // and the CanonicalIterator, so we can ignore them here.
+ return FALSE;
+ }
+ if(nfdString.compare(indexAfterLastStarter, 0x7fffffff,
+ decomp, lastStarterLength, 0x7fffffff) == 0) {
+ // same strings, nothing new to be found here
+ return FALSE;
+ }
+
+ // Make new FCD strings that combine a composite, or its decomposition,
+ // into the nfdString's last starter and the combining marks following it.
+ // Make an NFD version, and a version with the composite.
+ newNFDString.setTo(nfdString, 0, indexAfterLastStarter);
+ newString.setTo(nfdString, 0, indexAfterLastStarter - lastStarterLength).append(composite);
+
+ // The following is related to discontiguous contraction matching,
+ // but builds only FCD strings (or else returns FALSE).
+ int32_t sourceIndex = indexAfterLastStarter;
+ int32_t decompIndex = lastStarterLength;
+ // Small optimization: We keep the source character across loop iterations
+ // because we do not always consume it,
+ // and then need not fetch it again nor look up its combining class again.
+ UChar32 sourceChar = U_SENTINEL;
+ // The cc variables need to be declared before the loop so that at the end
+ // they are set to the last combining classes seen.
+ uint8_t sourceCC = 0;
+ uint8_t decompCC = 0;
+ for(;;) {
+ if(sourceChar < 0) {
+ if(sourceIndex >= nfdString.length()) { break; }
+ sourceChar = nfdString.char32At(sourceIndex);
+ sourceCC = nfd.getCombiningClass(sourceChar);
+ U_ASSERT(sourceCC != 0);
+ }
+ // We consume a decomposition character in each iteration.
+ if(decompIndex >= decomp.length()) { break; }
+ UChar32 decompChar = decomp.char32At(decompIndex);
+ decompCC = nfd.getCombiningClass(decompChar);
+ // Compare the two characters and their combining classes.
+ if(decompCC == 0) {
+ // Unable to merge because the source contains a non-zero combining mark
+ // but the composite's decomposition contains another starter.
+ // The strings would not be equivalent.
+ return FALSE;
+ } else if(sourceCC < decompCC) {
+ // Composite + sourceChar would not be FCD.
+ return FALSE;
+ } else if(decompCC < sourceCC) {
+ newNFDString.append(decompChar);
+ decompIndex += U16_LENGTH(decompChar);
+ } else if(decompChar != sourceChar) {
+ // Blocked because same combining class.
+ return FALSE;
+ } else { // match: decompChar == sourceChar
+ newNFDString.append(decompChar);
+ decompIndex += U16_LENGTH(decompChar);
+ sourceIndex += U16_LENGTH(decompChar);
+ sourceChar = U_SENTINEL;
+ }
+ }
+ // We are at the end of at least one of the two inputs.
+ if(sourceChar >= 0) { // more characters from nfdString but not from decomp
+ if(sourceCC < decompCC) {
+ // Appending the next source character to the composite would not be FCD.
+ return FALSE;
+ }
+ newNFDString.append(nfdString, sourceIndex, 0x7fffffff);
+ newString.append(nfdString, sourceIndex, 0x7fffffff);
+ } else if(decompIndex < decomp.length()) { // more characters from decomp, not from nfdString
+ newNFDString.append(decomp, decompIndex, 0x7fffffff);
+ }
+ U_ASSERT(nfd.isNormalized(newNFDString, errorCode));
+ U_ASSERT(fcd.isNormalized(newString, errorCode));
+ U_ASSERT(nfd.normalize(newString, errorCode) == newNFDString); // canonically equivalent
+ return TRUE;
+}
+
+UBool
+CollationBuilder::ignorePrefix(const UnicodeString &s, UErrorCode &errorCode) const {
+ // Do not map non-FCD prefixes.
+ return !isFCD(s, errorCode);
+}
+
+UBool
+CollationBuilder::ignoreString(const UnicodeString &s, UErrorCode &errorCode) const {
+ // Do not map non-FCD strings.
+ // Do not map strings that start with Hangul syllables: We decompose those on the fly.
+ return !isFCD(s, errorCode) || Hangul::isHangul(s.charAt(0));
+}
+
+UBool
+CollationBuilder::isFCD(const UnicodeString &s, UErrorCode &errorCode) const {
+ return U_SUCCESS(errorCode) && fcd.isNormalized(s, errorCode);
+}
+
+void
+CollationBuilder::closeOverComposites(UErrorCode &errorCode) {
+ UnicodeSet composites(UNICODE_STRING_SIMPLE("[:NFD_QC=N:]"), errorCode); // Java: static final
+ if(U_FAILURE(errorCode)) { return; }
+ // Hangul is decomposed on the fly during collation.
+ composites.remove(Hangul::HANGUL_BASE, Hangul::HANGUL_END);
+ UnicodeString prefix; // empty
+ UnicodeString nfdString;
+ UnicodeSetIterator iter(composites);
+ while(iter.next()) {
+ U_ASSERT(!iter.isString());
+ nfd.getDecomposition(iter.getCodepoint(), nfdString);
+ cesLength = dataBuilder->getCEs(nfdString, ces, 0);
+ if(cesLength > Collation::MAX_EXPANSION_LENGTH) {
+ // Too many CEs from the decomposition (unusual), ignore this composite.
+ // We could add a capacity parameter to getCEs() and reallocate if necessary.
+ // However, this can only really happen in contrived cases.
+ continue;
+ }
+ const UnicodeString &composite(iter.getString());
+ addIfDifferent(prefix, composite, ces, cesLength, Collation::UNASSIGNED_CE32, errorCode);
+ }
+}
+
+uint32_t
+CollationBuilder::addIfDifferent(const UnicodeString &prefix, const UnicodeString &str,
+ const int64_t newCEs[], int32_t newCEsLength, uint32_t ce32,
+ UErrorCode &errorCode) {
+ if(U_FAILURE(errorCode)) { return ce32; }
+ int64_t oldCEs[Collation::MAX_EXPANSION_LENGTH];
+ int32_t oldCEsLength = dataBuilder->getCEs(prefix, str, oldCEs, 0);
+ if(!sameCEs(newCEs, newCEsLength, oldCEs, oldCEsLength)) {
+ if(ce32 == Collation::UNASSIGNED_CE32) {
+ ce32 = dataBuilder->encodeCEs(newCEs, newCEsLength, errorCode);
+ }
+ dataBuilder->addCE32(prefix, str, ce32, errorCode);
+ }
+ return ce32;
+}
+
+UBool
+CollationBuilder::sameCEs(const int64_t ces1[], int32_t ces1Length,
+ const int64_t ces2[], int32_t ces2Length) {
+ if(ces1Length != ces2Length) {
+ return FALSE;
+ }
+ U_ASSERT(ces1Length <= Collation::MAX_EXPANSION_LENGTH);
+ for(int32_t i = 0; i < ces1Length; ++i) {
+ if(ces1[i] != ces2[i]) { return FALSE; }
+ }
+ return TRUE;
+}
+
+#ifdef DEBUG_COLLATION_BUILDER
+
+uint32_t
+alignWeightRight(uint32_t w) {
+ if(w != 0) {
+ while((w & 0xff) == 0) { w >>= 8; }
+ }
+ return w;
+}
+
+#endif
+
+void
+CollationBuilder::makeTailoredCEs(UErrorCode &errorCode) {
+ if(U_FAILURE(errorCode)) { return; }
+
+ CollationWeights primaries, secondaries, tertiaries;
+ int64_t *nodesArray = nodes.getBuffer();
+#ifdef DEBUG_COLLATION_BUILDER
+ puts("\nCollationBuilder::makeTailoredCEs()");
+#endif
+
+ for(int32_t rpi = 0; rpi < rootPrimaryIndexes.size(); ++rpi) {
+ int32_t i = rootPrimaryIndexes.elementAti(rpi);
+ int64_t node = nodesArray[i];
+ uint32_t p = weight32FromNode(node);
+ uint32_t s = p == 0 ? 0 : Collation::COMMON_WEIGHT16;
+ uint32_t t = s;
+ uint32_t q = 0;
+ UBool pIsTailored = FALSE;
+ UBool sIsTailored = FALSE;
+ UBool tIsTailored = FALSE;
+#ifdef DEBUG_COLLATION_BUILDER
+ printf("\nprimary %lx\n", (long)alignWeightRight(p));
+#endif
+ int32_t pIndex = p == 0 ? 0 : rootElements.findPrimary(p);
+ int32_t nextIndex = nextIndexFromNode(node);
+ while(nextIndex != 0) {
+ i = nextIndex;
+ node = nodesArray[i];
+ nextIndex = nextIndexFromNode(node);
+ int32_t strength = strengthFromNode(node);
+ if(strength == UCOL_QUATERNARY) {
+ U_ASSERT(isTailoredNode(node));
+#ifdef DEBUG_COLLATION_BUILDER
+ printf(" quat+ ");
+#endif
+ if(q == 3) {
+ errorCode = U_BUFFER_OVERFLOW_ERROR;
+ errorReason = "quaternary tailoring gap too small";
+ return;
+ }
+ ++q;
+ } else {
+ if(strength == UCOL_TERTIARY) {
+ if(isTailoredNode(node)) {
+#ifdef DEBUG_COLLATION_BUILDER
+ printf(" ter+ ");
+#endif
+ if(!tIsTailored) {
+ // First tailored tertiary node for [p, s].
+ int32_t tCount = countTailoredNodes(nodesArray, nextIndex,
+ UCOL_TERTIARY) + 1;
+ uint32_t tLimit;
+ if(t == 0) {
+ // Gap at the beginning of the tertiary CE range.
+ t = rootElements.getTertiaryBoundary() - 0x100;
+ tLimit = rootElements.getFirstTertiaryCE() & Collation::ONLY_TERTIARY_MASK;
+ } else if(!pIsTailored && !sIsTailored) {
+ // p and s are root weights.
+ tLimit = rootElements.getTertiaryAfter(pIndex, s, t);
+ } else if(t == Collation::BEFORE_WEIGHT16) {
+ tLimit = Collation::COMMON_WEIGHT16;
+ } else {
+ // [p, s] is tailored.
+ U_ASSERT(t == Collation::COMMON_WEIGHT16);
+ tLimit = rootElements.getTertiaryBoundary();
+ }
+ U_ASSERT(tLimit == 0x4000 || (tLimit & ~Collation::ONLY_TERTIARY_MASK) == 0);
+ tertiaries.initForTertiary();
+ if(!tertiaries.allocWeights(t, tLimit, tCount)) {
+ errorCode = U_BUFFER_OVERFLOW_ERROR;
+ errorReason = "tertiary tailoring gap too small";
+ return;
+ }
+ tIsTailored = TRUE;
+ }
+ t = tertiaries.nextWeight();
+ U_ASSERT(t != 0xffffffff);
+ } else {
+ t = weight16FromNode(node);
+ tIsTailored = FALSE;
+#ifdef DEBUG_COLLATION_BUILDER
+ printf(" ter %lx\n", (long)alignWeightRight(t));
+#endif
+ }
+ } else {
+ if(strength == UCOL_SECONDARY) {
+ if(isTailoredNode(node)) {
+#ifdef DEBUG_COLLATION_BUILDER
+ printf(" sec+ ");
+#endif
+ if(!sIsTailored) {
+ // First tailored secondary node for p.
+ int32_t sCount = countTailoredNodes(nodesArray, nextIndex,
+ UCOL_SECONDARY) + 1;
+ uint32_t sLimit;
+ if(s == 0) {
+ // Gap at the beginning of the secondary CE range.
+ s = rootElements.getSecondaryBoundary() - 0x100;
+ sLimit = rootElements.getFirstSecondaryCE() >> 16;
+ } else if(!pIsTailored) {
+ // p is a root primary.
+ sLimit = rootElements.getSecondaryAfter(pIndex, s);
+ } else if(s == Collation::BEFORE_WEIGHT16) {
+ sLimit = Collation::COMMON_WEIGHT16;
+ } else {
+ // p is a tailored primary.
+ U_ASSERT(s == Collation::COMMON_WEIGHT16);
+ sLimit = rootElements.getSecondaryBoundary();
+ }
+ if(s == Collation::COMMON_WEIGHT16) {
+ // Do not tailor into the getSortKey() range of
+ // compressed common secondaries.
+ s = rootElements.getLastCommonSecondary();
+ }
+ secondaries.initForSecondary();
+ if(!secondaries.allocWeights(s, sLimit, sCount)) {
+ errorCode = U_BUFFER_OVERFLOW_ERROR;
+ errorReason = "secondary tailoring gap too small";
+#ifdef DEBUG_COLLATION_BUILDER
+ printf("!secondaries.allocWeights(%lx, %lx, sCount=%ld)\n",
+ (long)alignWeightRight(s), (long)alignWeightRight(sLimit),
+ (long)alignWeightRight(sCount));
+#endif
+ return;
+ }
+ sIsTailored = TRUE;
+ }
+ s = secondaries.nextWeight();
+ U_ASSERT(s != 0xffffffff);
+ } else {
+ s = weight16FromNode(node);
+ sIsTailored = FALSE;
+#ifdef DEBUG_COLLATION_BUILDER
+ printf(" sec %lx\n", (long)alignWeightRight(s));
+#endif
+ }
+ } else /* UCOL_PRIMARY */ {
+ U_ASSERT(isTailoredNode(node));
+#ifdef DEBUG_COLLATION_BUILDER
+ printf("pri+ ");
+#endif
+ if(!pIsTailored) {
+ // First tailored primary node in this list.
+ int32_t pCount = countTailoredNodes(nodesArray, nextIndex,
+ UCOL_PRIMARY) + 1;
+ UBool isCompressible = baseData->isCompressiblePrimary(p);
+ uint32_t pLimit =
+ rootElements.getPrimaryAfter(p, pIndex, isCompressible);
+ primaries.initForPrimary(isCompressible);
+ if(!primaries.allocWeights(p, pLimit, pCount)) {
+ errorCode = U_BUFFER_OVERFLOW_ERROR; // TODO: introduce a more specific UErrorCode?
+ errorReason = "primary tailoring gap too small";
+ return;
+ }
+ pIsTailored = TRUE;
+ }
+ p = primaries.nextWeight();
+ U_ASSERT(p != 0xffffffff);
+ s = Collation::COMMON_WEIGHT16;
+ sIsTailored = FALSE;
+ }
+ t = s == 0 ? 0 : Collation::COMMON_WEIGHT16;
+ tIsTailored = FALSE;
+ }
+ q = 0;
+ }
+ if(isTailoredNode(node)) {
+ nodesArray[i] = Collation::makeCE(p, s, t, q);
+#ifdef DEBUG_COLLATION_BUILDER
+ printf("%016llx\n", (long long)nodesArray[i]);
+#endif
+ }
+ }
+ }
+}
+
+int32_t
+CollationBuilder::countTailoredNodes(const int64_t *nodesArray, int32_t i, int32_t strength) {
+ int32_t count = 0;
+ for(;;) {
+ if(i == 0) { break; }
+ int64_t node = nodesArray[i];
+ if(strengthFromNode(node) < strength) { break; }
+ if(strengthFromNode(node) == strength) {
+ if(isTailoredNode(node)) {
+ ++count;
+ } else {
+ break;
+ }
+ }
+ i = nextIndexFromNode(node);
+ }
+ return count;
+}
+
+class CEFinalizer : public CollationDataBuilder::CEModifier {
+public:
+ CEFinalizer(const int64_t *ces) : finalCEs(ces) {}
+ virtual ~CEFinalizer();
+ virtual int64_t modifyCE32(uint32_t ce32) const {
+ U_ASSERT(!Collation::isSpecialCE32(ce32));
+ if(CollationBuilder::isTempCE32(ce32)) {
+ // retain case bits
+ return finalCEs[CollationBuilder::indexFromTempCE32(ce32)] | ((ce32 & 0xc0) << 8);
+ } else {
+ return Collation::NO_CE;
+ }
+ }
+ virtual int64_t modifyCE(int64_t ce) const {
+ if(CollationBuilder::isTempCE(ce)) {
+ // retain case bits
+ return finalCEs[CollationBuilder::indexFromTempCE(ce)] | (ce & 0xc000);
+ } else {
+ return Collation::NO_CE;
+ }
+ }
+
+private:
+ const int64_t *finalCEs;
+};
+
+CEFinalizer::~CEFinalizer() {}
+
+void
+CollationBuilder::finalizeCEs(UErrorCode &errorCode) {
+ if(U_FAILURE(errorCode)) { return; }
+ LocalPointer<CollationDataBuilder> newBuilder(new CollationDataBuilder(errorCode), errorCode);
+ if(U_FAILURE(errorCode)) {
+ return;
+ }
+ newBuilder->initForTailoring(baseData, errorCode);
+ CEFinalizer finalizer(nodes.getBuffer());
+ newBuilder->copyFrom(*dataBuilder, finalizer, errorCode);
+ if(U_FAILURE(errorCode)) { return; }
+ delete dataBuilder;
+ dataBuilder = newBuilder.orphan();
+}
+
+int32_t
+CollationBuilder::ceStrength(int64_t ce) {
+ return
+ isTempCE(ce) ? strengthFromTempCE(ce) :
+ (ce & INT64_C(0xff00000000000000)) != 0 ? UCOL_PRIMARY :
+ ((uint32_t)ce & 0xff000000) != 0 ? UCOL_SECONDARY :
+ ce != 0 ? UCOL_TERTIARY :
+ UCOL_IDENTICAL;
+}
+
+U_NAMESPACE_END
+
+U_NAMESPACE_USE
+
+U_CAPI UCollator * U_EXPORT2
+ucol_openRules(const UChar *rules, int32_t rulesLength,
+ UColAttributeValue normalizationMode, UCollationStrength strength,
+ UParseError *parseError, UErrorCode *pErrorCode) {
+ if(U_FAILURE(*pErrorCode)) { return NULL; }
+ if(rules == NULL && rulesLength != 0) {
+ *pErrorCode = U_ILLEGAL_ARGUMENT_ERROR;
+ return NULL;
+ }
+ RuleBasedCollator *coll = new RuleBasedCollator();
+ if(coll == NULL) {
+ *pErrorCode = U_MEMORY_ALLOCATION_ERROR;
+ return NULL;
+ }
+ UnicodeString r((UBool)(rulesLength < 0), rules, rulesLength);
+ coll->internalBuildTailoring(r, strength, normalizationMode, parseError, NULL, *pErrorCode);
+ if(U_FAILURE(*pErrorCode)) {
+ delete coll;
+ return NULL;
+ }
+ return coll->toUCollator();
+}
+
+static const int32_t internalBufferSize = 512;
+
+// The @internal ucol_getUnsafeSet() was moved here from ucol_sit.cpp
+// because it calls UnicodeSet "builder" code that depends on all Unicode properties,
+// and the rest of the collation "runtime" code only depends on normalization.
+// This function is not related to the collation builder,
+// but it did not seem worth moving it into its own .cpp file,
+// nor rewriting it to use lower-level UnicodeSet and Normalizer2Impl methods.
+U_CAPI int32_t U_EXPORT2
+ucol_getUnsafeSet( const UCollator *coll,
+ USet *unsafe,
+ UErrorCode *status)
+{
+ UChar buffer[internalBufferSize];
+ int32_t len = 0;
+
+ uset_clear(unsafe);
+
+ // cccpattern = "[[:^tccc=0:][:^lccc=0:]]", unfortunately variant
+ static const UChar cccpattern[25] = { 0x5b, 0x5b, 0x3a, 0x5e, 0x74, 0x63, 0x63, 0x63, 0x3d, 0x30, 0x3a, 0x5d,
+ 0x5b, 0x3a, 0x5e, 0x6c, 0x63, 0x63, 0x63, 0x3d, 0x30, 0x3a, 0x5d, 0x5d, 0x00 };
+
+ // add chars that fail the fcd check
+ uset_applyPattern(unsafe, cccpattern, 24, USET_IGNORE_SPACE, status);
+
+ // add lead/trail surrogates
+ // (trail surrogates should need to be unsafe only if the caller tests for UTF-16 code *units*,
+ // not when testing code *points*)
+ uset_addRange(unsafe, 0xd800, 0xdfff);
+
+ USet *contractions = uset_open(0,0);
+
+ int32_t i = 0, j = 0;
+ ucol_getContractionsAndExpansions(coll, contractions, NULL, FALSE, status);
+ int32_t contsSize = uset_size(contractions);
+ UChar32 c = 0;
+ // Contraction set consists only of strings
+ // to get unsafe code points, we need to
+ // break the strings apart and add them to the unsafe set
+ for(i = 0; i < contsSize; i++) {
+ len = uset_getItem(contractions, i, NULL, NULL, buffer, internalBufferSize, status);
+ if(len > 0) {
+ j = 0;
+ while(j < len) {
+ U16_NEXT(buffer, j, len, c);
+ if(j < len) {
+ uset_add(unsafe, c);
+ }
+ }
+ }
+ }
+
+ uset_close(contractions);
+
+ return uset_size(unsafe);
+}
+
+#endif // !UCONFIG_NO_COLLATION